Guanidinoacetic acid attenuates high-fat diet induced colitis by targeting mitophagy and the gut microbiota in middle-aged mice
The increasing incidence of obesity has been associated with various diseases, including inflammatory bowel disease. Guanidinoacetic acid (GAA) regulated various crucial physiological processes. The present study aimed to determine the action of dietary GAA on high-fat diet (HFD)-induced colitis in...
Saved in:
Published in | Food bioscience Vol. 68; p. 106587 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing incidence of obesity has been associated with various diseases, including inflammatory bowel disease. Guanidinoacetic acid (GAA) regulated various crucial physiological processes. The present study aimed to determine the action of dietary GAA on high-fat diet (HFD)-induced colitis in middle-aged mice. Mice (8 months old) were fed chow or HFD with or without GAA (1 %). These results suggested that dietary GAA effectively prevented HFD-induced obesity, colon shortening, and morphological changes in the colon. Moreover, GAA intake reduced abundances of pro-inflammatory chemokines, including tumor necrosis factor-α interleukin-1β and interleukin-6, and inhibited the activation of nuclear factor kappa B (NFκB) and inhibitor of kappa B (IκB) in the colon of HFD-induced obese mice. GAA supplementation restored the declined expression of intestinal tight junction proteins, including claudin 1 and zonula occludens-1 (Zo1), in HFD-induced obese mice, and upregulated the expression of mitophagy-related proteins, including microtubule-associated protein 1A/1B-light chain 3, phosphatase and tensin homologue-induced kinase 1 and parkin. Furthermore, the regulatory effect of GAA supplementation on intestinal tight junction protein expression (claudin 1 and Zo1) and inflammation response (phosphor-NFκB and phosphor-IκB) in Mode-K cells were attenuated when cells were treated with Mdivi-1, an inhibitor of mitophagy. Additionally, dietary GAA altered the diversity and relative abundance of the colonic flora. Jointly, these data suggest that dietary GAA alleviates HFD-induced colitis and inflammation by activating mitophagy and affecting the composition of the colonic flora.
[Display omitted] |
---|---|
AbstractList | The increasing incidence of obesity has been associated with various diseases, including inflammatory bowel disease. Guanidinoacetic acid (GAA) regulated various crucial physiological processes. The present study aimed to determine the action of dietary GAA on high-fat diet (HFD)-induced colitis in middle-aged mice. Mice (8 months old) were fed chow or HFD with or without GAA (1 %). These results suggested that dietary GAA effectively prevented HFD-induced obesity, colon shortening, and morphological changes in the colon. Moreover, GAA intake reduced abundances of pro-inflammatory chemokines, including tumor necrosis factor-α interleukin-1β and interleukin-6, and inhibited the activation of nuclear factor kappa B (NFκB) and inhibitor of kappa B (IκB) in the colon of HFD-induced obese mice. GAA supplementation restored the declined expression of intestinal tight junction proteins, including claudin 1 and zonula occludens-1 (Zo1), in HFD-induced obese mice, and upregulated the expression of mitophagy-related proteins, including microtubule-associated protein 1A/1B-light chain 3, phosphatase and tensin homologue-induced kinase 1 and parkin. Furthermore, the regulatory effect of GAA supplementation on intestinal tight junction protein expression (claudin 1 and Zo1) and inflammation response (phosphor-NFκB and phosphor-IκB) in Mode-K cells were attenuated when cells were treated with Mdivi-1, an inhibitor of mitophagy. Additionally, dietary GAA altered the diversity and relative abundance of the colonic flora. Jointly, these data suggest that dietary GAA alleviates HFD-induced colitis and inflammation by activating mitophagy and affecting the composition of the colonic flora. The increasing incidence of obesity has been associated with various diseases, including inflammatory bowel disease. Guanidinoacetic acid (GAA) regulated various crucial physiological processes. The present study aimed to determine the action of dietary GAA on high-fat diet (HFD)-induced colitis in middle-aged mice. Mice (8 months old) were fed chow or HFD with or without GAA (1 %). These results suggested that dietary GAA effectively prevented HFD-induced obesity, colon shortening, and morphological changes in the colon. Moreover, GAA intake reduced abundances of pro-inflammatory chemokines, including tumor necrosis factor-α interleukin-1β and interleukin-6, and inhibited the activation of nuclear factor kappa B (NFκB) and inhibitor of kappa B (IκB) in the colon of HFD-induced obese mice. GAA supplementation restored the declined expression of intestinal tight junction proteins, including claudin 1 and zonula occludens-1 (Zo1), in HFD-induced obese mice, and upregulated the expression of mitophagy-related proteins, including microtubule-associated protein 1A/1B-light chain 3, phosphatase and tensin homologue-induced kinase 1 and parkin. Furthermore, the regulatory effect of GAA supplementation on intestinal tight junction protein expression (claudin 1 and Zo1) and inflammation response (phosphor-NFκB and phosphor-IκB) in Mode-K cells were attenuated when cells were treated with Mdivi-1, an inhibitor of mitophagy. Additionally, dietary GAA altered the diversity and relative abundance of the colonic flora. Jointly, these data suggest that dietary GAA alleviates HFD-induced colitis and inflammation by activating mitophagy and affecting the composition of the colonic flora. [Display omitted] |
ArticleNumber | 106587 |
Author | Zhang, Weipeng Zhao, Jiamin Ji, Bingzhen Zhao, Junxing Li, Xvying |
Author_xml | – sequence: 1 givenname: Jiamin surname: Zhao fullname: Zhao, Jiamin organization: College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China – sequence: 2 givenname: Bingzhen surname: Ji fullname: Ji, Bingzhen organization: College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China – sequence: 3 givenname: Xvying surname: Li fullname: Li, Xvying organization: College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China – sequence: 4 givenname: Weipeng surname: Zhang fullname: Zhang, Weipeng organization: College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China – sequence: 5 givenname: Junxing surname: Zhao fullname: Zhao, Junxing email: Junxzh@sxau.edu.cn organization: College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China |
BookMark | eNp9kD1vGzEMQDWkQJM0fyCTxiznSrpPA12CIE0DBMjSzgKPos40zpJ70gXw1L9eGe5cLgIpPoJ8N-IqxEBC3Gu10Up3X_cbP3LcGGXaUujaob8S18ZoUzVmaz6Lu5T2qsS2r1XdXos_LysEdhwiIGVGCchOQs4UVsiU5I6nXeUhS8eUJQe3IjmJcebMSY4nmWGZChkmeeAcjzuYThKCk3lHclpzqeISy04ZCl0y52aqYCpDyg99EZ88zInu_r234tf3559PP6q395fXp8e3Cs3Q5aozrsFhS0SII4yg-lb1OKJvlO4V1KDNtmu9IdRNrbt-cL3XvnE1KPIDYn0rHi5zj0v8vVLK9sAJaZ4hUFyTrU1jVNs1fVNazaW17J3SQt4eFz7AcrJa2bNku7dnyfYs2V4kF-jbBaJyxAfTYhMyheKKF8JsXeT_4X8BiziLxA |
Cites_doi | 10.1016/j.peptides.2013.07.026 10.1159/000345129 10.1073/pnas.1621400114 10.3390/ani13193108 10.3748/wjg.v22.i35.7868 10.1146/annurev-physiol-060821-083306 10.1016/j.phrs.2021.105433 10.1016/S2468-1253(22)00241-2 10.1073/pnas.0504978102 10.1053/j.gastro.2020.05.033 10.1007/s12328-017-0813-5 10.1056/NEJMcp2102062 10.1007/s10695-023-01177-6 10.1007/s00394-015-1050-7 10.1016/j.cmet.2017.08.009 10.1016/j.jconrel.2023.08.007 10.1016/j.jcmgh.2021.08.010 10.1016/j.psj.2023.103166 10.1016/j.molcel.2023.08.021 10.3748/wjg.v29.i12.1779 10.1016/j.biopha.2023.114644 10.1038/nature06005 10.3748/wjg.v22.i11.3117 10.3390/nu13051429 10.1089/dna.2018.4348 10.1139/apnm-2016-0178 10.1016/j.biochi.2023.02.004 10.1152/ajpgi.00103.2019 10.1080/21623945.2022.2060719 10.1016/j.cgh.2022.06.030 10.1038/s41419-023-05810-3 10.1080/15548627.2019.1603547 10.3390/ijms19092837 10.1007/978-3-030-14504-0_157 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fbio.2025.106587 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 10_1016_j_fbio_2025_106587 S2212429225007631 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 8P~ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABGRD ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADQTV ADUVX AEBSH AEHWI AEIPS AEKER AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC EBS EFJIC EFKBS EJD ENUVR FDB FIRID FNPLU FYGXN GBLVA HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSA SSG SSU SSZ T5K ~G- AAYXX AGRNS BNPGV CITATION RIG 7S9 L.6 |
ID | FETCH-LOGICAL-c286t-62d4c89eeeccbaba07507cbcf40170a3a12965f2ec1431678d7f1f4d3a0ef8cc3 |
IEDL.DBID | .~1 |
ISSN | 2212-4292 |
IngestDate | Fri Aug 22 21:00:56 EDT 2025 Thu Jul 31 00:45:01 EDT 2025 Sat Aug 30 17:13:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Guanidinoacetic acid Obesity Microbiota Colitis Mitophagy High fat diet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-62d4c89eeeccbaba07507cbcf40170a3a12965f2ec1431678d7f1f4d3a0ef8cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3242056474 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3242056474 crossref_primary_10_1016_j_fbio_2025_106587 elsevier_sciencedirect_doi_10_1016_j_fbio_2025_106587 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Food bioscience |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hall, Lee, Murphy, Gerich, Dran, Glover, Abdulla, Skelton, Colgan (bib6) 2020; 159 Wallimann, Hall, Colgan, Glover (bib30) 2021; 13 Fan, Xie, Chen, Peng, Zhang, Yang, Wang (bib5) 2019; 38 Yang, Li, Zhang, Lin, Hu, Xu (bib35) 2023; 361 Hannon, Arslanian (bib7) 2023; 389 Harper, Zisman (bib8) 2016; 22 Ley, Turnbaugh, Klein, Gordon (bib16) 2006; 444 Al-Shammari, Zamil, Batkowska (bib1) 2024; 103 Jiang, Miao (bib11) 2023; 15 Wang, Feng, Wang, Chen, Zhang (bib31) 2021; 165 Ostojic (bib22) 2015; 54 Mariano, Terrazzano, Coccia, Vito, Varricchio, Paolucci (bib19) 2013; 48 Ostojic, Ratgeber, Olah, Betlehem, Acs (bib24) 2020; 17 Nishida, Inoue, Inatomi, Bamba, Naito, Andoh (bib21) 2018; 11 Ley, Bäckhed, Turnbaugh, Lozupone, Knight, Gordon (bib15) 2005; 102 Dahlgren, Lennernäs (bib4) 2023; 162 Nguyen, Lapaquette, Bringer, Darfeuille-Michaud (bib20) 2013; 5 Chen, Jiang, Cui, Hou, Zhao, Bo, Zou, Yin (bib3) 2023; 209 Hua, Huang, Wang, Jing, Li, Wang, Zhao (bib10) 2023; 49 Kazak, Chouchani, Lu, Jedrychowski, Bare, Mina, Spiegelman (bib12) 2017; 26 Pellegrini, Fornai, D'Antongiovanni, Antonioli, Bernardini, Derkinderen (bib25) 2023 Xavier, Podolsky (bib33) 2007; 448 Zhao, Li, Li, Jiao, Liu, Lv, Zhao (bib38) 2023; 13 Landy, Ronde, English, Clark, Hart, Knight, Ciclitira, Al-Hassi (bib14) 2016; 22 Wang, Ma, Qiu, Zhang, Feng, Zhou, Wang, Jin, Long, Liu, Xiao, Tang, Zhu, Jiang, Li, Li (bib32) 2018; 19 Turer, McAlpine, Wang, Lu, Li, Tang, Zhan, Wang, Zhan, Bu, Murray, Beutler (bib28) 2017; 114 Ostojic, Ostojic, Drid, Vranes (bib23) 2016; 41 Xu, Shen, Ran (bib34) 2020; 16 Yeshi, Ruscher, Hunter, Daly, Loukas, Wangchuk (bib36) 2020; 9 Ho, Theiss (bib9) 2022; 84 Lim, Xue, Wang (bib18) 2020 Buie, Quan, Windsor, Coward, Hansen, King, Kotze, Gearry, Ng, Mak (bib2) 2023; 21 Li, Wei, Sun, Du, Li, Xun, Li (bib17) 2019; 317 Kim, Oh, Yoo (bib13) 2023; 29 Uoselis, Nguyen, Lazarou (bib29) 2023; 83 Sagar, Faizan, Chaudhary, Singh, Singh, Gheware, Azmi, Singh, Kharya (bib26) 2023; 14 Singh, Johnson, Yin, Lee, Lin, Yu, In, Foulke-Abel, Zachos, Donowitz (bib27) 2022; 13 Yu, Pana, Yu (bib37) 2022; 11 Harper (10.1016/j.fbio.2025.106587_bib8) 2016; 22 Li (10.1016/j.fbio.2025.106587_bib17) 2019; 317 Chen (10.1016/j.fbio.2025.106587_bib3) 2023; 209 Ley (10.1016/j.fbio.2025.106587_bib16) 2006; 444 Sagar (10.1016/j.fbio.2025.106587_bib26) 2023; 14 Al-Shammari (10.1016/j.fbio.2025.106587_bib1) 2024; 103 Turer (10.1016/j.fbio.2025.106587_bib28) 2017; 114 Ostojic (10.1016/j.fbio.2025.106587_bib24) 2020; 17 Yeshi (10.1016/j.fbio.2025.106587_bib36) 2020; 9 Hua (10.1016/j.fbio.2025.106587_bib10) 2023; 49 Ostojic (10.1016/j.fbio.2025.106587_bib23) 2016; 41 Wang (10.1016/j.fbio.2025.106587_bib32) 2018; 19 Yu (10.1016/j.fbio.2025.106587_bib37) 2022; 11 Buie (10.1016/j.fbio.2025.106587_bib2) 2023; 21 Kim (10.1016/j.fbio.2025.106587_bib13) 2023; 29 Hall (10.1016/j.fbio.2025.106587_bib6) 2020; 159 Hannon (10.1016/j.fbio.2025.106587_bib7) 2023; 389 Pellegrini (10.1016/j.fbio.2025.106587_bib25) 2023 Kazak (10.1016/j.fbio.2025.106587_bib12) 2017; 26 Wallimann (10.1016/j.fbio.2025.106587_bib30) 2021; 13 Uoselis (10.1016/j.fbio.2025.106587_bib29) 2023; 83 Lim (10.1016/j.fbio.2025.106587_bib18) 2020 Mariano (10.1016/j.fbio.2025.106587_bib19) 2013; 48 Singh (10.1016/j.fbio.2025.106587_bib27) 2022; 13 Xavier (10.1016/j.fbio.2025.106587_bib33) 2007; 448 Yang (10.1016/j.fbio.2025.106587_bib35) 2023; 361 Ho (10.1016/j.fbio.2025.106587_bib9) 2022; 84 Ley (10.1016/j.fbio.2025.106587_bib15) 2005; 102 Dahlgren (10.1016/j.fbio.2025.106587_bib4) 2023; 162 Nishida (10.1016/j.fbio.2025.106587_bib21) 2018; 11 Ostojic (10.1016/j.fbio.2025.106587_bib22) 2015; 54 Jiang (10.1016/j.fbio.2025.106587_bib11) 2023; 15 Nguyen (10.1016/j.fbio.2025.106587_bib20) 2013; 5 Xu (10.1016/j.fbio.2025.106587_bib34) 2020; 16 Landy (10.1016/j.fbio.2025.106587_bib14) 2016; 22 Wang (10.1016/j.fbio.2025.106587_bib31) 2021; 165 Zhao (10.1016/j.fbio.2025.106587_bib38) 2023; 13 Fan (10.1016/j.fbio.2025.106587_bib5) 2019; 38 |
References_xml | – volume: 389 start-page: 251 year: 2023 end-page: 261 ident: bib7 article-title: Obesity in adolescents publication-title: New England Journal of Medicine – volume: 29 start-page: 1779 year: 2023 end-page: 1794 ident: bib13 article-title: Obesity and novel management of inflammatory bowel disease publication-title: World Journal of Gastroenterology – volume: 22 start-page: 3117 year: 2016 ident: bib14 article-title: Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer publication-title: World Journal of Gastroenterology – volume: 13 start-page: 3108 year: 2023 ident: bib38 article-title: Guanidinoacetic acid attenuates adipogenesis through regulation of miR-133a in sheep publication-title: Animals – volume: 17 start-page: 2544 year: 2020 ident: bib24 article-title: Guanidinoacetic acid deficiency: A new entity in clinical medicine? publication-title: The Journal of Agricultural Science – volume: 48 start-page: 59 year: 2013 end-page: 69 ident: bib19 article-title: Effects of recombinant trout leptin in superoxide production and NF-κB/MAPK phosphorylation in blood leukocytes publication-title: Peptides – volume: 159 start-page: 984 year: 2020 end-page: 998 ident: bib6 article-title: Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, epithelial integrity, and barrier function publication-title: Gastroenterology – volume: 14 start-page: 324 year: 2023 ident: bib26 article-title: Obesity impairs cardiolipin-dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells publication-title: Cell Death & Disease – volume: 19 start-page: 2837 year: 2018 ident: bib32 article-title: Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K signaling pathway publication-title: International Journal of Molecular Sciences – volume: 165 year: 2021 ident: bib31 article-title: Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases publication-title: Pharmacological Research – volume: 21 start-page: 2211 year: 2023 end-page: 2221 ident: bib2 article-title: Global hospitalization trends for crohn's disease and ulcerative colitis in the 21st century: A systematic review with temporal analyses publication-title: Clinical Gastroenterology and Hepatology – volume: 49 start-page: 253 year: 2023 end-page: 274 ident: bib10 article-title: Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala publication-title: Fish Physiology and Biochemistry – volume: 102 start-page: 11070 year: 2005 end-page: 11075 ident: bib15 article-title: Obesity alters gut microbial ecology publication-title: Proceedings of the National Academy of Sciences – volume: 26 start-page: 660 year: 2017 end-page: 671 ident: bib12 article-title: Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity publication-title: Cell Metabolism – volume: 317 start-page: G453 year: 2019 end-page: G462 ident: bib17 article-title: High-fat diet promotes experimental colitis by inducing oxidative stress in the colon publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology – volume: 11 start-page: 202 year: 2022 end-page: 212 ident: bib37 article-title: The combination of nuclear receptor NR1D1 and ULK1 promotes mitophagy in adipocytes to ameliorate obesity publication-title: Adipocyte – volume: 103 year: 2024 ident: bib1 article-title: The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails publication-title: Poultry Science – volume: 5 start-page: 434 year: 2013 end-page: 443 ident: bib20 article-title: Autophagy and Crohn's disease publication-title: Journal of Innate Immunity – volume: 448 start-page: 427 year: 2007 end-page: 434 ident: bib33 article-title: Unravelling the pathogenesis of inflammatory bowel disease publication-title: Nature – start-page: 1217 year: 2020 end-page: 1235 ident: bib18 article-title: Global trends in obesity publication-title: Handbook of Eating and Drinking: Interdisciplinary Perspectives – volume: 41 start-page: 1005 year: 2016 end-page: 1007 ident: bib23 article-title: Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: A superiority pilot trial in healthy men publication-title: Applied Physiology Nutrition and Metabolism – volume: 13 start-page: 219 year: 2022 end-page: 232 ident: bib27 article-title: Chronic inflammation in ulcerative colitis causes long-term changes in goblet cell function publication-title: Cellular and Molecular Gastroenterology and Hepatology – volume: 22 start-page: 7868 year: 2016 ident: bib8 article-title: Interaction of obesity and inflammatory bowel disease publication-title: World Journal of Gastroenterology – volume: 361 start-page: 568 year: 2023 end-page: 591 ident: bib35 article-title: From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems publication-title: Journal of Controlled Release – volume: 13 start-page: 1429 year: 2021 ident: bib30 article-title: Creatine supplementation for patients with inflammatory bowel diseases: A scientific rationale for a clinical trial publication-title: Nutrients – volume: 162 year: 2023 ident: bib4 article-title: Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation publication-title: Biomedicine & Pharmacotherapy – year: 2023 ident: bib25 article-title: The intestinal barrier in disorders of the central nervous system publication-title: The Lancet Gastroenterology & Hepatology – volume: 83 start-page: 3404 year: 2023 end-page: 3420 ident: bib29 article-title: Mitochondrial degradation: Mitophagy and beyond publication-title: Molecular Cell – volume: 209 start-page: 85 year: 2023 end-page: 94 ident: bib3 article-title: Creatine ameliorates high-fat diet-induced obesity by regulation of lipolysis and lipophagy in brown adipose tissue and liver publication-title: Biochimie – volume: 38 start-page: 10 year: 2019 end-page: 22 ident: bib5 article-title: Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy publication-title: DNA and Cell Biology – volume: 16 start-page: 3 year: 2020 end-page: 17 ident: bib34 article-title: Emerging views of mitophagy in immunity and autoimmune diseases publication-title: Autophagy – volume: 9 start-page: 1273 year: 2020 ident: bib36 article-title: Revisiting inflammatory bowel disease: Pathology, treatments, challenges and emerging therapeutics including drug leads from natural products publication-title: Journal of Clinical Medicine Research – volume: 84 start-page: 435 year: 2022 end-page: 459 ident: bib9 article-title: Mitochondria and inflammatory bowel diseases: Toward a stratified therapeutic intervention publication-title: Annual Review of Physiology – volume: 11 start-page: 1 year: 2018 end-page: 10 ident: bib21 article-title: Gut microbiota in the pathogenesis of inflammatory bowel disease publication-title: Clinical Journal of Gastroenterology – volume: 15 start-page: 653 year: 2023 ident: bib11 article-title: High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: Emerging mechanisms and dietary intervention perspective publication-title: American Journal of Tourism Research – volume: 444 start-page: 1022 year: 2006 end-page: 1023 ident: bib16 article-title: Human gut microbes associated with obesity publication-title: American Journal of Tourism Research – volume: 54 start-page: 1211 year: 2015 end-page: 1215 ident: bib22 article-title: Advanced physiological roles of guanidinoacetic acid publication-title: European Journal of Nutrition – volume: 114 start-page: E1273 year: 2017 end-page: e1281 ident: bib28 article-title: Creatine maintains intestinal homeostasis and protects against colitis publication-title: Proceedings of the National Academy of Sciences – volume: 48 start-page: 59 year: 2013 ident: 10.1016/j.fbio.2025.106587_bib19 article-title: Effects of recombinant trout leptin in superoxide production and NF-κB/MAPK phosphorylation in blood leukocytes publication-title: Peptides doi: 10.1016/j.peptides.2013.07.026 – volume: 5 start-page: 434 issue: 5 year: 2013 ident: 10.1016/j.fbio.2025.106587_bib20 article-title: Autophagy and Crohn's disease publication-title: Journal of Innate Immunity doi: 10.1159/000345129 – volume: 114 start-page: E1273 issue: 7 year: 2017 ident: 10.1016/j.fbio.2025.106587_bib28 article-title: Creatine maintains intestinal homeostasis and protects against colitis publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1621400114 – volume: 13 start-page: 3108 issue: 19 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib38 article-title: Guanidinoacetic acid attenuates adipogenesis through regulation of miR-133a in sheep publication-title: Animals doi: 10.3390/ani13193108 – volume: 22 start-page: 7868 issue: 35 year: 2016 ident: 10.1016/j.fbio.2025.106587_bib8 article-title: Interaction of obesity and inflammatory bowel disease publication-title: World Journal of Gastroenterology doi: 10.3748/wjg.v22.i35.7868 – volume: 15 start-page: 653 issue: 2 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib11 article-title: High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: Emerging mechanisms and dietary intervention perspective publication-title: American Journal of Tourism Research – volume: 84 start-page: 435 year: 2022 ident: 10.1016/j.fbio.2025.106587_bib9 article-title: Mitochondria and inflammatory bowel diseases: Toward a stratified therapeutic intervention publication-title: Annual Review of Physiology doi: 10.1146/annurev-physiol-060821-083306 – volume: 165 year: 2021 ident: 10.1016/j.fbio.2025.106587_bib31 article-title: Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases publication-title: Pharmacological Research doi: 10.1016/j.phrs.2021.105433 – year: 2023 ident: 10.1016/j.fbio.2025.106587_bib25 article-title: The intestinal barrier in disorders of the central nervous system publication-title: The Lancet Gastroenterology & Hepatology doi: 10.1016/S2468-1253(22)00241-2 – volume: 102 start-page: 11070 issue: 31 year: 2005 ident: 10.1016/j.fbio.2025.106587_bib15 article-title: Obesity alters gut microbial ecology publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0504978102 – volume: 159 start-page: 984 issue: 3 year: 2020 ident: 10.1016/j.fbio.2025.106587_bib6 article-title: Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, epithelial integrity, and barrier function publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.05.033 – volume: 11 start-page: 1 year: 2018 ident: 10.1016/j.fbio.2025.106587_bib21 article-title: Gut microbiota in the pathogenesis of inflammatory bowel disease publication-title: Clinical Journal of Gastroenterology doi: 10.1007/s12328-017-0813-5 – volume: 9 start-page: 1273 issue: 5 year: 2020 ident: 10.1016/j.fbio.2025.106587_bib36 article-title: Revisiting inflammatory bowel disease: Pathology, treatments, challenges and emerging therapeutics including drug leads from natural products publication-title: Journal of Clinical Medicine Research – volume: 389 start-page: 251 issue: 3 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib7 article-title: Obesity in adolescents publication-title: New England Journal of Medicine doi: 10.1056/NEJMcp2102062 – volume: 49 start-page: 253 issue: 2 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib10 article-title: Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala publication-title: Fish Physiology and Biochemistry doi: 10.1007/s10695-023-01177-6 – volume: 54 start-page: 1211 year: 2015 ident: 10.1016/j.fbio.2025.106587_bib22 article-title: Advanced physiological roles of guanidinoacetic acid publication-title: European Journal of Nutrition doi: 10.1007/s00394-015-1050-7 – volume: 26 start-page: 660 issue: 4 year: 2017 ident: 10.1016/j.fbio.2025.106587_bib12 article-title: Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity publication-title: Cell Metabolism doi: 10.1016/j.cmet.2017.08.009 – volume: 361 start-page: 568 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib35 article-title: From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2023.08.007 – volume: 13 start-page: 219 issue: 1 year: 2022 ident: 10.1016/j.fbio.2025.106587_bib27 article-title: Chronic inflammation in ulcerative colitis causes long-term changes in goblet cell function publication-title: Cellular and Molecular Gastroenterology and Hepatology doi: 10.1016/j.jcmgh.2021.08.010 – volume: 103 issue: 1 year: 2024 ident: 10.1016/j.fbio.2025.106587_bib1 article-title: The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails publication-title: Poultry Science doi: 10.1016/j.psj.2023.103166 – volume: 83 start-page: 3404 issue: 19 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib29 article-title: Mitochondrial degradation: Mitophagy and beyond publication-title: Molecular Cell doi: 10.1016/j.molcel.2023.08.021 – volume: 29 start-page: 1779 issue: 12 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib13 article-title: Obesity and novel management of inflammatory bowel disease publication-title: World Journal of Gastroenterology doi: 10.3748/wjg.v29.i12.1779 – volume: 162 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib4 article-title: Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation publication-title: Biomedicine & Pharmacotherapy doi: 10.1016/j.biopha.2023.114644 – volume: 444 start-page: 1022 issue: 7122 year: 2006 ident: 10.1016/j.fbio.2025.106587_bib16 article-title: Human gut microbes associated with obesity publication-title: American Journal of Tourism Research – volume: 448 start-page: 427 issue: 7152 year: 2007 ident: 10.1016/j.fbio.2025.106587_bib33 article-title: Unravelling the pathogenesis of inflammatory bowel disease publication-title: Nature doi: 10.1038/nature06005 – volume: 22 start-page: 3117 issue: 11 year: 2016 ident: 10.1016/j.fbio.2025.106587_bib14 article-title: Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer publication-title: World Journal of Gastroenterology doi: 10.3748/wjg.v22.i11.3117 – volume: 17 start-page: 2544 issue: 16 year: 2020 ident: 10.1016/j.fbio.2025.106587_bib24 article-title: Guanidinoacetic acid deficiency: A new entity in clinical medicine? publication-title: The Journal of Agricultural Science – volume: 13 start-page: 1429 issue: 5 year: 2021 ident: 10.1016/j.fbio.2025.106587_bib30 article-title: Creatine supplementation for patients with inflammatory bowel diseases: A scientific rationale for a clinical trial publication-title: Nutrients doi: 10.3390/nu13051429 – volume: 38 start-page: 10 issue: 1 year: 2019 ident: 10.1016/j.fbio.2025.106587_bib5 article-title: Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy publication-title: DNA and Cell Biology doi: 10.1089/dna.2018.4348 – volume: 41 start-page: 1005 issue: 9 year: 2016 ident: 10.1016/j.fbio.2025.106587_bib23 article-title: Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: A superiority pilot trial in healthy men publication-title: Applied Physiology Nutrition and Metabolism doi: 10.1139/apnm-2016-0178 – volume: 209 start-page: 85 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib3 article-title: Creatine ameliorates high-fat diet-induced obesity by regulation of lipolysis and lipophagy in brown adipose tissue and liver publication-title: Biochimie doi: 10.1016/j.biochi.2023.02.004 – volume: 317 start-page: G453 issue: 4 year: 2019 ident: 10.1016/j.fbio.2025.106587_bib17 article-title: High-fat diet promotes experimental colitis by inducing oxidative stress in the colon publication-title: American Journal of Physiology - Gastrointestinal and Liver Physiology doi: 10.1152/ajpgi.00103.2019 – volume: 11 start-page: 202 issue: 1 year: 2022 ident: 10.1016/j.fbio.2025.106587_bib37 article-title: The combination of nuclear receptor NR1D1 and ULK1 promotes mitophagy in adipocytes to ameliorate obesity publication-title: Adipocyte doi: 10.1080/21623945.2022.2060719 – volume: 21 start-page: 2211 issue: 9 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib2 article-title: Global hospitalization trends for crohn's disease and ulcerative colitis in the 21st century: A systematic review with temporal analyses publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2022.06.030 – volume: 14 start-page: 324 issue: 5 year: 2023 ident: 10.1016/j.fbio.2025.106587_bib26 article-title: Obesity impairs cardiolipin-dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells publication-title: Cell Death & Disease doi: 10.1038/s41419-023-05810-3 – volume: 16 start-page: 3 issue: 1 year: 2020 ident: 10.1016/j.fbio.2025.106587_bib34 article-title: Emerging views of mitophagy in immunity and autoimmune diseases publication-title: Autophagy doi: 10.1080/15548627.2019.1603547 – volume: 19 start-page: 2837 issue: 9 year: 2018 ident: 10.1016/j.fbio.2025.106587_bib32 article-title: Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K signaling pathway publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms19092837 – start-page: 1217 year: 2020 ident: 10.1016/j.fbio.2025.106587_bib18 article-title: Global trends in obesity publication-title: Handbook of Eating and Drinking: Interdisciplinary Perspectives doi: 10.1007/978-3-030-14504-0_157 |
SSID | ssj0000973035 |
Score | 2.315827 |
Snippet | The increasing incidence of obesity has been associated with various diseases, including inflammatory bowel disease. Guanidinoacetic acid (GAA) regulated... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106587 |
SubjectTerms | chemokines Colitis colon Guanidinoacetic acid High fat diet inflammation interleukin-6 intestinal microorganisms Microbiota Mitophagy necrosis neoplasms Obesity protein synthesis tight junctions transcription factor NF-kappa B |
Title | Guanidinoacetic acid attenuates high-fat diet induced colitis by targeting mitophagy and the gut microbiota in middle-aged mice |
URI | https://dx.doi.org/10.1016/j.fbio.2025.106587 https://www.proquest.com/docview/3242056474 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2yXryIouLnEsGbxN22adoel0VZFfeigreQThKpYHdxu4e96F93ph-Cgh48Nm1KmUnem6QzL4ydWZtnCdgM57dXQgY-EKlSuVAOfBRLm8o6efxuqiaP8uYpflpj464WhtIqW-xvML1G67Zl0FpzMC-KwX2IqEuHLSGJ42K8rqWWMqFRfvEefO2zkBzNsD5nk54X1KGtnWnSvHxeUA1gGGMDsnHyGz_9QOqafq622GYbN_JR82nbbM2VO-wDHVwWyD4zA1SMyA0UlpNiZrmkGJKTGLHwpuK2cBXH5Tc60nKoc94WPF_xJhEc6Yu_FiQxYJ5X3JSWY1jIn5cVtjZCTZXB3nhFuxkCIcjSHbfLHq8uH8YT0Z6oICBMVSVUaCWkmXPouNzkhuKFBHLwkmR0TGSQ_VXsQwdBXSKf2sQHXtrIDJ1PAaI91itnpdtn3GVDiEE6lSmQEESpjyHzXgWA0xph4oCdd3bU80Y4Q3cZZS-arK7J6rqx-gGLO1Prb-7XiOx_9jvt_KJxXtDPDlO62XKhKVDE4E4m8vCf7z5iG3TV5IUds171tnQnGIFUeb8eYn22Prq-nUw_ASQX3Jk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetCLKCq-jeBNwm7bNG2PIsr62osreAvpJJEKdhe3e9iTf92ZPgQFPXhsQkqZSb75ks58YezM2jxLwGa4vr0SMvCBSJXKhXLgo1jaVNbJ4w9jNXqSt8_xc49ddrUwlFbZYn-D6TVaty2D1pqDWVEMHkNEXbpsCYM4bsaplnqF1KniPlu5uLkbjb-OWkiRZlhftUlDBI1py2eaTC-fF1QGGMbYgAE5-S1E_QDrOgJdb7D1ljryi-brNlnPlVvsA31cFhiApgaoHpEbKCwn0cxyQTSSkx6x8KbitnAVxx04-tJyqNPe5jxf8iYXHCMYfytIZcC8LLkpLUdmyF8WFbY2Wk2VwdH4RAcaAlHIUo_bZk_XV5PLkWgvVRAQpqoSKrQS0sw59F1uckOUIYEcvCQlHRMZJAAq9qGDoK6ST23iAy9tZIbOpwDRDuuX09LtMu6yIcQgncoUSAii1MeQea8CwJWNSLHHzjs76lmjnaG7pLJXTVbXZHXdWH2PxZ2p9bcZoBHc_xx32vlF49Kg_x2mdNPFXBNXRH4nE7n_z3efsNXR5OFe39-M7w7YGvU0aWKHrF-9L9wREpIqP24n3Ce6W99K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guanidinoacetic+acid+attenuates+high-fat+diet+induced+colitis+by+targeting+mitophagy+and+the+gut+microbiota+in+middle-aged+mice&rft.jtitle=Food+bioscience&rft.au=Zhao%2C+Jiamin&rft.au=Ji%2C+Bingzhen&rft.au=Li%2C+Xvying&rft.au=Zhang%2C+Weipeng&rft.date=2025-06-01&rft.issn=2212-4292&rft.volume=68+p.106587-&rft_id=info:doi/10.1016%2Fj.fbio.2025.106587&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4292&client=summon |