Integrated computational model of cell cycle and checkpoint reveals different essential roles of Aurora-A and Plk1 in mitotic entry
Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects...
Saved in:
Published in | Molecular bioSystems Vol. 7; no. 1; pp. 169 - 179 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy. |
---|---|
AbstractList | Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy. Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy. |
Author | Luo, Shi-Dong Yang, Sheng-Yong Wei, Yu-Quan Zou, Jun |
Author_xml | – sequence: 1 givenname: Jun surname: Zou fullname: Zou, Jun – sequence: 2 givenname: Shi-Dong surname: Luo fullname: Luo, Shi-Dong – sequence: 3 givenname: Yu-Quan surname: Wei fullname: Wei, Yu-Quan – sequence: 4 givenname: Sheng-Yong surname: Yang fullname: Yang, Sheng-Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20978655$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctKBDEQRYMovjd-gGQnCK1JZtKdXo6DL1B0oeCuSScVjaY7Y5IWZu2Pm3F8gFibKopzL9yqLbTa-x4Q2qPkiJJRfTwl1yck13i6gjZpNWYFI5yu_szlwwbaivGZkJEYU7KONhipK1FyvoneL_sEj0Em0Fj5bjYkmazvpcOd1-CwN1iBc1jNlQMs-0w9gXqZedsnHOANpItYW2MgQN5AjLnZLA_eQVzIJ0PwQRaTT_Gte6HY9rizySercIbDfAetmWwDu199G92fnd5NL4qrm_PL6eSqUEyUqahUS0WryxxZC6lVZYCwlhNWU9YaaozQnHM5akXVmrZUHBihSte1BlEpIUbb6GDpOwv-dYCYms7GRTrZgx9iI2hZ1ayqeSb3v8ih7UA3s2A7GebN990ycLgEVPAxBjA_CCXN4inN71MyTP7Ayi7PnIK07j_JB4aJj_I |
CitedBy_id | crossref_primary_10_1002_mrd_22188 crossref_primary_10_1016_j_biopha_2024_116295 crossref_primary_10_1371_journal_pone_0028930 crossref_primary_10_1186_s12935_025_03717_x crossref_primary_10_1038_s41401_020_0404_8 crossref_primary_10_1091_mbc_e13_02_0108 crossref_primary_10_1039_c2mb25267h crossref_primary_10_1039_C4MB00610K |
Cites_doi | 10.1145/1089014.1089020 10.1038/ncb954 10.1038/msb4100126 10.1038/nchembio817 10.1038/sj.embor.embor887 10.1038/nrd2683 10.1016/j.ceb.2008.10.005 10.1016/j.cub.2006.12.046 10.1038/nrc2248 10.1038/ncb0707-724 10.1186/1752-0509-2-47 10.1016/j.cell.2005.06.016 10.1038/nrd2381 10.1038/nrm2351 10.1242/jcs.106.4.1153 10.1016/j.ceb.2009.01.018 10.1111/j.1744-7348.1939.tb06990.x 10.1073/pnas.0608798104 10.1038/nrc1841 10.1038/nrm2510 10.1111/j.1742-4658.2008.06844.x 10.1038/nrc2169 10.1111/j.1747-0285.2008.00663.x 10.1038/nbt1330 10.1038/msb.2008.80 10.1016/j.cub.2006.08.026 10.1038/nrm2653 10.1083/jcb.200812045 10.1038/nrd2907 10.1016/j.ceb.2007.11.008 10.1038/nbt.1549 10.1016/j.bmcl.2008.08.033 10.1007/PL00011391 10.1126/science.1156951 10.1126/scisignal.2000352 10.1038/nrg2102 10.1186/1752-0509-4-11 10.1016/j.apnum.2007.09.001 10.1073/pnas.0500410102 10.1038/nrc1502 10.1038/nrd2195 10.1126/science.1073096 10.1038/msb.2008.74 10.1039/b907562n 10.1083/jcb.200712027 10.1021/bi0009643 10.1038/nrc2787 10.1126/science.1157425 10.1038/nm1003 10.1158/0008-5472.CAN-05-1054 10.1093/nar/28.1.27 10.1038/msb.2009.4 10.1039/B907863K 10.1016/j.molcel.2006.06.013 10.1021/jm8012129 10.1038/nrc2602 10.1016/j.cell.2009.02.024 10.1093/nar/gki072 10.1016/j.molcel.2006.06.016 10.1128/MCB.15.1.345 10.1038/nature07185 10.1093/bib/bbp005 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1039/C0MB00004C |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-2051 |
EndPage | 179 |
ExternalDocumentID | 20978655 10_1039_C0MB00004C |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 0UZ 123 1TJ 29M 4.4 53G 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACPRK ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV C1A C6K CITATION CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~N J3G J3H J3I L-8 M4U N9A NDZJH O9- P2P R56 R7B RAOCF RCLXC RCNCU RNS RPMJG RSCEA SKA SLH VH6 X7L XJT XSW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c286t-7cb18bd6039d8adc7fe02b502912bf1ff8d555a3b87bfb6c5e201cd99de87c883 |
ISSN | 1742-206X 1742-2051 |
IngestDate | Fri Jul 11 16:23:14 EDT 2025 Thu Jun 12 08:56:25 EDT 2025 Tue Jul 01 02:40:28 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-7cb18bd6039d8adc7fe02b502912bf1ff8d555a3b87bfb6c5e201cd99de87c883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20978655 |
PQID | 816792795 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_816792795 pubmed_primary_20978655 crossref_primary_10_1039_C0MB00004C crossref_citationtrail_10_1039_C0MB00004C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-00-00 2011-Jan 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular bioSystems |
PublicationTitleAlternate | Mol Biosyst |
PublicationYear | 2011 |
References | Novák (C0MB00004C-(cit3)/*[position()=1]) 1993; 106 Pomerening (C0MB00004C-(cit5)/*[position()=1]) 2003; 5 Haberichter (C0MB00004C-(cit56)/*[position()=1]) 2007; 3 Malumbres (C0MB00004C-(cit1)/*[position()=1]) 2009; 9 Taylor (C0MB00004C-(cit16)/*[position()=1]) 2008; 20 Lindqvist (C0MB00004C-(cit2)/*[position()=1]) 2009; 185 Wang (C0MB00004C-(cit22)/*[position()=1]) 2008; 18 Schlier (C0MB00004C-(cit47)/*[position()=1]) 2008; 58 Watanabe (C0MB00004C-(cit33)/*[position()=1]) 2005; 102 Chen (C0MB00004C-(cit45)/*[position()=1]) 2008; 5 Boutros (C0MB00004C-(cit14)/*[position()=1]) 2007; 7 Csikasz-Nagy (C0MB00004C-(cit17)/*[position()=1]) 2009; 10 Donzelli (C0MB00004C-(cit13)/*[position()=1]) 2003; 4 Banga (C0MB00004C-(cit41)/*[position()=1]) 2008; 2 Pollard (C0MB00004C-(cit23)/*[position()=1]) 2009; 52 Lapenna (C0MB00004C-(cit24)/*[position()=1]) 2009; 8 Manfredi (C0MB00004C-(cit32)/*[position()=1]) 2007; 104 Keen (C0MB00004C-(cit51)/*[position()=1]) 2004; 4 Lobrich (C0MB00004C-(cit12)/*[position()=1]) 2007; 7 Strebhardt (C0MB00004C-(cit20)/*[position()=1]) 2006; 6 Kanehisa (C0MB00004C-(cit28)/*[position()=1]) 2000; 28 Vugt (C0MB00004C-(cit37)/*[position()=1]) 2005; 65 Byrd (C0MB00004C-(cit48)/*[position()=1]) 2000; 89 Harrington (C0MB00004C-(cit55)/*[position()=1]) 2004; 10 Bliss (C0MB00004C-(cit54)/*[position()=1]) 1939; 26 Macůrek (C0MB00004C-(cit10)/*[position()=1]) 2008; 455 Hlavacek (C0MB00004C-(cit39)/*[position()=1]) 2008; 5 Seki (C0MB00004C-(cit34)/*[position()=1]) 2008; 181 Branzei (C0MB00004C-(cit35)/*[position()=1]) 2008; 9 Ashyraliyev (C0MB00004C-(cit40)/*[position()=1]) 2009; 276 Tsai (C0MB00004C-(cit58)/*[position()=1]) 2008; 321 Mailand (C0MB00004C-(cit38)/*[position()=1]) 2006; 23 Mamely (C0MB00004C-(cit15)/*[position()=1]) 2006; 16 Schoeberl (C0MB00004C-(cit27)/*[position()=1]) 2009; 2 Desai (C0MB00004C-(cit50)/*[position()=1]) 1995; 15 Joshi-Tope (C0MB00004C-(cit29)/*[position()=1]) 2004; 33 Jia (C0MB00004C-(cit25)/*[position()=1]) 2009; 8 Pomerening (C0MB00004C-(cit6)/*[position()=1]) 2005; 122 Takaki (C0MB00004C-(cit7)/*[position()=1]) 2008; 20 Kitano (C0MB00004C-(cit52)/*[position()=1]) 2007; 6 Arooz (C0MB00004C-(cit31)/*[position()=1]) 2000; 39 Knight (C0MB00004C-(cit62)/*[position()=1]) 2010; 10 Weinstein (C0MB00004C-(cit60)/*[position()=1]) 2002; 297 Vera (C0MB00004C-(cit19)/*[position()=1]) 2010; 6 Alon (C0MB00004C-(cit59)/*[position()=1]) 2007; 8 Peschiaroli (C0MB00004C-(cit43)/*[position()=1]) 2006; 23 Kuepfer (C0MB00004C-(cit44)/*[position()=1]) 2007; 25 Vader (C0MB00004C-(cit11)/*[position()=1]) 2008; 1786 Archambault (C0MB00004C-(cit8)/*[position()=1]) 2009; 10 Fitzgerald (C0MB00004C-(cit26)/*[position()=1]) 2006; 2 Deng (C0MB00004C-(cit21)/*[position()=1]) 2008; 71 Lenart (C0MB00004C-(cit42)/*[position()=1]) 2007; 17 Luo (C0MB00004C-(cit61)/*[position()=1]) 2009; 136 Novák (C0MB00004C-(cit4)/*[position()=1]) 2007; 9 Balsa-Canto (C0MB00004C-(cit49)/*[position()=1]) 2010; 4 Lehár (C0MB00004C-(cit53)/*[position()=1]) 2009; 27 Seki (C0MB00004C-(cit9)/*[position()=1]) 2008; 320 Araujo (C0MB00004C-(cit18)/*[position()=1]) 2007; 6 Faure (C0MB00004C-(cit57)/*[position()=1]) 2009; 5 Wang (C0MB00004C-(cit46)/*[position()=1]) 2009; 5 Hochegger (C0MB00004C-(cit30)/*[position()=1]) 2008; 9 Hindmarsh (C0MB00004C-(cit63)/*[position()=1]) 2005; 31 Reinhardt (C0MB00004C-(cit36)/*[position()=1]) 2009; 21 |
References_xml | – volume: 31 start-page: 363 year: 2005 ident: C0MB00004C-(cit63)/*[position()=1] publication-title: Assoc. Comput. Mach., Trans. Math. Software doi: 10.1145/1089014.1089020 – volume: 5 start-page: 346 year: 2003 ident: C0MB00004C-(cit5)/*[position()=1] publication-title: Nat. Cell Biol. doi: 10.1038/ncb954 – volume: 3 start-page: 84 year: 2007 ident: C0MB00004C-(cit56)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100126 – volume: 2 start-page: 458 year: 2006 ident: C0MB00004C-(cit26)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio817 – volume: 4 start-page: 671 year: 2003 ident: C0MB00004C-(cit13)/*[position()=1] publication-title: EMBO Rep. doi: 10.1038/sj.embor.embor887 – volume: 8 start-page: 111 year: 2009 ident: C0MB00004C-(cit25)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2683 – volume: 20 start-page: 650 year: 2008 ident: C0MB00004C-(cit7)/*[position()=1] publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.10.005 – volume: 17 start-page: 304 year: 2007 ident: C0MB00004C-(cit42)/*[position()=1] publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.12.046 – volume: 7 start-page: 861 year: 2007 ident: C0MB00004C-(cit12)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2248 – volume: 9 start-page: 724 year: 2007 ident: C0MB00004C-(cit4)/*[position()=1] publication-title: Nat. Cell Biol. doi: 10.1038/ncb0707-724 – volume: 2 start-page: 47 year: 2008 ident: C0MB00004C-(cit41)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-2-47 – volume: 122 start-page: 565 year: 2005 ident: C0MB00004C-(cit6)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2005.06.016 – volume: 6 start-page: 871 year: 2007 ident: C0MB00004C-(cit18)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2381 – volume: 9 start-page: 297 year: 2008 ident: C0MB00004C-(cit35)/*[position()=1] publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2351 – volume: 106 start-page: 1153 year: 1993 ident: C0MB00004C-(cit3)/*[position()=1] publication-title: J. Cell Sci. doi: 10.1242/jcs.106.4.1153 – volume: 21 start-page: 245 year: 2009 ident: C0MB00004C-(cit36)/*[position()=1] publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.01.018 – volume: 26 start-page: 585 year: 1939 ident: C0MB00004C-(cit54)/*[position()=1] publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1939.tb06990.x – volume: 104 start-page: 4106 year: 2007 ident: C0MB00004C-(cit32)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608798104 – volume: 1786 start-page: 60 year: 2008 ident: C0MB00004C-(cit11)/*[position()=1] publication-title: Biochim. Biophys. Acta – volume: 6 start-page: 321 year: 2006 ident: C0MB00004C-(cit20)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1841 – volume: 9 start-page: 910 year: 2008 ident: C0MB00004C-(cit30)/*[position()=1] publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2510 – volume: 276 start-page: 886 year: 2009 ident: C0MB00004C-(cit40)/*[position()=1] publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06844.x – volume: 7 start-page: 495 year: 2007 ident: C0MB00004C-(cit14)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2169 – volume: 71 start-page: 533 year: 2008 ident: C0MB00004C-(cit21)/*[position()=1] publication-title: Chem. Biol. Drug Des. doi: 10.1111/j.1747-0285.2008.00663.x – volume: 25 start-page: 1001 year: 2007 ident: C0MB00004C-(cit44)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt1330 – volume: 5 start-page: 240 year: 2008 ident: C0MB00004C-(cit39)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2008.80 – volume: 16 start-page: 1950 year: 2006 ident: C0MB00004C-(cit15)/*[position()=1] publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.08.026 – volume: 10 start-page: 265 year: 2009 ident: C0MB00004C-(cit8)/*[position()=1] publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2653 – volume: 185 start-page: 193 year: 2009 ident: C0MB00004C-(cit2)/*[position()=1] publication-title: J. Cell Biol. doi: 10.1083/jcb.200812045 – volume: 8 start-page: 547 year: 2009 ident: C0MB00004C-(cit24)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2907 – volume: 20 start-page: 77 year: 2008 ident: C0MB00004C-(cit16)/*[position()=1] publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2007.11.008 – volume: 27 start-page: 659 year: 2009 ident: C0MB00004C-(cit53)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1549 – volume: 18 start-page: 4972 year: 2008 ident: C0MB00004C-(cit22)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2008.08.033 – volume: 89 start-page: 149 year: 2000 ident: C0MB00004C-(cit48)/*[position()=1] publication-title: Math. Program. doi: 10.1007/PL00011391 – volume: 321 start-page: 126 year: 2008 ident: C0MB00004C-(cit58)/*[position()=1] publication-title: Science doi: 10.1126/science.1156951 – volume: 2 start-page: ra31 year: 2009 ident: C0MB00004C-(cit27)/*[position()=1] publication-title: Sci. Signaling doi: 10.1126/scisignal.2000352 – volume: 8 start-page: 450 year: 2007 ident: C0MB00004C-(cit59)/*[position()=1] publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2102 – volume: 4 start-page: 11 year: 2010 ident: C0MB00004C-(cit49)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-11 – volume: 58 start-page: 1467 year: 2008 ident: C0MB00004C-(cit47)/*[position()=1] publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2007.09.001 – volume: 102 start-page: 11663 year: 2005 ident: C0MB00004C-(cit33)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0500410102 – volume: 4 start-page: 927 year: 2004 ident: C0MB00004C-(cit51)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1502 – volume: 6 start-page: 202 year: 2007 ident: C0MB00004C-(cit52)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2195 – volume: 297 start-page: 63 year: 2002 ident: C0MB00004C-(cit60)/*[position()=1] publication-title: Science doi: 10.1126/science.1073096 – volume: 5 start-page: 239 year: 2008 ident: C0MB00004C-(cit45)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2008.74 – volume: 5 start-page: 1569 year: 2009 ident: C0MB00004C-(cit57)/*[position()=1] publication-title: Mol. BioSyst. doi: 10.1039/b907562n – volume: 181 start-page: 65 year: 2008 ident: C0MB00004C-(cit34)/*[position()=1] publication-title: J. Cell Biol. doi: 10.1083/jcb.200712027 – volume: 39 start-page: 9494 year: 2000 ident: C0MB00004C-(cit31)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi0009643 – volume: 10 start-page: 130 year: 2010 ident: C0MB00004C-(cit62)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2787 – volume: 320 start-page: 1655 year: 2008 ident: C0MB00004C-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1157425 – volume: 10 start-page: 262 year: 2004 ident: C0MB00004C-(cit55)/*[position()=1] publication-title: Nat. Med. doi: 10.1038/nm1003 – volume: 65 start-page: 7037 year: 2005 ident: C0MB00004C-(cit37)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1054 – volume: 28 start-page: 27 year: 2000 ident: C0MB00004C-(cit28)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 5 start-page: 246 year: 2009 ident: C0MB00004C-(cit46)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2009.4 – volume: 6 start-page: 264 year: 2010 ident: C0MB00004C-(cit19)/*[position()=1] publication-title: Mol. BioSyst. doi: 10.1039/B907863K – volume: 23 start-page: 319 year: 2006 ident: C0MB00004C-(cit43)/*[position()=1] publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.013 – volume: 52 start-page: 2629 year: 2009 ident: C0MB00004C-(cit23)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm8012129 – volume: 9 start-page: 153 year: 2009 ident: C0MB00004C-(cit1)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2602 – volume: 136 start-page: 823 year: 2009 ident: C0MB00004C-(cit61)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 33 start-page: D428 year: 2004 ident: C0MB00004C-(cit29)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki072 – volume: 23 start-page: 307 year: 2006 ident: C0MB00004C-(cit38)/*[position()=1] publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.016 – volume: 15 start-page: 345 year: 1995 ident: C0MB00004C-(cit50)/*[position()=1] publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.1.345 – volume: 455 start-page: 119 year: 2008 ident: C0MB00004C-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/nature07185 – volume: 10 start-page: 424 year: 2009 ident: C0MB00004C-(cit17)/*[position()=1] publication-title: Briefings Bioinf. doi: 10.1093/bib/bbp005 |
SSID | ssj0038410 |
Score | 1.9733554 |
Snippet | Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 169 |
SubjectTerms | Algorithms Aurora Kinases Blotting, Western Cell Cycle - physiology Cell Cycle Proteins - antagonists & inhibitors Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Survival - drug effects Cell Survival - genetics Computational Biology Enzyme Inhibitors - pharmacology HeLa Cells Humans Models, Biological Polo-Like Kinase 1 Protein Serine-Threonine Kinases - antagonists & inhibitors Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proto-Oncogene Proteins - antagonists & inhibitors Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism |
Title | Integrated computational model of cell cycle and checkpoint reveals different essential roles of Aurora-A and Plk1 in mitotic entry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20978655 https://www.proquest.com/docview/816792795 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsEX8e56Y0BfpESTzEwyeVzXSiuuIG6h-7TMLd2lNVlq8lBf_Q_-XueapG6FKixhGWYSkvNxzpwz55wPgFdMFTijBEeIMB7hTLs7jBUsSgSOhZR5Kix_yuxzdnCEPx6T49Ho1yBrqW34G_HjyrqS_5GqHtNyNVWy_yDZ7qZ6QP_X8tVXLWF9vZaMD0OvB1uatmmbENmz_DY2Y9yE5sSFXucK2FZKnG7qddWYmhVlWicHhpRmz3QRrxoTQTcphzbFY9Kea4hEE1dTcHaamPDIN60ETJtXy0ky3NzOAtXuHl_Xw1boJjBdt64IpE8Bam2U9utqHb2vvf20R0Q2v2DRRl_aHrmLENZeqeokWoT5MsRfB7o1N5VAsSUu1KZnOOZ7znqFnG_hzinXxJG6eDudOBKaLRMQI9NBdRrP3ln_Z9obunC4_4f967IS7Xk8Kpb92htgN9Xuh1b4u5P9-eGnYOMRxYkvtXWvFBrfouJtv_ryVucv_ovdx8zvgNveAYETh6a7YKSqe-CmoyS9uA9-9piClzAFLaZgXUKDKWgxBTUsYI8p6DEFO0zBDlPQYsosD5iyiw2m4LqCHlPQYuoBOPqwP58eRJ6oIxIpzZooFzyhXGb69SVlUuSlilNO4rRIUl4mZUklIYQhTnNe8kwQpZEhZFFIRXNBKXoIdqq6Uo8BZBxnWO9hiYgRRjjmBSISxYwzTBXhcgxeh2-6FL6LvSFTOVtuS28MXnZzN653y5WzYBDNUqtW8w1Zper2-5KaI8o0L8gYPHIi626TmvKnjJAn13rEU3DLHUWY3zOw05y36rneyzb8hQfWb50AomU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+computational+model+of+cell+cycle+and+checkpoint+reveals+different+essential+roles+of+Aurora-A+and+Plk1+in+mitotic+entry&rft.jtitle=Molecular+bioSystems&rft.au=Zou%2C+Jun&rft.au=Luo%2C+Shi-Dong&rft.au=Wei%2C+Yu-Quan&rft.au=Yang%2C+Sheng-Yong&rft.date=2011&rft.issn=1742-206X&rft.eissn=1742-2051&rft.volume=7&rft.issue=1&rft.spage=169&rft.epage=179&rft_id=info:doi/10.1039%2FC0MB00004C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C0MB00004C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon |