Integrated computational model of cell cycle and checkpoint reveals different essential roles of Aurora-A and Plk1 in mitotic entry

Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects...

Full description

Saved in:
Bibliographic Details
Published inMolecular bioSystems Vol. 7; no. 1; pp. 169 - 179
Main Authors Zou, Jun, Luo, Shi-Dong, Wei, Yu-Quan, Yang, Sheng-Yong
Format Journal Article
LanguageEnglish
Published England 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.
AbstractList Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.
Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.
Author Luo, Shi-Dong
Yang, Sheng-Yong
Wei, Yu-Quan
Zou, Jun
Author_xml – sequence: 1
  givenname: Jun
  surname: Zou
  fullname: Zou, Jun
– sequence: 2
  givenname: Shi-Dong
  surname: Luo
  fullname: Luo, Shi-Dong
– sequence: 3
  givenname: Yu-Quan
  surname: Wei
  fullname: Wei, Yu-Quan
– sequence: 4
  givenname: Sheng-Yong
  surname: Yang
  fullname: Yang, Sheng-Yong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20978655$$D View this record in MEDLINE/PubMed
BookMark eNptkctKBDEQRYMovjd-gGQnCK1JZtKdXo6DL1B0oeCuSScVjaY7Y5IWZu2Pm3F8gFibKopzL9yqLbTa-x4Q2qPkiJJRfTwl1yck13i6gjZpNWYFI5yu_szlwwbaivGZkJEYU7KONhipK1FyvoneL_sEj0Em0Fj5bjYkmazvpcOd1-CwN1iBc1jNlQMs-0w9gXqZedsnHOANpItYW2MgQN5AjLnZLA_eQVzIJ0PwQRaTT_Gte6HY9rizySercIbDfAetmWwDu199G92fnd5NL4qrm_PL6eSqUEyUqahUS0WryxxZC6lVZYCwlhNWU9YaaozQnHM5akXVmrZUHBihSte1BlEpIUbb6GDpOwv-dYCYms7GRTrZgx9iI2hZ1ayqeSb3v8ih7UA3s2A7GebN990ycLgEVPAxBjA_CCXN4inN71MyTP7Ayi7PnIK07j_JB4aJj_I
CitedBy_id crossref_primary_10_1002_mrd_22188
crossref_primary_10_1016_j_biopha_2024_116295
crossref_primary_10_1371_journal_pone_0028930
crossref_primary_10_1186_s12935_025_03717_x
crossref_primary_10_1038_s41401_020_0404_8
crossref_primary_10_1091_mbc_e13_02_0108
crossref_primary_10_1039_c2mb25267h
crossref_primary_10_1039_C4MB00610K
Cites_doi 10.1145/1089014.1089020
10.1038/ncb954
10.1038/msb4100126
10.1038/nchembio817
10.1038/sj.embor.embor887
10.1038/nrd2683
10.1016/j.ceb.2008.10.005
10.1016/j.cub.2006.12.046
10.1038/nrc2248
10.1038/ncb0707-724
10.1186/1752-0509-2-47
10.1016/j.cell.2005.06.016
10.1038/nrd2381
10.1038/nrm2351
10.1242/jcs.106.4.1153
10.1016/j.ceb.2009.01.018
10.1111/j.1744-7348.1939.tb06990.x
10.1073/pnas.0608798104
10.1038/nrc1841
10.1038/nrm2510
10.1111/j.1742-4658.2008.06844.x
10.1038/nrc2169
10.1111/j.1747-0285.2008.00663.x
10.1038/nbt1330
10.1038/msb.2008.80
10.1016/j.cub.2006.08.026
10.1038/nrm2653
10.1083/jcb.200812045
10.1038/nrd2907
10.1016/j.ceb.2007.11.008
10.1038/nbt.1549
10.1016/j.bmcl.2008.08.033
10.1007/PL00011391
10.1126/science.1156951
10.1126/scisignal.2000352
10.1038/nrg2102
10.1186/1752-0509-4-11
10.1016/j.apnum.2007.09.001
10.1073/pnas.0500410102
10.1038/nrc1502
10.1038/nrd2195
10.1126/science.1073096
10.1038/msb.2008.74
10.1039/b907562n
10.1083/jcb.200712027
10.1021/bi0009643
10.1038/nrc2787
10.1126/science.1157425
10.1038/nm1003
10.1158/0008-5472.CAN-05-1054
10.1093/nar/28.1.27
10.1038/msb.2009.4
10.1039/B907863K
10.1016/j.molcel.2006.06.013
10.1021/jm8012129
10.1038/nrc2602
10.1016/j.cell.2009.02.024
10.1093/nar/gki072
10.1016/j.molcel.2006.06.016
10.1128/MCB.15.1.345
10.1038/nature07185
10.1093/bib/bbp005
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/C0MB00004C
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-2051
EndPage 179
ExternalDocumentID 20978655
10_1039_C0MB00004C
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
0UZ
123
1TJ
29M
4.4
53G
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACPRK
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
C1A
C6K
CITATION
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
M4U
N9A
NDZJH
O9-
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
X7L
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c286t-7cb18bd6039d8adc7fe02b502912bf1ff8d555a3b87bfb6c5e201cd99de87c883
ISSN 1742-206X
1742-2051
IngestDate Fri Jul 11 16:23:14 EDT 2025
Thu Jun 12 08:56:25 EDT 2025
Tue Jul 01 02:40:28 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-7cb18bd6039d8adc7fe02b502912bf1ff8d555a3b87bfb6c5e201cd99de87c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20978655
PQID 816792795
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_816792795
pubmed_primary_20978655
crossref_primary_10_1039_C0MB00004C
crossref_citationtrail_10_1039_C0MB00004C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-00-00
2011-Jan
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular bioSystems
PublicationTitleAlternate Mol Biosyst
PublicationYear 2011
References Novák (C0MB00004C-(cit3)/*[position()=1]) 1993; 106
Pomerening (C0MB00004C-(cit5)/*[position()=1]) 2003; 5
Haberichter (C0MB00004C-(cit56)/*[position()=1]) 2007; 3
Malumbres (C0MB00004C-(cit1)/*[position()=1]) 2009; 9
Taylor (C0MB00004C-(cit16)/*[position()=1]) 2008; 20
Lindqvist (C0MB00004C-(cit2)/*[position()=1]) 2009; 185
Wang (C0MB00004C-(cit22)/*[position()=1]) 2008; 18
Schlier (C0MB00004C-(cit47)/*[position()=1]) 2008; 58
Watanabe (C0MB00004C-(cit33)/*[position()=1]) 2005; 102
Chen (C0MB00004C-(cit45)/*[position()=1]) 2008; 5
Boutros (C0MB00004C-(cit14)/*[position()=1]) 2007; 7
Csikasz-Nagy (C0MB00004C-(cit17)/*[position()=1]) 2009; 10
Donzelli (C0MB00004C-(cit13)/*[position()=1]) 2003; 4
Banga (C0MB00004C-(cit41)/*[position()=1]) 2008; 2
Pollard (C0MB00004C-(cit23)/*[position()=1]) 2009; 52
Lapenna (C0MB00004C-(cit24)/*[position()=1]) 2009; 8
Manfredi (C0MB00004C-(cit32)/*[position()=1]) 2007; 104
Keen (C0MB00004C-(cit51)/*[position()=1]) 2004; 4
Lobrich (C0MB00004C-(cit12)/*[position()=1]) 2007; 7
Strebhardt (C0MB00004C-(cit20)/*[position()=1]) 2006; 6
Kanehisa (C0MB00004C-(cit28)/*[position()=1]) 2000; 28
Vugt (C0MB00004C-(cit37)/*[position()=1]) 2005; 65
Byrd (C0MB00004C-(cit48)/*[position()=1]) 2000; 89
Harrington (C0MB00004C-(cit55)/*[position()=1]) 2004; 10
Bliss (C0MB00004C-(cit54)/*[position()=1]) 1939; 26
Macůrek (C0MB00004C-(cit10)/*[position()=1]) 2008; 455
Hlavacek (C0MB00004C-(cit39)/*[position()=1]) 2008; 5
Seki (C0MB00004C-(cit34)/*[position()=1]) 2008; 181
Branzei (C0MB00004C-(cit35)/*[position()=1]) 2008; 9
Ashyraliyev (C0MB00004C-(cit40)/*[position()=1]) 2009; 276
Tsai (C0MB00004C-(cit58)/*[position()=1]) 2008; 321
Mailand (C0MB00004C-(cit38)/*[position()=1]) 2006; 23
Mamely (C0MB00004C-(cit15)/*[position()=1]) 2006; 16
Schoeberl (C0MB00004C-(cit27)/*[position()=1]) 2009; 2
Desai (C0MB00004C-(cit50)/*[position()=1]) 1995; 15
Joshi-Tope (C0MB00004C-(cit29)/*[position()=1]) 2004; 33
Jia (C0MB00004C-(cit25)/*[position()=1]) 2009; 8
Pomerening (C0MB00004C-(cit6)/*[position()=1]) 2005; 122
Takaki (C0MB00004C-(cit7)/*[position()=1]) 2008; 20
Kitano (C0MB00004C-(cit52)/*[position()=1]) 2007; 6
Arooz (C0MB00004C-(cit31)/*[position()=1]) 2000; 39
Knight (C0MB00004C-(cit62)/*[position()=1]) 2010; 10
Weinstein (C0MB00004C-(cit60)/*[position()=1]) 2002; 297
Vera (C0MB00004C-(cit19)/*[position()=1]) 2010; 6
Alon (C0MB00004C-(cit59)/*[position()=1]) 2007; 8
Peschiaroli (C0MB00004C-(cit43)/*[position()=1]) 2006; 23
Kuepfer (C0MB00004C-(cit44)/*[position()=1]) 2007; 25
Vader (C0MB00004C-(cit11)/*[position()=1]) 2008; 1786
Archambault (C0MB00004C-(cit8)/*[position()=1]) 2009; 10
Fitzgerald (C0MB00004C-(cit26)/*[position()=1]) 2006; 2
Deng (C0MB00004C-(cit21)/*[position()=1]) 2008; 71
Lenart (C0MB00004C-(cit42)/*[position()=1]) 2007; 17
Luo (C0MB00004C-(cit61)/*[position()=1]) 2009; 136
Novák (C0MB00004C-(cit4)/*[position()=1]) 2007; 9
Balsa-Canto (C0MB00004C-(cit49)/*[position()=1]) 2010; 4
Lehár (C0MB00004C-(cit53)/*[position()=1]) 2009; 27
Seki (C0MB00004C-(cit9)/*[position()=1]) 2008; 320
Araujo (C0MB00004C-(cit18)/*[position()=1]) 2007; 6
Faure (C0MB00004C-(cit57)/*[position()=1]) 2009; 5
Wang (C0MB00004C-(cit46)/*[position()=1]) 2009; 5
Hochegger (C0MB00004C-(cit30)/*[position()=1]) 2008; 9
Hindmarsh (C0MB00004C-(cit63)/*[position()=1]) 2005; 31
Reinhardt (C0MB00004C-(cit36)/*[position()=1]) 2009; 21
References_xml – volume: 31
  start-page: 363
  year: 2005
  ident: C0MB00004C-(cit63)/*[position()=1]
  publication-title: Assoc. Comput. Mach., Trans. Math. Software
  doi: 10.1145/1089014.1089020
– volume: 5
  start-page: 346
  year: 2003
  ident: C0MB00004C-(cit5)/*[position()=1]
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb954
– volume: 3
  start-page: 84
  year: 2007
  ident: C0MB00004C-(cit56)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100126
– volume: 2
  start-page: 458
  year: 2006
  ident: C0MB00004C-(cit26)/*[position()=1]
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio817
– volume: 4
  start-page: 671
  year: 2003
  ident: C0MB00004C-(cit13)/*[position()=1]
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.embor887
– volume: 8
  start-page: 111
  year: 2009
  ident: C0MB00004C-(cit25)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2683
– volume: 20
  start-page: 650
  year: 2008
  ident: C0MB00004C-(cit7)/*[position()=1]
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.10.005
– volume: 17
  start-page: 304
  year: 2007
  ident: C0MB00004C-(cit42)/*[position()=1]
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.12.046
– volume: 7
  start-page: 861
  year: 2007
  ident: C0MB00004C-(cit12)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2248
– volume: 9
  start-page: 724
  year: 2007
  ident: C0MB00004C-(cit4)/*[position()=1]
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb0707-724
– volume: 2
  start-page: 47
  year: 2008
  ident: C0MB00004C-(cit41)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-2-47
– volume: 122
  start-page: 565
  year: 2005
  ident: C0MB00004C-(cit6)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.016
– volume: 6
  start-page: 871
  year: 2007
  ident: C0MB00004C-(cit18)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2381
– volume: 9
  start-page: 297
  year: 2008
  ident: C0MB00004C-(cit35)/*[position()=1]
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2351
– volume: 106
  start-page: 1153
  year: 1993
  ident: C0MB00004C-(cit3)/*[position()=1]
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.106.4.1153
– volume: 21
  start-page: 245
  year: 2009
  ident: C0MB00004C-(cit36)/*[position()=1]
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.01.018
– volume: 26
  start-page: 585
  year: 1939
  ident: C0MB00004C-(cit54)/*[position()=1]
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1939.tb06990.x
– volume: 104
  start-page: 4106
  year: 2007
  ident: C0MB00004C-(cit32)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608798104
– volume: 1786
  start-page: 60
  year: 2008
  ident: C0MB00004C-(cit11)/*[position()=1]
  publication-title: Biochim. Biophys. Acta
– volume: 6
  start-page: 321
  year: 2006
  ident: C0MB00004C-(cit20)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1841
– volume: 9
  start-page: 910
  year: 2008
  ident: C0MB00004C-(cit30)/*[position()=1]
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2510
– volume: 276
  start-page: 886
  year: 2009
  ident: C0MB00004C-(cit40)/*[position()=1]
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06844.x
– volume: 7
  start-page: 495
  year: 2007
  ident: C0MB00004C-(cit14)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2169
– volume: 71
  start-page: 533
  year: 2008
  ident: C0MB00004C-(cit21)/*[position()=1]
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/j.1747-0285.2008.00663.x
– volume: 25
  start-page: 1001
  year: 2007
  ident: C0MB00004C-(cit44)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1330
– volume: 5
  start-page: 240
  year: 2008
  ident: C0MB00004C-(cit39)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2008.80
– volume: 16
  start-page: 1950
  year: 2006
  ident: C0MB00004C-(cit15)/*[position()=1]
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.08.026
– volume: 10
  start-page: 265
  year: 2009
  ident: C0MB00004C-(cit8)/*[position()=1]
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2653
– volume: 185
  start-page: 193
  year: 2009
  ident: C0MB00004C-(cit2)/*[position()=1]
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200812045
– volume: 8
  start-page: 547
  year: 2009
  ident: C0MB00004C-(cit24)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2907
– volume: 20
  start-page: 77
  year: 2008
  ident: C0MB00004C-(cit16)/*[position()=1]
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2007.11.008
– volume: 27
  start-page: 659
  year: 2009
  ident: C0MB00004C-(cit53)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1549
– volume: 18
  start-page: 4972
  year: 2008
  ident: C0MB00004C-(cit22)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2008.08.033
– volume: 89
  start-page: 149
  year: 2000
  ident: C0MB00004C-(cit48)/*[position()=1]
  publication-title: Math. Program.
  doi: 10.1007/PL00011391
– volume: 321
  start-page: 126
  year: 2008
  ident: C0MB00004C-(cit58)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1156951
– volume: 2
  start-page: ra31
  year: 2009
  ident: C0MB00004C-(cit27)/*[position()=1]
  publication-title: Sci. Signaling
  doi: 10.1126/scisignal.2000352
– volume: 8
  start-page: 450
  year: 2007
  ident: C0MB00004C-(cit59)/*[position()=1]
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2102
– volume: 4
  start-page: 11
  year: 2010
  ident: C0MB00004C-(cit49)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-11
– volume: 58
  start-page: 1467
  year: 2008
  ident: C0MB00004C-(cit47)/*[position()=1]
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2007.09.001
– volume: 102
  start-page: 11663
  year: 2005
  ident: C0MB00004C-(cit33)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0500410102
– volume: 4
  start-page: 927
  year: 2004
  ident: C0MB00004C-(cit51)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1502
– volume: 6
  start-page: 202
  year: 2007
  ident: C0MB00004C-(cit52)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2195
– volume: 297
  start-page: 63
  year: 2002
  ident: C0MB00004C-(cit60)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1073096
– volume: 5
  start-page: 239
  year: 2008
  ident: C0MB00004C-(cit45)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2008.74
– volume: 5
  start-page: 1569
  year: 2009
  ident: C0MB00004C-(cit57)/*[position()=1]
  publication-title: Mol. BioSyst.
  doi: 10.1039/b907562n
– volume: 181
  start-page: 65
  year: 2008
  ident: C0MB00004C-(cit34)/*[position()=1]
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200712027
– volume: 39
  start-page: 9494
  year: 2000
  ident: C0MB00004C-(cit31)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi0009643
– volume: 10
  start-page: 130
  year: 2010
  ident: C0MB00004C-(cit62)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2787
– volume: 320
  start-page: 1655
  year: 2008
  ident: C0MB00004C-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1157425
– volume: 10
  start-page: 262
  year: 2004
  ident: C0MB00004C-(cit55)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/nm1003
– volume: 65
  start-page: 7037
  year: 2005
  ident: C0MB00004C-(cit37)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1054
– volume: 28
  start-page: 27
  year: 2000
  ident: C0MB00004C-(cit28)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 5
  start-page: 246
  year: 2009
  ident: C0MB00004C-(cit46)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2009.4
– volume: 6
  start-page: 264
  year: 2010
  ident: C0MB00004C-(cit19)/*[position()=1]
  publication-title: Mol. BioSyst.
  doi: 10.1039/B907863K
– volume: 23
  start-page: 319
  year: 2006
  ident: C0MB00004C-(cit43)/*[position()=1]
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.013
– volume: 52
  start-page: 2629
  year: 2009
  ident: C0MB00004C-(cit23)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8012129
– volume: 9
  start-page: 153
  year: 2009
  ident: C0MB00004C-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2602
– volume: 136
  start-page: 823
  year: 2009
  ident: C0MB00004C-(cit61)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.024
– volume: 33
  start-page: D428
  year: 2004
  ident: C0MB00004C-(cit29)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki072
– volume: 23
  start-page: 307
  year: 2006
  ident: C0MB00004C-(cit38)/*[position()=1]
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.016
– volume: 15
  start-page: 345
  year: 1995
  ident: C0MB00004C-(cit50)/*[position()=1]
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.1.345
– volume: 455
  start-page: 119
  year: 2008
  ident: C0MB00004C-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07185
– volume: 10
  start-page: 424
  year: 2009
  ident: C0MB00004C-(cit17)/*[position()=1]
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbp005
SSID ssj0038410
Score 1.9733554
Snippet Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 169
SubjectTerms Algorithms
Aurora Kinases
Blotting, Western
Cell Cycle - physiology
Cell Cycle Proteins - antagonists & inhibitors
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Survival - drug effects
Cell Survival - genetics
Computational Biology
Enzyme Inhibitors - pharmacology
HeLa Cells
Humans
Models, Biological
Polo-Like Kinase 1
Protein Serine-Threonine Kinases - antagonists & inhibitors
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - antagonists & inhibitors
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Title Integrated computational model of cell cycle and checkpoint reveals different essential roles of Aurora-A and Plk1 in mitotic entry
URI https://www.ncbi.nlm.nih.gov/pubmed/20978655
https://www.proquest.com/docview/816792795
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsEX8e56Y0BfpESTzEwyeVzXSiuuIG6h-7TMLd2lNVlq8lBf_Q_-XueapG6FKixhGWYSkvNxzpwz55wPgFdMFTijBEeIMB7hTLs7jBUsSgSOhZR5Kix_yuxzdnCEPx6T49Ho1yBrqW34G_HjyrqS_5GqHtNyNVWy_yDZ7qZ6QP_X8tVXLWF9vZaMD0OvB1uatmmbENmz_DY2Y9yE5sSFXucK2FZKnG7qddWYmhVlWicHhpRmz3QRrxoTQTcphzbFY9Kea4hEE1dTcHaamPDIN60ETJtXy0ky3NzOAtXuHl_Xw1boJjBdt64IpE8Bam2U9utqHb2vvf20R0Q2v2DRRl_aHrmLENZeqeokWoT5MsRfB7o1N5VAsSUu1KZnOOZ7znqFnG_hzinXxJG6eDudOBKaLRMQI9NBdRrP3ln_Z9obunC4_4f967IS7Xk8Kpb92htgN9Xuh1b4u5P9-eGnYOMRxYkvtXWvFBrfouJtv_ryVucv_ovdx8zvgNveAYETh6a7YKSqe-CmoyS9uA9-9piClzAFLaZgXUKDKWgxBTUsYI8p6DEFO0zBDlPQYsosD5iyiw2m4LqCHlPQYuoBOPqwP58eRJ6oIxIpzZooFzyhXGb69SVlUuSlilNO4rRIUl4mZUklIYQhTnNe8kwQpZEhZFFIRXNBKXoIdqq6Uo8BZBxnWO9hiYgRRjjmBSISxYwzTBXhcgxeh2-6FL6LvSFTOVtuS28MXnZzN653y5WzYBDNUqtW8w1Zper2-5KaI8o0L8gYPHIi626TmvKnjJAn13rEU3DLHUWY3zOw05y36rneyzb8hQfWb50AomU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+computational+model+of+cell+cycle+and+checkpoint+reveals+different+essential+roles+of+Aurora-A+and+Plk1+in+mitotic+entry&rft.jtitle=Molecular+bioSystems&rft.au=Zou%2C+Jun&rft.au=Luo%2C+Shi-Dong&rft.au=Wei%2C+Yu-Quan&rft.au=Yang%2C+Sheng-Yong&rft.date=2011&rft.issn=1742-206X&rft.eissn=1742-2051&rft.volume=7&rft.issue=1&rft.spage=169&rft.epage=179&rft_id=info:doi/10.1039%2FC0MB00004C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C0MB00004C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon