Bayesian nonparametric estimation of bandwidth using mixtures of kernel estimators for length-biased data

Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel withi...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 90; no. 10; pp. 1849 - 1874
Main Authors Rahnamay Kordasiabi, S., Khazaei, S.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2020.1750613

Cover

Loading…
Abstract Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel within the Dirichlet process mixture model will be approximated by the kernel density estimator. We present a Bayesian nonparametric method for finding the bandwidth parameter in the kernel density estimation using a Markov chain Monte Carlo approach. Then, this approach is used to the simulated and real data set. Finally, we compare the proposed bandwidth estimation with the other estimations like cross-validation and Bayes based on the mean integrated squared error criterion.
AbstractList Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel within the Dirichlet process mixture model will be approximated by the kernel density estimator. We present a Bayesian nonparametric method for finding the bandwidth parameter in the kernel density estimation using a Markov chain Monte Carlo approach. Then, this approach is used to the simulated and real data set. Finally, we compare the proposed bandwidth estimation with the other estimations like cross-validation and Bayes based on the mean integrated squared error criterion.
Author Rahnamay Kordasiabi, S.
Khazaei, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Rahnamay Kordasiabi
  fullname: Rahnamay Kordasiabi, S.
  organization: Department of Statistics, Razi University
– sequence: 2
  givenname: S.
  surname: Khazaei
  fullname: Khazaei, S.
  email: s.khazaei@razi.ac.ir
  organization: Department of Statistics, Razi University
BookMark eNp9UMtOwzAQtFCRaIFPQLLEOcXrxGly4yFeUiUucLYcP1qX1C62I-jf46j0ymm1uzOzszNDE-edRugKyBxIQ24Iaau2ZmxOCc2jBSM1lCdoCqwuCwZ1OUHTEVOMoDM0i3FDCAFgdIrsvdjraIXDWXQngtjqFKzEOia7Fcl6h73BnXDq26q0xkO0boW39icNQcdx96mD0_2R4EPExgfca7dK66KzImqFlUjiAp0a0Ud9-VfP0cfT4_vDS7F8e359uFsWkjZ1KqquMZRopRiVYGoAqsyiya2smKyZVqB019SybVpYtAaastNGq7aEBjpVyfIcXR90d8F_DdkW3_ghuHyS0wpoy0pKIaPYASWDjzFow3ch-w97DoSPqfJjqnxMlf-lmnm3B551-c2t-PahVzyJfe-DCcJJG3n5v8QvFu6ChA
Cites_doi 10.1080/03610918.2016.1263735
10.1080/10618600.2000.10474879
10.1080/07474938.2013.807130
10.1080/03610929808832217
10.1016/j.jeconom.2009.04.004
10.1080/03610918.2017.1359286
10.1016/j.jspi.2010.01.001
10.1214/009053604000000300
10.3390/econometrics4020024
10.1002/nav.21529
10.1093/biomet/71.2.353
10.1016/j.csda.2005.06.019
10.2307/1403571
10.1214/aos/1176342372
10.1080/10485250215320
10.1093/biomet/56.3.601
10.1214/aos/1176342360
10.1080/01621459.1996.10476701
10.1198/016214502753479347
10.1080/10485250310001624819
10.1023/A:1008925425102
10.2307/2531448
10.1080/10618600.1998.10474772
10.1093/biomet/78.3.511
10.1111/j.1467-9868.2007.00582.x
10.1023/A:1004165218295
10.1080/10485250600556744
10.1016/j.jspi.2004.08.009
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2020.1750613
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 1874
ExternalDocumentID 10_1080_00949655_2020_1750613
1750613
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
CITATION
TASJS
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-4b8f20edd52c1f6112df78dd5c45c65ed1deb86c989179f183befed93181bd4c3
ISSN 0094-9655
IngestDate Fri Jul 25 03:32:25 EDT 2025
Sun Aug 03 02:37:23 EDT 2025
Wed Dec 25 09:07:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-4b8f20edd52c1f6112df78dd5c45c65ed1deb86c989179f183befed93181bd4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2412953221
PQPubID 53118
PageCount 26
ParticipantIDs informaworld_taylorfrancis_310_1080_00949655_2020_1750613
proquest_journals_2412953221
crossref_primary_10_1080_00949655_2020_1750613
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Patil GP (CIT0013) 1976; 38
CIT0010
CIT0032
Bhattacharyya BB (CIT0015) 1998; 17
CIT0034
CIT0011
Hardle W. (CIT0036) 2012
Patil GP (CIT0012) 1977; 383
CIT0014
CIT0035
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
Rudemo M. (CIT0021) 1982; 9
CIT0019
West M (CIT0028) 1994
CIT0020
CIT0001
CIT0023
CIT0022
Sethuraman J. (CIT0031) 1994; 4
MacEachern SN (CIT0029) 1998; 7
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
Cristóbal JA (CIT0009) 2001; 10
CIT0006
References_xml – ident: CIT0022
  doi: 10.1080/03610918.2016.1263735
– ident: CIT0037
  doi: 10.1080/10618600.2000.10474879
– ident: CIT0026
  doi: 10.1080/07474938.2013.807130
– ident: CIT0011
  doi: 10.1080/03610929808832217
– ident: CIT0025
  doi: 10.1016/j.jeconom.2009.04.004
– volume: 10
  start-page: 309
  year: 2001
  ident: CIT0009
  publication-title: Boletin de Estadística e Investigación Operativa
– ident: CIT0035
  doi: 10.1080/03610918.2017.1359286
– ident: CIT0001
  doi: 10.1016/j.jspi.2010.01.001
– ident: CIT0010
  doi: 10.1214/009053604000000300
– ident: CIT0005
  doi: 10.3390/econometrics4020024
– ident: CIT0006
  doi: 10.1002/nav.21529
– ident: CIT0017
  doi: 10.1093/biomet/71.2.353
– ident: CIT0024
  doi: 10.1016/j.csda.2005.06.019
– volume: 4
  start-page: 639
  year: 1994
  ident: CIT0031
  publication-title: Statist Sinica
– ident: CIT0004
  doi: 10.2307/1403571
– ident: CIT0032
  doi: 10.1214/aos/1176342372
– volume: 17
  start-page: 3629
  year: 1998
  ident: CIT0015
  publication-title: Comm Statist Theory Methods
– ident: CIT0002
  doi: 10.1080/10485250215320
– ident: CIT0014
  doi: 10.1093/biomet/56.3.601
– ident: CIT0023
  doi: 10.1214/aos/1176342360
– volume-title: Smoothing techniques with implementation in S
  year: 2012
  ident: CIT0036
– ident: CIT0018
  doi: 10.1080/01621459.1996.10476701
– ident: CIT0007
  doi: 10.1198/016214502753479347
– ident: CIT0020
  doi: 10.1080/10485250310001624819
– volume: 38
  start-page: 48
  issue: 1
  year: 1976
  ident: CIT0013
  publication-title: Sankhyā
– ident: CIT0027
  doi: 10.1023/A:1008925425102
– ident: CIT0038
  doi: 10.2307/2531448
– start-page: 363
  volume-title: Aspects of uncertainty: a tribute to D. V. Lindley
  year: 1994
  ident: CIT0028
– volume: 7
  start-page: 223
  issue: 2
  year: 1998
  ident: CIT0029
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1998.10474772
– ident: CIT0016
  doi: 10.1093/biomet/78.3.511
– volume: 9
  start-page: 65
  year: 1982
  ident: CIT0021
  publication-title: Scand J Statist
– ident: CIT0034
  doi: 10.1111/j.1467-9868.2007.00582.x
– volume: 383
  start-page: 383
  year: 1977
  ident: CIT0012
  publication-title: Appl Stat
– ident: CIT0019
  doi: 10.1023/A:1004165218295
– ident: CIT0003
  doi: 10.1080/10485250600556744
– ident: CIT0030
  doi: 10.1016/j.jspi.2004.08.009
SSID ssj0001152
Score 2.1992934
Snippet Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1849
SubjectTerms bandwidth selection
Bandwidths
Bayesian analysis
Bayesian nonparametric
Computer simulation
Density
Dirichlet problem
Dirichlet process prior
kernel estimator
Kernel functions
Length-biased data analysis
Markov analysis
Markov chains
Nonparametric statistics
Parameter estimation
pivoting method
Title Bayesian nonparametric estimation of bandwidth using mixtures of kernel estimators for length-biased data
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2020.1750613
https://www.proquest.com/docview/2412953221
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9lIOPAKIQkF74BbZih-7tY_lpQhULm1FxcXapxIVB9Q4gvaH8HuZWe_aDkRAuVjORl5vMp_n5Z1vCHmRHZaaSWT5LCBczaXgUZkZhdmmqchTaaWr8D7-wGdn-btzdj4a_RjsWlo3MlbXW-tK_keqMAZyxSrZG0i2mxQG4BzkC0eQMBz_ScYvxZVxRZAQwyOHd43tsdQEiTPqzhWUYqm_LXQzn6xdXqBefMe3Bm4Lx4W5XJrP4QLsu4O7DrG5SjOHmBksnJ746rVtLixWIzmiZ0cygu0h2ru6ZPyi9p3B-ldJ86WoxdXkPQS8WLwp3U6Ck7hT-nNxLcxw0KcjIPbEVOcwQwnxYlTylns3Nl6r8ixiiddkXu22XUIDvKYDJQpBZzkwyNg1cKuyD7sjS-S8ZzGuJgZvCD2U3rqFN_q_GL1uK2LScaS201Q4TeWnuUV2Uwg_QOHvHs1ef_rY2fik7eXU_dhQG4as7dvWs-H1bHDi_uYDOMfm9B6548VJj1p43ScjsxyTu6HbB_XKf0xuH3cMv6sx2TsJsl89IIsARLoBRNoDkX6xtAMidUCkAYj4XQtE2gORwtrpBhApAvEhOXv75vTVLPI9PCKVFryBp7-w6dRozVKVWA7evbaHBXxUOVOcGZ1oIwuuyqIE02DBwEhjjS7B1CRS5yp7RHZg6eYxoZxby3KRpDK3OU9TUDI6gbOECSmUZfskDv9x9bWlaqn-KN19Ug4lUTUuR2bbhjZV9pdrD4LYKq8RVhV4w2nJwEQmT266lqdkr3-aDshOc7k2z8DdbeRzj72fZiWnWw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCg9FFhalfLyoddd1k7sjY9tBVpadk8gcbPiF6yA3Wo3qIVf35k4WUFRxYFbEmsiZzyehzPzDcCXbKC9tITyWWC4mttSdXUWHJ029ctc2GjrCu_RWA3P8x8X8uJRLQylVVIMHRNQRK2raXPTYXSbEndI6XBaSYnhncBHaPQUNa5dlVoNaHNm_fFSG_PUdYdIukTTVvH87zVP7NMT9NJn2ro2Qcfr4NrJp8yT695dZXvu4R9cx9d93Qa8bzxU9jWJ1Ca8CdMOrLfdH1ijDDrwbrREfF10YI281gT6vAWTb-V9oOpMNp1NCVz8lvp2OUaIHqlUks0iszjF3xNfXTFKvr9kt5M_9DtjQWPXYT4NNy3BbL5gyCFGXV-qKwzm0fR6RsmtH-D8-Ojs-7Db9HToOlGoCqWhiKIfvJfC8ajQ2_NxUOCty6VTMnjugy2U0wXGkTqiwrEhBq9R9XDrc5d9hBWcevgETKkYZV5yYfOYKyFQ6DzHKy5LW7oot6HXrqT5laA7DF8ioiYeG-KxaXi8DfrxepuqPjOJqcGJyV6g3W2FwzRaYGHQOxJaosrkn1_x6gN4OzwbnZrTk_HPHVijoTpfWOzCSjW_C3voFVV2vxb7vznCANk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkBAcCiygUl4-cN1l7Y1NcuS14rnqoUi9WfGrrCi7aBPUwq9nJk5WUIR64JbEmsgZT-Zhz3wDsNc7yJw0hPKZYriamFy1s563tNvUzRNhgqkqvK8H6uwmufgpm2zCok6rpBg6RKCISlfTz_3gQpMRt0_ZcJmSEqM7gY_Q5inqWzun6JCPqji6g6ky5rHpDpG0iaYp4vnoNW_M0xvw0nfKurJA_SUwzdxj4sld57E0Hfv8D6zjpz5uGb7U_ik7jAK1AjN-1IKlpvcDq1VBCxavp3ivRQsWyGeNkM-rMDzKnzzVZrLReETQ4vfUtcsywvOIhZJsHJjBGf4ZuvKWUer9L3Y__EuHGQWN3fnJyP9uCMaTgiGDGPV8KW8xlEfD6xiltq7BTf_0x_FZu-7o0LYiVSXKQhpE1zsnheVBoa_nwkGKtzaRVknvuPMmVTZLMYrMAqob44N3GSoeblxie-swi1P3X4EpFYJMci5MEhIlBIqc43jFZW5yG-QGdJqF1A8RuEPzKR5q5LEmHuuaxxuQvV5uXVY7JiG2N9G9_9BuNbKhax1QaPSNRCZRYfJvn3j1Lsx_P-nrq_PB5SYs0EiVLCy2YLacPPptdIlKs1MJ_QsO6v9u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+nonparametric+estimation+of+bandwidth+using+mixtures+of+kernel+estimators+for+length-biased+data&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Rahnamay+Kordasiabi%2C+S.&rft.au=Khazaei%2C+S.&rft.date=2020-07-02&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=90&rft.issue=10&rft.spage=1849&rft.epage=1874&rft_id=info:doi/10.1080%2F00949655.2020.1750613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2020_1750613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon