Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 69; no. 5; pp. 519 - 531
Main Authors Parand, K., Latifi, S., Moayeri, M. M., Delkhosh, M.
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.
AbstractList In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.
Author Latifi, S.
Delkhosh, M.
Moayeri, M. M.
Parand, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Parand
  fullname: Parand, K.
  email: k_parand@sbu.ac.ir
  organization: Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University , Iran
– sequence: 2
  givenname: S.
  surname: Latifi
  fullname: Latifi, S.
  email: s.latifi@mail.sbu.ac.ir
  organization: Department of Computer Sciences, Shahid Beheshti University , Iran
– sequence: 3
  givenname: M. M.
  surname: Moayeri
  fullname: Moayeri, M. M.
  email: m_moayeri@sbu.ac.ir
  organization: Department of Computer Sciences, Shahid Beheshti University , Iran
– sequence: 4
  givenname: M.
  surname: Delkhosh
  fullname: Delkhosh, M.
  email: mehdidelkhosh@yahoo.com
  organization: Department of Computer Sciences, Shahid Beheshti University , Iran
BookMark eNp9kDtPwzAUhT0UibbwB5g8wpDGdhInGVHVplThIQGzdeNHSRvsYqdIIPHfaSliZLo6V_qOjr4RGlhnNUIXlEwoKYqYsCyJOCUs5mWcxRktB2j49zxFoxDWhBCWczpEX5W22kPXfmqFa1h5sCuNlyBd0-IKdiFEtWug7x2-rOplVV_hqes6J6FvncW3un9xChvn8aPr3lu7wnVrNXgMVuE7Z7tjmrvNRvvooQMrN3j2tvvBwxk6MdAFff57x-h5PnuaLqL6vrqZXteRZAXvI54mipUpUKNyYIZl3DRZloJqONXEFKSRZaFA89LkBZe5SgvaSADNOC-pTJIxYsde6V0IXhux9e0r-A9BiThIEwc_4uBH8FJkYi9tD02OUOu2Yu123u4n_gd8A1EccpU
CitedBy_id crossref_primary_10_1140_epjp_s13360_020_00847_1
crossref_primary_10_1002_mma_6027
crossref_primary_10_1016_j_enganabound_2023_03_005
crossref_primary_10_1007_s00366_020_01086_9
crossref_primary_10_1007_s11071_021_06408_0
crossref_primary_10_1016_j_jmaa_2021_124937
crossref_primary_10_1016_j_matcom_2018_12_007
Cites_doi 10.1016/j.enganabound.2014.05.004
10.1137/0726001
10.1115/1.4026930
org/10.1016/j.camwa.2016.04.011
10.1186/1687-1847-2014-231
10.1016/S0096-3003(97)10161-8
10.1016/j.apm.2015.09.009
10.1016/0375-9601(90)90717-3
10.1186/1687-2770-2012-62
10.1016/j.enganabound.2011.06.012
10.1007/s11075-015-0087-2
10.1186/s13661-015-0364-y
10.1016/j.mcm.2006.07.010
10.1088/0031-8949/74/3/003
10.1515/tmj-2017-0004
10.1007/s40819-015-0096-9
10.1007/s11071-015-2588-x
10.1007/978-3-540-71041-7
10.5269/bspm.v36i4.31478
10.1186/1687-1847-2012-8
10.1002/mma.3600
10.1103/PhysRevA.35.1795
10.1002/num.20352
10.1016/j.apnum.2007.07.001
10.1103/PhysRevE.54.931
10.1016/j.apm.2011.12.031
10.1016/0375-9601(92)90843-B
10.1103/PhysRevE.56.1197
10.1016/j.cam.2016.11.035
10.1007/s40995-017-0293-y
10.1016/0378-4371(84)90188-2
10.1088/0305-4470/29/15/007
10.1007/s40819-016-0161-z
10.1137/0723002
10.1002/mma.3277
10.1007/978-3-642-61544-3
10.1016/0168-9274(92)90006-Y
10.1140/epjp/i2018-11859-5
ContentType Journal Article
Copyright 2018 Chinese Physical Society and IOP Publishing Ltd
Copyright_xml – notice: 2018 Chinese Physical Society and IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/0253-6102/69/5/519
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations
ExternalDocumentID 10_1088_0253_6102_69_5_519
ctp_69_5_519
GroupedDBID -SA
-S~
02O
042
1JI
1WK
2B.
2C.
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q--
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
AERVB
CITATION
ID FETCH-LOGICAL-c286t-643d294a1fd7a2f256fb554adb61e0f80bc98dae69f786c7d481bcaae26691c33
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Thu Sep 26 16:56:54 EDT 2024
Wed Aug 21 03:34:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-643d294a1fd7a2f256fb554adb61e0f80bc98dae69f786c7d481bcaae26691c33
PageCount 13
ParticipantIDs crossref_primary_10_1088_0253_6102_69_5_519
iop_journals_10_1088_0253_6102_69_5_519
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Commun. Theor. Phys
PublicationYear 2018
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References 22
44
23
24
25
27
28
29
30
Shen J. (46) 2011; 41
10
32
33
12
13
35
Compte A (5) 1996; 29
14
36
15
16
17
39
18
19
Boyd J. P. (31) 2000
Mitchell A. R. (45) 1980
Delkhosh M. (38)
Saker M. A. (34) 2017; 2017
1
2
Bhrawy A. H. (42) 2015; 104
3
Parand K. (37) 2017
6
7
8
9
Jenks S. (4) 2006
40
Dehghan M. (11) 2006; 74
Bhrawy A. H. (26) 2012
41
20
21
43
References_xml – ident: 3
  doi: 10.1016/j.enganabound.2014.05.004
– ident: 25
  doi: 10.1137/0726001
– ident: 36
  doi: 10.1115/1.4026930
– ident: 17
  doi: org/10.1016/j.camwa.2016.04.011
– ident: 30
  doi: 10.1186/1687-1847-2014-231
– ident: 10
  doi: 10.1016/S0096-3003(97)10161-8
– ident: 27
  doi: 10.1016/j.apm.2015.09.009
– ident: 7
  doi: 10.1016/0375-9601(90)90717-3
– ident: 23
  doi: 10.1186/1687-2770-2012-62
– ident: 6
  doi: 10.1016/j.enganabound.2011.06.012
– ident: 18
  doi: 10.1007/s11075-015-0087-2
– ident: 35
  doi: 10.1186/s13661-015-0364-y
– ident: 12
  doi: 10.1016/j.mcm.2006.07.010
– year: 2006
  ident: 4
  publication-title: Introduction to Kramers Equation
  contributor:
    fullname: Jenks S.
– volume: 74
  start-page: 310
  issn: 0031-8949
  year: 2006
  ident: 11
  publication-title: Physica Scripta
  doi: 10.1088/0031-8949/74/3/003
  contributor:
    fullname: Dehghan M.
– ident: 28
  doi: 10.1515/tmj-2017-0004
– ident: 29
  doi: 10.1007/s40819-015-0096-9
– ident: 41
  doi: 10.1007/s11071-015-2588-x
– volume: 2017
  start-page: 105
  year: 2017
  ident: 34
  publication-title: Romanian J. Phys.
  contributor:
    fullname: Saker M. A.
– volume: 41
  year: 2011
  ident: 46
  publication-title: Spectral Methods: Algorithms, Analysis and Applications, Springer Sci. Bus. Media.
  doi: 10.1007/978-3-540-71041-7
  contributor:
    fullname: Shen J.
– ident: 20
  doi: 10.5269/bspm.v36i4.31478
– ident: 21
  doi: 10.1186/1687-1847-2012-8
– ident: 40
  doi: 10.1002/mma.3600
– year: 2017
  ident: 37
  publication-title: SeMA J.
  contributor:
    fullname: Parand K.
– ident: 13
  doi: 10.1103/PhysRevA.35.1795
– year: 1980
  ident: 45
  publication-title: The Finite Difference Methods in Partial Differential Equations
  contributor:
    fullname: Mitchell A. R.
– ident: 2
  doi: 10.1002/num.20352
– year: 2000
  ident: 31
  publication-title: Chebyshev and Fourier Spectral Methods
  contributor:
    fullname: Boyd J. P.
– ident: 22
  doi: 10.1016/j.apnum.2007.07.001
– ident: 16
  doi: 10.1103/PhysRevE.54.931
– volume: 104
  start-page: 185
  year: 2015
  ident: 42
  publication-title: Comput. Model. Eng. Sci.
  contributor:
    fullname: Bhrawy A. H.
– ident: 44
  doi: 10.1016/j.apm.2011.12.031
– ident: 8
  doi: 10.1016/0375-9601(92)90843-B
– ident: 15
  doi: 10.1103/PhysRevE.56.1197
– ident: 19
  doi: 10.1016/j.cam.2016.11.035
– ident: 33
  doi: 10.1007/s40995-017-0293-y
– ident: 14
  doi: 10.1016/0378-4371(84)90188-2
– volume: 29
  start-page: 4321
  issn: 0305-4470
  year: 1996
  ident: 5
  publication-title: J. Phys. A-Math. Gen.
  doi: 10.1088/0305-4470/29/15/007
  contributor:
    fullname: Compte A
– ident: 32
  doi: 10.1007/s40819-016-0161-z
– ident: 24
  doi: 10.1137/0723002
– ident: 43
  doi: 10.1002/mma.3277
– year: 2012
  ident: 26
  publication-title: Abstr. Appl. Anal.
  contributor:
    fullname: Bhrawy A. H.
– ident: 1
  doi: 10.1007/978-3-642-61544-3
– ident: 9
  doi: 10.1016/0168-9274(92)90006-Y
– ident: 39
  doi: 10.1140/epjp/i2018-11859-5
– ident: 38
  publication-title: Generalized Pseudospectral Method: Theory and Application
  contributor:
    fullname: Delkhosh M.
SSID ssj0002761
Score 2.2484705
Snippet In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have...
SourceID crossref
iop
SourceType Aggregation Database
Publisher
StartPage 519
SubjectTerms Crank-Nicolson technique
Fokker-Planck equations
Generalized Lagrange functions
Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation
Title Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations
URI https://iopscience.iop.org/article/10.1088/0253-6102/69/5/519
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86EXxxfuI3eRBUpFubtln6KLJNx5yCDvZWkjQRmay6di-C_7uXJoqKiPiWwrWll97ld5fL7xA6jDWhWaIgOgH0AAEKjLiSxAtprChVAfeVSehfDejFMOqN4pGrzanOwuRPzvU3YGiJgq0KXUEca8IqHULE45MmTZpxMzaknwshGIuJvS6vbz4cMWlVdKkf8u7MzM_P-LIuzcO7Py0znbrtpVpU7ISmumTcmJWiIV--cTf--wtW0LIDoPjMCq-iOTVZQ3UHRrEz9WINLVa1obJYR6-OmvrhBQT6_H5qziPgHrhS8YC7fFYUXh-8Qlnm-Ljb73X7J9ikI3KbDMRXVY9qDOAY3-aPJn-BIQAGA8N8kuGBpeqAq04-HqupZ7ooyTFuP1sO8mIDDTvtu_MLz3Vt8CRhtPQA4mQkiXigsxYnGiCVFoBZeCZooHzNfCETlnFFE91iVLayCJCz5FwBVEgCGYabqDbJJ2oL4UT5IiImouMyYioWkRZEasMnrgO4fxudvs9Z-mTJOdJqU52x1Og4NTpOaZLGKeh4Gx3BhKTORotfJHf-LLmLlgBBMVsBuYdq5XSm9gGllOKg-hffAMoN3Ag
link.rule.ids 315,783,787,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7th0C8bDCYGNvAD0iAUJrETVzncRprt5KVSTCJN8t2bDQVNaVJXybtf985didACE3amyP5kvicO393OX8GeJtbyqrCYHSC6AEDFGxJo2nUZ7lhzKQyMS6hfz5hp5fZ-Hu-qibs9sLU8-D6e9j0RMFehaEgjse4Svcx4klozIo4jxGCxPPKrsMm2m7u6PPPvlzcOWM66ChT72TCvpl_3-ePtWkdn__bUjPcBrV6SV9hMu0tW9XT13_xNz5oFE9hKwBRcuQFnsGame3AdgClJJh8swOPuhpR3TyHm0BRfXWNHUr5Y-H2JZAxulR1RUZy2TRRid6hbWvyflSOR-UH4tIStU8KkvPurGqCIJl8rX-6PAbBQBgNjchZRSaesgOvhvV0ahaRO01JT8nJL89F3ryAy-HJt-PTKJzeEGnKWRsh1KlokcnUVgNJLUIrqxC7yEqx1CSWJ0oXvJKGFXbAmR5UGSJoLaVByFCkut_fhY1ZPTMvgRQmURl1kZ3UGTe5yqyi2jpecZui_B58XM2bmHuSDtH9XOdcOD0Lp2fBCpEL1PMevMNJEcFWm__0fHXvnm_g8cWnoSjPJp_34QmCKu6LIg9go10szSECl1a97j7NW36A4Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Lagrange+Jacobi+Gauss-Lobatto+%28GLJGL%29+Collocation+Method+for+Solving+Linear+and+Nonlinear+Fokker-Planck+Equations&rft.jtitle=Communications+in+theoretical+physics&rft.au=Parand%2C+K.&rft.au=Latifi%2C+S.&rft.au=Moayeri%2C+M.+M.&rft.au=Delkhosh%2C+M.&rft.date=2018-05-01&rft.issn=0253-6102&rft.volume=69&rft.issue=5&rft.spage=519&rft_id=info:doi/10.1088%2F0253-6102%2F69%2F5%2F519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_69_5_519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon