Variable selection and estimation for recurrent event model with covariates subject to measurement error
This article focuses on variable selection in the Andersen-Gill model for recurrent event analysis, particularly when covariates are subject to measurement errors. We propose a comprehensive three-stage procedure that incorporates simulation-extrapolation with various penalty functions. This approac...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 94; no. 16; pp. 3633 - 3652 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.11.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article focuses on variable selection in the Andersen-Gill model for recurrent event analysis, particularly when covariates are subject to measurement errors. We propose a comprehensive three-stage procedure that incorporates simulation-extrapolation with various penalty functions. This approach allows for the simultaneous selection of significant covariates, estimation of regression parameters, and adjustment for measurement errors. Through extensive simulation studies, we demonstrate that our method outperforms approaches that fail to account for measurement errors or the need for variable selection. Specifically, our procedure excels in removing unimportant error-prone covariates and accurately estimating the coefficients of important variables. The results also reveal that the magnitude of measurement error has a substantial negative impact on variable selection outcomes. Additionally, we apply our method to a real-world dataset, further illustrating its practical effectiveness and robustness. |
---|---|
AbstractList | This article focuses on variable selection in the Andersen-Gill model for recurrent event analysis, particularly when covariates are subject to measurement errors. We propose a comprehensive three-stage procedure that incorporates simulation-extrapolation with various penalty functions. This approach allows for the simultaneous selection of significant covariates, estimation of regression parameters, and adjustment for measurement errors. Through extensive simulation studies, we demonstrate that our method outperforms approaches that fail to account for measurement errors or the need for variable selection. Specifically, our procedure excels in removing unimportant error-prone covariates and accurately estimating the coefficients of important variables. The results also reveal that the magnitude of measurement error has a substantial negative impact on variable selection outcomes. Additionally, we apply our method to a real-world dataset, further illustrating its practical effectiveness and robustness. |
Author | Cai, Kaida Shen, Hua Lu, Xuewen |
Author_xml | – sequence: 1 givenname: Kaida surname: Cai fullname: Cai, Kaida email: caikaida@seu.edu.cn organization: Southeast University – sequence: 2 givenname: Hua surname: Shen fullname: Shen, Hua organization: University of Calgary – sequence: 3 givenname: Xuewen surname: Lu fullname: Lu, Xuewen organization: University of Calgary |
BookMark | eNp9kEtrwzAQhEVJoenjJxQEPTuV5IfkW0voCwK9tL0KSV4TB9tKV3ZC_n3lpL32ssvCzCzzXZJZ73sg5JazBWeK3TNWZmWR5wvBRLYQaVlymZ2ROc-LNMl5kc7IfNIkk-iCXIawYYxxnos5WX8ZbIxtgQZowQ2N76npKwphaDpzPGuPFMGNiNAPFHbT7HwFLd03w5o6v5siBgg0jHYTM-jgaQcmjAjd0YLo8Zqc16YNcPO7r8jn89PH8jVZvb-8LR9XiROqGBLlshpsZZgFl2UgcuFkZgpXOyEVWCVkDYLnslKC1ValRWm5lcoyaUxhTZVekbtT7hb99xhr6I0fsY8vdcpFoTIZnVGVn1QOfQgItd5i7IsHzZmeoOo_qHqCqn-hRt_Dydf0EUtn9h7bSg_m0Hqs0fSumd78G_ED4ZeCvg |
Cites_doi | 10.1016/j.jspi.2019.11.005 10.1080/00949655.2020.1800705 10.1214/aos/1015362185 10.1111/rssb.12001 10.1080/00949655.2011.652114 10.1214/09-AOS729 10.1111/biom.v76.4 10.1002/cjs.v46.3 10.1002/cjs.v40.3 10.1007/s10985-008-9104-2 10.1111/biom.v77.3 10.1007/978-1-4939-6640-0 10.1214/aos/1176345976 10.1198/016214506000000735 10.1007/978-1-4613-3030-1_74 10.1111/biom.13898 10.1007/s11424-012-1098-x 10.1201/9781420010138 10.4310/21-SII663 10.1111/j.2517-6161.1996.tb02080.x 10.1002/(ISSN)1097-0258 10.1137/1.9781611970128 10.1198/016214501753382273 10.1016/j.csda.2012.06.019 10.1080/01621459.1994.10476871 10.1214/aos/1176344136 10.1111/j.1467-9868.2008.00674.x 10.1080/03610926.2021.2004424 10.1111/biom.12857 10.1093/biostatistics/kxac017 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00949655.2024.2399174 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1563-5163 |
EndPage | 3652 |
ExternalDocumentID | 10_1080_00949655_2024_2399174 2399174 |
Genre | Research Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20230804 – fundername: Zhishan Young Scholar Project of Southeast University grantid: 2242023R40055 – fundername: National Natural Science Foundation of China grantid: 12301334 – fundername: High Level Personnel Project of Jiangsu Province grantid: JSSCBS20220079 – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada grantid: RG/PIN06466-2018; RG/PIN04594-2016 – fundername: NSERC |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE AEUMN AFFNX AFRVT AGCQS AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK EJD IVXBP NUSFT QCRFL TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 8FD ADYSH JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-8c4febda0bec44e252c74a6cfc278eb827fe2157d820fb8369b1b78b07aa6bad3 |
ISSN | 0094-9655 |
IngestDate | Sat Jul 26 00:02:40 EDT 2025 Sun Aug 03 02:37:25 EDT 2025 Wed Dec 25 09:06:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-8c4febda0bec44e252c74a6cfc278eb827fe2157d820fb8369b1b78b07aa6bad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3126847820 |
PQPubID | 53118 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3126847820 crossref_primary_10_1080_00949655_2024_2399174 informaworld_taylorfrancis_310_1080_00949655_2024_2399174 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of statistical computation and simulation |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 Cook RJ (e_1_3_4_2_1) 2007 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 Fleming TR (e_1_3_4_3_1) 2011 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_23_1 doi: 10.1016/j.jspi.2019.11.005 – ident: e_1_3_4_25_1 doi: 10.1080/00949655.2020.1800705 – ident: e_1_3_4_14_1 doi: 10.1214/aos/1015362185 – ident: e_1_3_4_29_1 doi: 10.1111/rssb.12001 – ident: e_1_3_4_19_1 doi: 10.1080/00949655.2011.652114 – volume-title: The statistical analysis of recurrent events year: 2007 ident: e_1_3_4_2_1 – ident: e_1_3_4_16_1 doi: 10.1214/09-AOS729 – ident: e_1_3_4_21_1 doi: 10.1111/biom.v76.4 – ident: e_1_3_4_22_1 doi: 10.1002/cjs.v46.3 – ident: e_1_3_4_10_1 doi: 10.1002/cjs.v40.3 – ident: e_1_3_4_17_1 doi: 10.1007/s10985-008-9104-2 – volume-title: Counting processes and survival analysis year: 2011 ident: e_1_3_4_3_1 – ident: e_1_3_4_7_1 doi: 10.1111/biom.v77.3 – ident: e_1_3_4_5_1 doi: 10.1007/978-1-4939-6640-0 – ident: e_1_3_4_27_1 doi: 10.1214/aos/1176345976 – ident: e_1_3_4_15_1 doi: 10.1198/016214506000000735 – ident: e_1_3_4_4_1 doi: 10.1007/978-1-4613-3030-1_74 – ident: e_1_3_4_31_1 – ident: e_1_3_4_8_1 doi: 10.1111/biom.13898 – ident: e_1_3_4_18_1 doi: 10.1007/s11424-012-1098-x – ident: e_1_3_4_6_1 doi: 10.1201/9781420010138 – ident: e_1_3_4_24_1 doi: 10.4310/21-SII663 – ident: e_1_3_4_12_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_4_9_1 doi: 10.1002/(ISSN)1097-0258 – ident: e_1_3_4_30_1 doi: 10.1137/1.9781611970128 – ident: e_1_3_4_13_1 doi: 10.1198/016214501753382273 – ident: e_1_3_4_20_1 doi: 10.1016/j.csda.2012.06.019 – ident: e_1_3_4_28_1 doi: 10.1080/01621459.1994.10476871 – ident: e_1_3_4_32_1 doi: 10.1214/aos/1176344136 – ident: e_1_3_4_33_1 doi: 10.1111/j.1467-9868.2008.00674.x – ident: e_1_3_4_26_1 doi: 10.1080/03610926.2021.2004424 – ident: e_1_3_4_11_1 doi: 10.1111/biom.12857 – ident: e_1_3_4_34_1 doi: 10.1093/biostatistics/kxac017 |
SSID | ssj0001152 |
Score | 2.3529773 |
Snippet | This article focuses on variable selection in the Andersen-Gill model for recurrent event analysis, particularly when covariates are subject to measurement... This article focuses on variable selection in the Andersen–Gill model for recurrent event analysis, particularly when covariates are subject to measurement... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3633 |
SubjectTerms | Andersen-Gill model Error analysis measurement error Parameter estimation Penalty function Real variables recurrent events simulation-extrapolation Variable selection |
Title | Variable selection and estimation for recurrent event model with covariates subject to measurement error |
URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2024.2399174 https://www.proquest.com/docview/3126847820 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7aUceCwgCgX5wA1l1cSO4xwrHlohyqUtrLhEttcRPexulQdI_BR-LR6_kqXlUS5WZCmjyc6348lk5huEXsgcvg0RmeQ8IwldcZWUhJpFpEzUijFpSZJOPrDFOX23zJeTyY9R1VLfybn6fm1fyf9Y1ewZu0KX7A0sG4WaDXNt7GtWY2Gz_pONP5oXXdv61NppNqGyGIgz1kMRYQMpdUvCZNma3PCbUHP-FURA7rXtJaRkIBZdD3nDl7ppts1vIlhoRrI8z5ZjBKZDiKhDe7H2g8GGrxyucEBcDEmAU98bsujj1vseNpa9_uab1HxKIqO-N2_kZkualMzx786196yMJHnqvZl3vW6-cYDY2JES5vgx_KFMmOO5veLwQ4VkCbz3-Ry0mUO7bupm_-wSbP9y8MVyxDTypDoxFYipvJhbaC8zryDZFO0dL15__hTP-dTNc4oPG_rDgLn9On12Ip8dXtwrcYANbs7uoTvepvjYQew-mujNDN0NEz-wPwBm6PZJZPltZ2j_NACgfYC-BDDiCEZsgIAHMGKjCo5gxBaM2IIRAxjxAEbswYi7LR6BEVswPkTnb9-cvVokfoxHojLOuoQrWmu5EkfGXVCqszxTBRVM1SoruJY8K2ptAs9iZYLRWnLCSpnKgsujQggmxYo8QtPNdqMfIyy5EKSmRJW0NlEV5akGRs3SbJRGrDpA8_ATV5eOraX6o3EPUDk2RNXZNFntZtpU5C_3HgarVd4pwC1AnwQklE9uqstTtD_8mQ7RtGt6_cxEvJ187qH3EyfpqD8 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBRwFRKOCBNaWJHccZEQKVRzsVxBbZri0kRIvSlIFfjy9OCgUhhi4ZEt3JsS_nz5e77wDOVIz_hqgKYhHRgA2FDlLK3EWGXFrNuSpJknp93n1gt0_x07daGEyrxDO09UQRpa_GjxuD0XVK3Dmmw6U8jt3xLmJtrM50uHoZVuOUJ9jFgHb6M28c-q47KBKgTF3F85eauf1pjr30l7cut6DrLdD14H3myUt7Wqi2_vjB67jY223DZoVQyYU3qR1YMqMGbNXdH0jlDBqw0Zsxvk4asI6o1ZM-78LzozuBY00WmZRtdtzaEzcegowevlSSuBcmOcb6kR2KlDRSpOzKQzAyTPT4HVU4HEwmU4WxIlKMyetXQJOYPB_ne_BwfTW47AZVS4dAR4IXgdDMGjWUHWc6jJkojnTCJNdWR4kwSkSJNQ6EJEMHTKwSlKcqVIlQnURKruSQ7sPKaDwyB0CUkJJaRnXKrNthmQgNsium7kbq1OomtOuFzN48c0cWzghR_RRnOMVZNcVNSL8vd1aUIRPr-5tk9B_ZVm0bWeUEUASpdJCQ8HAB1aew1h307rP7m_7dEazjI18L2YKVIp-aYweKCnVSWv0nuzsAww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkVAZKBQQjwIeWFOaxHGcEQEVz4oBEFtkO7aQEC1KUwZ-Pb44KRSEGLpkSHQnx76cP1_uvgM4khH-GwqlF_Eg9GjGlZeE1F6Ez4RRjMmSJOl2wC4e6NVTVGcTjqu0SjxDG0cUUfpq_LjfMlNnxB1jNlzCosie7gLaxeJMC6sXYYkheThWcfQGU2fsu6Y7KOKhTF3E85eame1phrz0l7Mud6B-C2Q9dpd48tKdFLKrPn7QOs71cmuwWuFTcuIMah0W9LANrbr3A6lcQRtWbqd8r-M2NBGzOsrnDXh-tOdvrMgi47LJjl15YodDkM_DFUoS-74kx0g_ckORkkSKlD15CMaFiRq9owqLgsl4IjFSRIoRef0KZxKd56N8Ex765_enF17V0MFTAWeFxxU1WmaiZw2HUh1EgYqpYMqoIOZa8iA22kKQOLOwxEgeskT6MuayFwvBpMjCLWgMR0O9DURyIUJDQ5VQY_dXyn2N3IqJvZFYtWoHuvU6pm-OtyP1p3SobopTnOK0muIdSL6vdlqUARPjupuk4T-yndo00soFoAgS6SAd4e4cqg9h-e6sn95cDq73oIlPXCFkBxpFPtH7FhEV8qC0-U-RRv9Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+selection+and+estimation+for+recurrent+event+model+with+covariates+subject+to+measurement+error&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Cai%2C+Kaida&rft.au=Shen%2C+Hua&rft.au=Lu%2C+Xuewen&rft.date=2024-11-01&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=94&rft.issue=16&rft.spage=3633&rft.epage=3652&rft_id=info:doi/10.1080%2F00949655.2024.2399174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2024_2399174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |