A Study of an Iteratively-Regularized Simplified Landweber Iteration for Nonlinear Inverse Problems in Hilbert Spaces
Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form of Landweber method, say, an iteratively-regularized simplified Landweber iteration for solving nonlinear ill-posed problems. We study a deta...
Saved in:
Published in | Numerical functional analysis and optimization Vol. 44; no. 7; pp. 619 - 652 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
19.05.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form of Landweber method, say, an iteratively-regularized simplified Landweber iteration for solving nonlinear ill-posed problems. We study a detailed convergence analysis of the method under standard conditions on the nonlinearity and the rate of convergence under a Hölder-type source condition. Finally, numerical simulations are performed to validate the performance of the method. |
---|---|
AbstractList | Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form of Landweber method, say, an iteratively-regularized simplified Landweber iteration for solving nonlinear ill-posed problems. We study a detailed convergence analysis of the method under standard conditions on the nonlinearity and the rate of convergence under a Hölder-type source condition. Finally, numerical simulations are performed to validate the performance of the method. |
Author | Dixit, Sharad Kumar |
Author_xml | – sequence: 1 givenname: Sharad Kumar orcidid: 0000-0003-2656-4413 surname: Dixit fullname: Dixit, Sharad Kumar organization: Department of Mathematics, GLA University Mathura |
BookMark | eNp9kE1LAzEQhoMoWD9-ghDwvJpsuml6U8QvKCpWz2GaTCSSJjXZVeqvN6V69TIzDM87A88B2Y0pIiEnnJ1xptg541KwToqzlrW1cCU6znbIiHeibdqxnOyS0YZpNtA-OSjlnTEm2qkakeGSzvvBrmlyFCK97zFD7z8xrJtnfBsCZP-Nls79chW883WcQbRfuMD8B6dIXcr0IcXgI0Ldx0_MBelTTouAy0J9pHc-1EhP5yswWI7InoNQ8Pi3H5LXm-uXq7tm9nh7f3U5a0yrZN-MlbBKiakBaYwUDozqDMJUSis7BGYB1ESqrhMSxhMua8pJdAtnGaB1Y3FITrd3Vzl9DFh6_Z6GHOtL3So-UXLKmahUt6VMTqVkdHqV_RLyWnOmN4b1n2G9Max_DdfcxTbnYxWwhK-Ug9U9rEPKLkM0vmjx_4kfrLyF0w |
Cites_doi | 10.1007/978-94-009-1740-8 10.1137/0730091 10.1007/s40819-017-0395-4 10.1515/cmam-2018-0165 10.1007/s002110050158 10.1007/s002459900081 10.1090/S0025-5718-08-02149-2 10.1515/cmam-2017-0045 10.1515/jiip.1996.4.5.381 10.1515/cmam-2016-0044 10.1088/0266-5611/5/4/007 10.1007/s002110050487 10.1515/9783110208276 10.1007/s00211-009-0275-x 10.1080/00036811.2017.1386785 10.1088/0266-5611/16/5/322 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/01630563.2023.2183510 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-2467 |
EndPage | 652 |
ExternalDocumentID | 10_1080_01630563_2023_2183510 2183510 |
Genre | Research Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c286t-483d8839ca6cc63fac85cea966d65ea0daa87685536a4716c28f6efbfd0aedf43 |
ISSN | 0163-0563 |
IngestDate | Fri Jul 25 07:12:17 EDT 2025 Tue Jul 01 04:09:18 EDT 2025 Wed Dec 25 09:04:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-483d8839ca6cc63fac85cea966d65ea0daa87685536a4716c28f6efbfd0aedf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2656-4413 |
PQID | 2817869103 |
PQPubID | 2045235 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2817869103 crossref_primary_10_1080_01630563_2023_2183510 informaworld_taylorfrancis_310_1080_01630563_2023_2183510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-19 |
PublicationDateYYYYMMDD | 2023-05-19 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Numerical functional analysis and optimization |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 Bakushinskii A. B. (CIT0014) 1993; 330 CIT0001 CIT0012 CIT0011 Bakushinskii A. B. (CIT0013) 1992; 32 CIT0003 CIT0002 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 |
References_xml | – ident: CIT0012 doi: 10.1007/978-94-009-1740-8 – ident: CIT0017 doi: 10.1137/0730091 – ident: CIT0009 doi: 10.1007/s40819-017-0395-4 – ident: CIT0015 doi: 10.1515/cmam-2018-0165 – ident: CIT0008 doi: 10.1007/s002110050158 – ident: CIT0011 doi: 10.1007/s002459900081 – ident: CIT0004 doi: 10.1090/S0025-5718-08-02149-2 – ident: CIT0006 doi: 10.1515/cmam-2017-0045 – ident: CIT0007 doi: 10.1515/jiip.1996.4.5.381 – ident: CIT0005 doi: 10.1515/cmam-2016-0044 – ident: CIT0001 doi: 10.1088/0266-5611/5/4/007 – ident: CIT0010 doi: 10.1007/s002110050487 – volume: 32 start-page: 1353 year: 1992 ident: CIT0013 publication-title: Comput. Math. Math. Phys – ident: CIT0003 doi: 10.1515/9783110208276 – ident: CIT0002 doi: 10.1007/s00211-009-0275-x – ident: CIT0016 doi: 10.1080/00036811.2017.1386785 – ident: CIT0018 doi: 10.1088/0266-5611/16/5/322 – volume: 330 start-page: 282 year: 1993 ident: CIT0014 publication-title: Soviet Math. Dokl |
SSID | ssj0003298 |
Score | 2.3029516 |
Snippet | Lanweber-type methods are a well-known regularization methods to solve linear and nonlinear ill-posed problems. In this article, we consider a simplified form... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 619 |
SubjectTerms | Convergence Hilbert space Ill posed problems Inverse problems Iterative methods Iterative regularization methods Morozov-type stopping rule nonlinear ill-posed operator equations nonlinear operators on Hilbert spaces Nonlinearity Primary Mathematics subject index: 47A52 Regularization Secondary Mathematics subject index: 65F22 source conditions |
Title | A Study of an Iteratively-Regularized Simplified Landweber Iteration for Nonlinear Inverse Problems in Hilbert Spaces |
URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2023.2183510 https://www.proquest.com/docview/2817869103 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoFOQDt1VWu07sOMcVDy2I7gFaUXGJHD-kSCVbZbMS7bV_nPErzdLyKJcoihLHyXyeGY_H3yD0OpOUFQIkoHie29ANT4QyVWIyTTKaap67cj6HK7Y8zj6e0JPR6HKQtbTtqqm8uHFfyf9IFa6BXO0u2VtItm8ULsA5yBeOIGE4_pOMFy4N0K2RwzD94AiSQXudniefXYn5tr6w_mRts8aN9TU_iUaB3tRtvDnkGa48YYZoHe9Gu9F2A4EtNOOyZZe1JcLqJl_ObP7W0J1dbf2Cz-nE2scQVhSR58TG5Negkr6HvZ6901z_qJ3ud2zRauLSvIfhB-KS_YKSCxFJuxBMg5bSUYuShGS-zkZUs57mMcApH-hMFprz5pd5Qttrmj2kQsLb7MumtitT697RkBW7w6T9i4Xr8w7nkRA1NFPaZsrQzB20R2CuQcZob7F8--1rb9BT4koq918aN4JZivab-rPj4uwQ4F4z-M6LOXqA7ofpB154LD1EI908QvcOe-7ezWO0XWCHKrw2WDT4N6jCV6jCPapwjyoMvcE9qnBAFY6ownWDA6qwR9UTdPz-3dGbZRKKcySScNbZILTi4F1LwaRkqRGSU6kFzJ4Vo1rMlBBgaDmlKRPgADF4yjBtKqNmQiuTpU_RuFk3-hnCMleVrXqj8mKWzQ2p5rJIC1ZRyQuV6tk-msb_WZ55Dpbyj5LcR8Xwr5edC34ZX6mmTP_y7EEUURmG-qYkfJ5zBp51-vy2fXmB7l4NmwM07tqtfgl-bFe9Cjj7Cc2smTQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO2LHB64JSRw7zrFCVC20FQIq9WY5XqQKlFZteqBfjycLYhHiwDXJWI6XmfHo-T2ErmJFWSrdDGieJFC64Z7UNvNsbKKYEsOTUs6nP2CdYXw3oqNPd2EAVglnaFsRRZS-GjY3FKMbSNy1S1Mg8yU-aH_7EOQp3LJaoylLQMWABIMPb0yiUg8XTDywaW7x_NbMl_j0hb30h7cuQ1B7G6mm8xXy5MVfFJmvlt94Hf_3dztoq85QcataUrtoxeR7aLP_Qe8630eLFgb84RueWCxz3C2ZmZ3bfH3zHktt-9l4aTR-GgNc3bokF_dcd5zDNrPm40mO3T_jQdVF6Z7nABAx-KFSuJnjcY47Y2DgKvDTFIBjB2jYvn2-6Xi1foOnIs4KqFNq7hIwJZlSjFipOFVGugOWZtTIQEvpfDGnlDDpYiRzVpYZm1kdSKNtTA7Raj7JzRHCKtEZCKPoJA3i0EZZqFKSsowqnmpigmPkN7MmphVNhwgb9tN6PAWMp6jH8xiln-dWFGV9xFZiJoL8YXvWLARR7_i5iHiYcOaSL3Lyj6Yv0Xrnud8Tve7g_hRtwCuAKoTpGVotZgtz7jKgIrsol_g782r5OA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IilgA9cE5I4dpwjAqqWpUKUStwsx4tUgdKqTQ_w9XiyIApCHHqNM5bXmbH1_B5C57GiLJVuBjRPEri64Z7UNvNsbKKYEsOTUs7nocc6g_j2hTZowmkNq4QztK2IIkpfDZt7rG2DiLtwWQokvsQH6W8fYjyFR1YrDMjD4RVH0PtyxiQq5XDBxAOb5hHPX9XMhac58tJfzrqMQO1NlDVtr4Anr_6syHz18YPWcaHObaGNOj_Fl9WC2kZLJt9B6w9f5K7TXTS7xIA-fMcji2WOuyUvs3Oab-_eU6lsPxl-GI37QwCrW5fi4nvXGueuzaT5eZRj12Xcq1oo3fcc4CEGP1b6NlM8zHFnCPxbBe6PATa2hwbtm-erjlerN3gq4qyAW0rNXfqlJFOKESsVp8pId7zSjBoZaCmdJ-aUEiZdhGTOyjJjM6sDabSNyT5azke5OUBYJToDWRSdpEEc2igLVUpSllHFU01McIj8ZtLEuCLpEGHDfVqPp4DxFPV4HqL0-9SKorwdsZWUiSD_2LaadSDq_T4VEQ8TzlzqRY4WqPoMrT5et8V9t3d3jNagBHAKYdpCy8VkZk5c-lNkp-UC_wTkCffc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+an+Iteratively-Regularized+Simplified+Landweber+Iteration+for+Nonlinear+Inverse+Problems+in+Hilbert+Spaces&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Dixit%2C+Sharad+Kumar&rft.date=2023-05-19&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=44&rft.issue=7&rft.spage=619&rft.epage=652&rft_id=info:doi/10.1080%2F01630563.2023.2183510&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01630563_2023_2183510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |