Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss...
Saved in:
Published in | Communications in theoretical physics Vol. 69; no. 5; pp. 519 - 531 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms. |
---|---|
AbstractList | In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms. |
Author | Latifi, S. Delkhosh, M. Moayeri, M. M. Parand, K. |
Author_xml | – sequence: 1 givenname: K. surname: Parand fullname: Parand, K. email: k_parand@sbu.ac.ir organization: Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University , Iran – sequence: 2 givenname: S. surname: Latifi fullname: Latifi, S. email: s.latifi@mail.sbu.ac.ir organization: Department of Computer Sciences, Shahid Beheshti University , Iran – sequence: 3 givenname: M. M. surname: Moayeri fullname: Moayeri, M. M. email: m_moayeri@sbu.ac.ir organization: Department of Computer Sciences, Shahid Beheshti University , Iran – sequence: 4 givenname: M. surname: Delkhosh fullname: Delkhosh, M. email: mehdidelkhosh@yahoo.com organization: Department of Computer Sciences, Shahid Beheshti University , Iran |
BookMark | eNp9kDtPwzAUhT0UibbwB5g8wpDGdhInGVHVplThIQGzdeNHSRvsYqdIIPHfaSliZLo6V_qOjr4RGlhnNUIXlEwoKYqYsCyJOCUs5mWcxRktB2j49zxFoxDWhBCWczpEX5W22kPXfmqFa1h5sCuNlyBd0-IKdiFEtWug7x2-rOplVV_hqes6J6FvncW3un9xChvn8aPr3lu7wnVrNXgMVuE7Z7tjmrvNRvvooQMrN3j2tvvBwxk6MdAFff57x-h5PnuaLqL6vrqZXteRZAXvI54mipUpUKNyYIZl3DRZloJqONXEFKSRZaFA89LkBZe5SgvaSADNOC-pTJIxYsde6V0IXhux9e0r-A9BiThIEwc_4uBH8FJkYi9tD02OUOu2Yu123u4n_gd8A1EccpU |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_020_00847_1 crossref_primary_10_1002_mma_6027 crossref_primary_10_1016_j_enganabound_2023_03_005 crossref_primary_10_1007_s00366_020_01086_9 crossref_primary_10_1007_s11071_021_06408_0 crossref_primary_10_1016_j_jmaa_2021_124937 crossref_primary_10_1016_j_matcom_2018_12_007 |
Cites_doi | 10.1016/j.enganabound.2014.05.004 10.1137/0726001 10.1115/1.4026930 org/10.1016/j.camwa.2016.04.011 10.1186/1687-1847-2014-231 10.1016/S0096-3003(97)10161-8 10.1016/j.apm.2015.09.009 10.1016/0375-9601(90)90717-3 10.1186/1687-2770-2012-62 10.1016/j.enganabound.2011.06.012 10.1007/s11075-015-0087-2 10.1186/s13661-015-0364-y 10.1016/j.mcm.2006.07.010 10.1088/0031-8949/74/3/003 10.1515/tmj-2017-0004 10.1007/s40819-015-0096-9 10.1007/s11071-015-2588-x 10.1007/978-3-540-71041-7 10.5269/bspm.v36i4.31478 10.1186/1687-1847-2012-8 10.1002/mma.3600 10.1103/PhysRevA.35.1795 10.1002/num.20352 10.1016/j.apnum.2007.07.001 10.1103/PhysRevE.54.931 10.1016/j.apm.2011.12.031 10.1016/0375-9601(92)90843-B 10.1103/PhysRevE.56.1197 10.1016/j.cam.2016.11.035 10.1007/s40995-017-0293-y 10.1016/0378-4371(84)90188-2 10.1088/0305-4470/29/15/007 10.1007/s40819-016-0161-z 10.1137/0723002 10.1002/mma.3277 10.1007/978-3-642-61544-3 10.1016/0168-9274(92)90006-Y 10.1140/epjp/i2018-11859-5 |
ContentType | Journal Article |
Copyright | 2018 Chinese Physical Society and IOP Publishing Ltd |
Copyright_xml | – notice: 2018 Chinese Physical Society and IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/0253-6102/69/5/519 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations |
ExternalDocumentID | 10_1088_0253_6102_69_5_519 ctp_69_5_519 |
GroupedDBID | -SA -S~ 02O 042 1JI 1WK 2B. 2C. 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92Q 93N AAGCD AAJIO AALHV AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KOT M45 N5L NS0 NT- NT. P2P PJBAE Q-- Q02 RIN RNS RO9 ROL RPA S3P SY9 TCJ TGP U1G U5K UCJ W28 AAYXX AERVB CITATION |
ID | FETCH-LOGICAL-c286t-643d294a1fd7a2f256fb554adb61e0f80bc98dae69f786c7d481bcaae26691c33 |
IEDL.DBID | IOP |
ISSN | 0253-6102 |
IngestDate | Thu Sep 26 16:56:54 EDT 2024 Wed Aug 21 03:34:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-643d294a1fd7a2f256fb554adb61e0f80bc98dae69f786c7d481bcaae26691c33 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1088_0253_6102_69_5_519 iop_journals_10_1088_0253_6102_69_5_519 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAlternate | Commun. Theor. Phys |
PublicationYear | 2018 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | 22 44 23 24 25 27 28 29 30 Shen J. (46) 2011; 41 10 32 33 12 13 35 Compte A (5) 1996; 29 14 36 15 16 17 39 18 19 Boyd J. P. (31) 2000 Mitchell A. R. (45) 1980 Delkhosh M. (38) Saker M. A. (34) 2017; 2017 1 2 Bhrawy A. H. (42) 2015; 104 3 Parand K. (37) 2017 6 7 8 9 Jenks S. (4) 2006 40 Dehghan M. (11) 2006; 74 Bhrawy A. H. (26) 2012 41 20 21 43 |
References_xml | – ident: 3 doi: 10.1016/j.enganabound.2014.05.004 – ident: 25 doi: 10.1137/0726001 – ident: 36 doi: 10.1115/1.4026930 – ident: 17 doi: org/10.1016/j.camwa.2016.04.011 – ident: 30 doi: 10.1186/1687-1847-2014-231 – ident: 10 doi: 10.1016/S0096-3003(97)10161-8 – ident: 27 doi: 10.1016/j.apm.2015.09.009 – ident: 7 doi: 10.1016/0375-9601(90)90717-3 – ident: 23 doi: 10.1186/1687-2770-2012-62 – ident: 6 doi: 10.1016/j.enganabound.2011.06.012 – ident: 18 doi: 10.1007/s11075-015-0087-2 – ident: 35 doi: 10.1186/s13661-015-0364-y – ident: 12 doi: 10.1016/j.mcm.2006.07.010 – year: 2006 ident: 4 publication-title: Introduction to Kramers Equation contributor: fullname: Jenks S. – volume: 74 start-page: 310 issn: 0031-8949 year: 2006 ident: 11 publication-title: Physica Scripta doi: 10.1088/0031-8949/74/3/003 contributor: fullname: Dehghan M. – ident: 28 doi: 10.1515/tmj-2017-0004 – ident: 29 doi: 10.1007/s40819-015-0096-9 – ident: 41 doi: 10.1007/s11071-015-2588-x – volume: 2017 start-page: 105 year: 2017 ident: 34 publication-title: Romanian J. Phys. contributor: fullname: Saker M. A. – volume: 41 year: 2011 ident: 46 publication-title: Spectral Methods: Algorithms, Analysis and Applications, Springer Sci. Bus. Media. doi: 10.1007/978-3-540-71041-7 contributor: fullname: Shen J. – ident: 20 doi: 10.5269/bspm.v36i4.31478 – ident: 21 doi: 10.1186/1687-1847-2012-8 – ident: 40 doi: 10.1002/mma.3600 – year: 2017 ident: 37 publication-title: SeMA J. contributor: fullname: Parand K. – ident: 13 doi: 10.1103/PhysRevA.35.1795 – year: 1980 ident: 45 publication-title: The Finite Difference Methods in Partial Differential Equations contributor: fullname: Mitchell A. R. – ident: 2 doi: 10.1002/num.20352 – year: 2000 ident: 31 publication-title: Chebyshev and Fourier Spectral Methods contributor: fullname: Boyd J. P. – ident: 22 doi: 10.1016/j.apnum.2007.07.001 – ident: 16 doi: 10.1103/PhysRevE.54.931 – volume: 104 start-page: 185 year: 2015 ident: 42 publication-title: Comput. Model. Eng. Sci. contributor: fullname: Bhrawy A. H. – ident: 44 doi: 10.1016/j.apm.2011.12.031 – ident: 8 doi: 10.1016/0375-9601(92)90843-B – ident: 15 doi: 10.1103/PhysRevE.56.1197 – ident: 19 doi: 10.1016/j.cam.2016.11.035 – ident: 33 doi: 10.1007/s40995-017-0293-y – ident: 14 doi: 10.1016/0378-4371(84)90188-2 – volume: 29 start-page: 4321 issn: 0305-4470 year: 1996 ident: 5 publication-title: J. Phys. A-Math. Gen. doi: 10.1088/0305-4470/29/15/007 contributor: fullname: Compte A – ident: 32 doi: 10.1007/s40819-016-0161-z – ident: 24 doi: 10.1137/0723002 – ident: 43 doi: 10.1002/mma.3277 – year: 2012 ident: 26 publication-title: Abstr. Appl. Anal. contributor: fullname: Bhrawy A. H. – ident: 1 doi: 10.1007/978-3-642-61544-3 – ident: 9 doi: 10.1016/0168-9274(92)90006-Y – ident: 39 doi: 10.1140/epjp/i2018-11859-5 – ident: 38 publication-title: Generalized Pseudospectral Method: Theory and Application contributor: fullname: Delkhosh M. |
SSID | ssj0002761 |
Score | 2.2484705 |
Snippet | In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have... |
SourceID | crossref iop |
SourceType | Aggregation Database Publisher |
StartPage | 519 |
SubjectTerms | Crank-Nicolson technique Fokker-Planck equations Generalized Lagrange functions Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation |
Title | Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations |
URI | https://iopscience.iop.org/article/10.1088/0253-6102/69/5/519 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86EXxxfuI3eRBUpFubtln6KLJNx5yCDvZWkjQRmay6di-C_7uXJoqKiPiWwrWll97ld5fL7xA6jDWhWaIgOgH0AAEKjLiSxAtprChVAfeVSehfDejFMOqN4pGrzanOwuRPzvU3YGiJgq0KXUEca8IqHULE45MmTZpxMzaknwshGIuJvS6vbz4cMWlVdKkf8u7MzM_P-LIuzcO7Py0znbrtpVpU7ISmumTcmJWiIV--cTf--wtW0LIDoPjMCq-iOTVZQ3UHRrEz9WINLVa1obJYR6-OmvrhBQT6_H5qziPgHrhS8YC7fFYUXh-8Qlnm-Ljb73X7J9ikI3KbDMRXVY9qDOAY3-aPJn-BIQAGA8N8kuGBpeqAq04-HqupZ7ooyTFuP1sO8mIDDTvtu_MLz3Vt8CRhtPQA4mQkiXigsxYnGiCVFoBZeCZooHzNfCETlnFFE91iVLayCJCz5FwBVEgCGYabqDbJJ2oL4UT5IiImouMyYioWkRZEasMnrgO4fxudvs9Z-mTJOdJqU52x1Og4NTpOaZLGKeh4Gx3BhKTORotfJHf-LLmLlgBBMVsBuYdq5XSm9gGllOKg-hffAMoN3Ag |
link.rule.ids | 315,783,787,27936,27937,38877,53854 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7th0C8bDCYGNvAD0iAUJrETVzncRprt5KVSTCJN8t2bDQVNaVJXybtf985didACE3amyP5kvicO393OX8GeJtbyqrCYHSC6AEDFGxJo2nUZ7lhzKQyMS6hfz5hp5fZ-Hu-qibs9sLU8-D6e9j0RMFehaEgjse4Svcx4klozIo4jxGCxPPKrsMm2m7u6PPPvlzcOWM66ChT72TCvpl_3-ePtWkdn__bUjPcBrV6SV9hMu0tW9XT13_xNz5oFE9hKwBRcuQFnsGame3AdgClJJh8swOPuhpR3TyHm0BRfXWNHUr5Y-H2JZAxulR1RUZy2TRRid6hbWvyflSOR-UH4tIStU8KkvPurGqCIJl8rX-6PAbBQBgNjchZRSaesgOvhvV0ahaRO01JT8nJL89F3ryAy-HJt-PTKJzeEGnKWRsh1KlokcnUVgNJLUIrqxC7yEqx1CSWJ0oXvJKGFXbAmR5UGSJoLaVByFCkut_fhY1ZPTMvgRQmURl1kZ3UGTe5yqyi2jpecZui_B58XM2bmHuSDtH9XOdcOD0Lp2fBCpEL1PMevMNJEcFWm__0fHXvnm_g8cWnoSjPJp_34QmCKu6LIg9go10szSECl1a97j7NW36A4Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Lagrange+Jacobi+Gauss-Lobatto+%28GLJGL%29+Collocation+Method+for+Solving+Linear+and+Nonlinear+Fokker-Planck+Equations&rft.jtitle=Communications+in+theoretical+physics&rft.au=Parand%2C+K.&rft.au=Latifi%2C+S.&rft.au=Moayeri%2C+M.+M.&rft.au=Delkhosh%2C+M.&rft.date=2018-05-01&rft.issn=0253-6102&rft.volume=69&rft.issue=5&rft.spage=519&rft_id=info:doi/10.1088%2F0253-6102%2F69%2F5%2F519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_69_5_519 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon |