Bayesian nonparametric estimation of bandwidth using mixtures of kernel estimators for length-biased data
Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel withi...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 90; no. 10; pp. 1849 - 1874 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0094-9655 1563-5163 |
DOI | 10.1080/00949655.2020.1750613 |
Cover
Loading…
Abstract | Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel within the Dirichlet process mixture model will be approximated by the kernel density estimator. We present a Bayesian nonparametric method for finding the bandwidth parameter in the kernel density estimation using a Markov chain Monte Carlo approach. Then, this approach is used to the simulated and real data set. Finally, we compare the proposed bandwidth estimation with the other estimations like cross-validation and Bayes based on the mean integrated squared error criterion. |
---|---|
AbstractList | Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian nonparametric perspective using Dirichlet process prior for the length-biased data under an unknown kernel function. In this situation, the kernel within the Dirichlet process mixture model will be approximated by the kernel density estimator. We present a Bayesian nonparametric method for finding the bandwidth parameter in the kernel density estimation using a Markov chain Monte Carlo approach. Then, this approach is used to the simulated and real data set. Finally, we compare the proposed bandwidth estimation with the other estimations like cross-validation and Bayes based on the mean integrated squared error criterion. |
Author | Rahnamay Kordasiabi, S. Khazaei, S. |
Author_xml | – sequence: 1 givenname: S. surname: Rahnamay Kordasiabi fullname: Rahnamay Kordasiabi, S. organization: Department of Statistics, Razi University – sequence: 2 givenname: S. surname: Khazaei fullname: Khazaei, S. email: s.khazaei@razi.ac.ir organization: Department of Statistics, Razi University |
BookMark | eNp9UMtOwzAQtFCRaIFPQLLEOcXrxGly4yFeUiUucLYcP1qX1C62I-jf46j0ymm1uzOzszNDE-edRugKyBxIQ24Iaau2ZmxOCc2jBSM1lCdoCqwuCwZ1OUHTEVOMoDM0i3FDCAFgdIrsvdjraIXDWXQngtjqFKzEOia7Fcl6h73BnXDq26q0xkO0boW39icNQcdx96mD0_2R4EPExgfca7dK66KzImqFlUjiAp0a0Ud9-VfP0cfT4_vDS7F8e359uFsWkjZ1KqquMZRopRiVYGoAqsyiya2smKyZVqB019SybVpYtAaastNGq7aEBjpVyfIcXR90d8F_DdkW3_ghuHyS0wpoy0pKIaPYASWDjzFow3ch-w97DoSPqfJjqnxMlf-lmnm3B551-c2t-PahVzyJfe-DCcJJG3n5v8QvFu6ChA |
Cites_doi | 10.1080/03610918.2016.1263735 10.1080/10618600.2000.10474879 10.1080/07474938.2013.807130 10.1080/03610929808832217 10.1016/j.jeconom.2009.04.004 10.1080/03610918.2017.1359286 10.1016/j.jspi.2010.01.001 10.1214/009053604000000300 10.3390/econometrics4020024 10.1002/nav.21529 10.1093/biomet/71.2.353 10.1016/j.csda.2005.06.019 10.2307/1403571 10.1214/aos/1176342372 10.1080/10485250215320 10.1093/biomet/56.3.601 10.1214/aos/1176342360 10.1080/01621459.1996.10476701 10.1198/016214502753479347 10.1080/10485250310001624819 10.1023/A:1008925425102 10.2307/2531448 10.1080/10618600.1998.10474772 10.1093/biomet/78.3.511 10.1111/j.1467-9868.2007.00582.x 10.1023/A:1004165218295 10.1080/10485250600556744 10.1016/j.jspi.2004.08.009 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00949655.2020.1750613 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1563-5163 |
EndPage | 1874 |
ExternalDocumentID | 10_1080_00949655_2020_1750613 1750613 |
Genre | Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW CITATION TASJS 7SC 8FD ADYSH JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-4b8f20edd52c1f6112df78dd5c45c65ed1deb86c989179f183befed93181bd4c3 |
ISSN | 0094-9655 |
IngestDate | Fri Jul 25 03:32:25 EDT 2025 Sun Aug 03 02:37:23 EDT 2025 Wed Dec 25 09:07:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-4b8f20edd52c1f6112df78dd5c45c65ed1deb86c989179f183befed93181bd4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2412953221 |
PQPubID | 53118 |
PageCount | 26 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_00949655_2020_1750613 proquest_journals_2412953221 crossref_primary_10_1080_00949655_2020_1750613 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-02 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of statistical computation and simulation |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 Patil GP (CIT0013) 1976; 38 CIT0010 CIT0032 Bhattacharyya BB (CIT0015) 1998; 17 CIT0034 CIT0011 Hardle W. (CIT0036) 2012 Patil GP (CIT0012) 1977; 383 CIT0014 CIT0035 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 Rudemo M. (CIT0021) 1982; 9 CIT0019 West M (CIT0028) 1994 CIT0020 CIT0001 CIT0023 CIT0022 Sethuraman J. (CIT0031) 1994; 4 MacEachern SN (CIT0029) 1998; 7 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 Cristóbal JA (CIT0009) 2001; 10 CIT0006 |
References_xml | – ident: CIT0022 doi: 10.1080/03610918.2016.1263735 – ident: CIT0037 doi: 10.1080/10618600.2000.10474879 – ident: CIT0026 doi: 10.1080/07474938.2013.807130 – ident: CIT0011 doi: 10.1080/03610929808832217 – ident: CIT0025 doi: 10.1016/j.jeconom.2009.04.004 – volume: 10 start-page: 309 year: 2001 ident: CIT0009 publication-title: Boletin de Estadística e Investigación Operativa – ident: CIT0035 doi: 10.1080/03610918.2017.1359286 – ident: CIT0001 doi: 10.1016/j.jspi.2010.01.001 – ident: CIT0010 doi: 10.1214/009053604000000300 – ident: CIT0005 doi: 10.3390/econometrics4020024 – ident: CIT0006 doi: 10.1002/nav.21529 – ident: CIT0017 doi: 10.1093/biomet/71.2.353 – ident: CIT0024 doi: 10.1016/j.csda.2005.06.019 – volume: 4 start-page: 639 year: 1994 ident: CIT0031 publication-title: Statist Sinica – ident: CIT0004 doi: 10.2307/1403571 – ident: CIT0032 doi: 10.1214/aos/1176342372 – volume: 17 start-page: 3629 year: 1998 ident: CIT0015 publication-title: Comm Statist Theory Methods – ident: CIT0002 doi: 10.1080/10485250215320 – ident: CIT0014 doi: 10.1093/biomet/56.3.601 – ident: CIT0023 doi: 10.1214/aos/1176342360 – volume-title: Smoothing techniques with implementation in S year: 2012 ident: CIT0036 – ident: CIT0018 doi: 10.1080/01621459.1996.10476701 – ident: CIT0007 doi: 10.1198/016214502753479347 – ident: CIT0020 doi: 10.1080/10485250310001624819 – volume: 38 start-page: 48 issue: 1 year: 1976 ident: CIT0013 publication-title: Sankhyā – ident: CIT0027 doi: 10.1023/A:1008925425102 – ident: CIT0038 doi: 10.2307/2531448 – start-page: 363 volume-title: Aspects of uncertainty: a tribute to D. V. Lindley year: 1994 ident: CIT0028 – volume: 7 start-page: 223 issue: 2 year: 1998 ident: CIT0029 publication-title: J Comput Graph Stat doi: 10.1080/10618600.1998.10474772 – ident: CIT0016 doi: 10.1093/biomet/78.3.511 – volume: 9 start-page: 65 year: 1982 ident: CIT0021 publication-title: Scand J Statist – ident: CIT0034 doi: 10.1111/j.1467-9868.2007.00582.x – volume: 383 start-page: 383 year: 1977 ident: CIT0012 publication-title: Appl Stat – ident: CIT0019 doi: 10.1023/A:1004165218295 – ident: CIT0003 doi: 10.1080/10485250600556744 – ident: CIT0030 doi: 10.1016/j.jspi.2004.08.009 |
SSID | ssj0001152 |
Score | 2.1992934 |
Snippet | Kernel density estimation has been applied in many computational subjects. In this paper, we propose a density estimation procedure from a Bayesian... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1849 |
SubjectTerms | bandwidth selection Bandwidths Bayesian analysis Bayesian nonparametric Computer simulation Density Dirichlet problem Dirichlet process prior kernel estimator Kernel functions Length-biased data analysis Markov analysis Markov chains Nonparametric statistics Parameter estimation pivoting method |
Title | Bayesian nonparametric estimation of bandwidth using mixtures of kernel estimators for length-biased data |
URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2020.1750613 https://www.proquest.com/docview/2412953221 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9lIOPAKIQkF74BbZih-7tY_lpQhULm1FxcXapxIVB9Q4gvaH8HuZWe_aDkRAuVjORl5vMp_n5Z1vCHmRHZaaSWT5LCBczaXgUZkZhdmmqchTaaWr8D7-wGdn-btzdj4a_RjsWlo3MlbXW-tK_keqMAZyxSrZG0i2mxQG4BzkC0eQMBz_ScYvxZVxRZAQwyOHd43tsdQEiTPqzhWUYqm_LXQzn6xdXqBefMe3Bm4Lx4W5XJrP4QLsu4O7DrG5SjOHmBksnJ746rVtLixWIzmiZ0cygu0h2ru6ZPyi9p3B-ldJ86WoxdXkPQS8WLwp3U6Ck7hT-nNxLcxw0KcjIPbEVOcwQwnxYlTylns3Nl6r8ixiiddkXu22XUIDvKYDJQpBZzkwyNg1cKuyD7sjS-S8ZzGuJgZvCD2U3rqFN_q_GL1uK2LScaS201Q4TeWnuUV2Uwg_QOHvHs1ef_rY2fik7eXU_dhQG4as7dvWs-H1bHDi_uYDOMfm9B6548VJj1p43ScjsxyTu6HbB_XKf0xuH3cMv6sx2TsJsl89IIsARLoBRNoDkX6xtAMidUCkAYj4XQtE2gORwtrpBhApAvEhOXv75vTVLPI9PCKVFryBp7-w6dRozVKVWA7evbaHBXxUOVOcGZ1oIwuuyqIE02DBwEhjjS7B1CRS5yp7RHZg6eYxoZxby3KRpDK3OU9TUDI6gbOECSmUZfskDv9x9bWlaqn-KN19Ug4lUTUuR2bbhjZV9pdrD4LYKq8RVhV4w2nJwEQmT266lqdkr3-aDshOc7k2z8DdbeRzj72fZiWnWw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCg9FFhalfLyoddd1k7sjY9tBVpadk8gcbPiF6yA3Wo3qIVf35k4WUFRxYFbEmsiZzyehzPzDcCXbKC9tITyWWC4mttSdXUWHJ029ctc2GjrCu_RWA3P8x8X8uJRLQylVVIMHRNQRK2raXPTYXSbEndI6XBaSYnhncBHaPQUNa5dlVoNaHNm_fFSG_PUdYdIukTTVvH87zVP7NMT9NJn2ro2Qcfr4NrJp8yT695dZXvu4R9cx9d93Qa8bzxU9jWJ1Ca8CdMOrLfdH1ijDDrwbrREfF10YI281gT6vAWTb-V9oOpMNp1NCVz8lvp2OUaIHqlUks0iszjF3xNfXTFKvr9kt5M_9DtjQWPXYT4NNy3BbL5gyCFGXV-qKwzm0fR6RsmtH-D8-Ojs-7Db9HToOlGoCqWhiKIfvJfC8ajQ2_NxUOCty6VTMnjugy2U0wXGkTqiwrEhBq9R9XDrc5d9hBWcevgETKkYZV5yYfOYKyFQ6DzHKy5LW7oot6HXrqT5laA7DF8ioiYeG-KxaXi8DfrxepuqPjOJqcGJyV6g3W2FwzRaYGHQOxJaosrkn1_x6gN4OzwbnZrTk_HPHVijoTpfWOzCSjW_C3voFVV2vxb7vznCANk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkBAcCiygUl4-cN1l7Y1NcuS14rnqoUi9WfGrrCi7aBPUwq9nJk5WUIR64JbEmsgZT-Zhz3wDsNc7yJw0hPKZYriamFy1s563tNvUzRNhgqkqvK8H6uwmufgpm2zCok6rpBg6RKCISlfTz_3gQpMRt0_ZcJmSEqM7gY_Q5inqWzun6JCPqji6g6ky5rHpDpG0iaYp4vnoNW_M0xvw0nfKurJA_SUwzdxj4sld57E0Hfv8D6zjpz5uGb7U_ik7jAK1AjN-1IKlpvcDq1VBCxavp3ivRQsWyGeNkM-rMDzKnzzVZrLReETQ4vfUtcsywvOIhZJsHJjBGf4ZuvKWUer9L3Y__EuHGQWN3fnJyP9uCMaTgiGDGPV8KW8xlEfD6xiltq7BTf_0x_FZu-7o0LYiVSXKQhpE1zsnheVBoa_nwkGKtzaRVknvuPMmVTZLMYrMAqob44N3GSoeblxie-swi1P3X4EpFYJMci5MEhIlBIqc43jFZW5yG-QGdJqF1A8RuEPzKR5q5LEmHuuaxxuQvV5uXVY7JiG2N9G9_9BuNbKhax1QaPSNRCZRYfJvn3j1Lsx_P-nrq_PB5SYs0EiVLCy2YLacPPptdIlKs1MJ_QsO6v9u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+nonparametric+estimation+of+bandwidth+using+mixtures+of+kernel+estimators+for+length-biased+data&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Rahnamay+Kordasiabi%2C+S.&rft.au=Khazaei%2C+S.&rft.date=2020-07-02&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=90&rft.issue=10&rft.spage=1849&rft.epage=1874&rft_id=info:doi/10.1080%2F00949655.2020.1750613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2020_1750613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |