Impact of collision models on the physical properties and the stability of lattice Boltzmann methods
The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consis...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 378; no. 2175; p. 20190397 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
10.07.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed.
This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’. |
---|---|
AbstractList | The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed.
This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’. |
Author | Latt, J. Wissocq, G. Coreixas, C. Chopard, B. |
Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0002-0711-9819 surname: Coreixas fullname: Coreixas, C. organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland – sequence: 2 givenname: G. orcidid: 0000-0001-8012-8546 surname: Wissocq fullname: Wissocq, G. organization: CERFACS, 42 Avenue G. Coriolis, 31057, Toulouse Cedex, France – sequence: 3 givenname: B. orcidid: 0000-0002-6638-0945 surname: Chopard fullname: Chopard, B. organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland – sequence: 4 givenname: J. orcidid: 0000-0001-6627-5689 surname: Latt fullname: Latt, J. organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland |
BookMark | eNotkEtPwzAQhC1UJNrClbOPXBL8yMM5QsWjUiUuIHGzHHutGjlxiN1D-PUklMvuSDuaHX0btOpDDwjdUpJT0oj7MSaVM0KbnPCmvkBrWtQ0Y03FVrPmVZGVhH9eoU2MX4RQWpVsjcy-G5ROOFisg_cuutDjLhjwEc8qHQEPxyk6rTwexjDAmBxErHrzd5tfts67NC0BXqXkNODH4NNPp_o5CNIxmHiNLq3yEW7-9xZ9PD-9716zw9vLfvdwyDQTVcqKQhmulGirugawhPGq1NYS2s5TMFMrbhurhWUFmIa1LYeiBFG3xDBlDedbdHfOnZt-nyAm2bmowXvVQzhFyQpaCtYQQWZrfrbqMcQ4gpXD6Do1TpISueCUC0654JQLTv4LNntt9Q |
CitedBy_id | crossref_primary_10_1016_j_camwa_2023_06_002 crossref_primary_10_1063_5_0098032 crossref_primary_10_1016_j_amc_2023_128123 crossref_primary_10_1016_j_compfluid_2023_105833 crossref_primary_10_1016_j_compfluid_2021_104946 crossref_primary_10_1134_S0965542523060106 crossref_primary_10_1371_journal_pone_0250306 crossref_primary_10_1103_PhysRevE_104_035308 crossref_primary_10_1103_PhysRevE_108_065305 crossref_primary_10_1098_rsta_2020_0405 crossref_primary_10_1103_PhysRevE_105_045312 crossref_primary_10_1063_5_0135516 crossref_primary_10_31857_S0044466923060108 crossref_primary_10_1103_PhysRevE_108_025308 crossref_primary_10_1016_j_cma_2022_115756 crossref_primary_10_1088_1402_4896_ac3cf8 crossref_primary_10_1103_PhysRevE_107_025303 crossref_primary_10_1002_fld_5085 crossref_primary_10_1016_j_compfluid_2021_104970 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123259 crossref_primary_10_1063_5_0175908 crossref_primary_10_1155_2022_1082386 crossref_primary_10_1615_ComputThermalScien_2023045600 crossref_primary_10_1063_5_0027986 crossref_primary_10_3390_math10213928 crossref_primary_10_1063_5_0026316 crossref_primary_10_3390_computation10100171 crossref_primary_10_1016_j_jocs_2021_101353 crossref_primary_10_1063_5_0040850 crossref_primary_10_1103_PhysRevE_103_053308 crossref_primary_10_1103_PhysRevE_102_053305 crossref_primary_10_1063_5_0120201 crossref_primary_10_3390_en13195146 crossref_primary_10_1103_PhysRevFluids_8_073603 crossref_primary_10_1098_rsta_2019_0559 crossref_primary_10_1134_S1995080222070149 crossref_primary_10_4236_ojfd_2021_111003 crossref_primary_10_3389_fphy_2022_875628 |
Cites_doi | 10.1016/j.jcp.2020.109645 10.1017/S0305004100023197 10.1103/PhysRevE.60.3380 10.1103/PhysRevE.64.031203 10.1103/PhysRev.94.511 10.1016/j.compfluid.2018.03.084 10.1016/j.jcp.2017.07.004 10.1016/j.jfluidstructs.2018.09.007 10.1140/epjst/e2009-01011-1 10.1002/fld.3767 10.1142/S0129183107010887 10.1103/PhysRevE.55.R21 10.1016/j.camwa.2013.08.033 10.1142/8806 10.1103/PhysRevE.67.066709 10.1080/14685248.2018.1540879 10.1016/j.jcp.2018.12.015 10.1103/PhysRevE.100.063301 10.1016/j.physa.2005.09.012 10.1103/PhysRevE.88.033305 10.1103/PhysRevE.99.063305 10.1209/0295-5075/81/34005 10.1103/PhysRevE.68.036706 10.1209/0295-5075/21/3/001 10.1103/PhysRevE.95.053304 10.1016/j.compfluid.2016.03.009 10.1007/s10955-004-2264-x 10.1103/PhysRevE.73.066705 10.1016/j.compfluid.2021.104867 10.1063/1.5039479 10.1103/PhysRevE.48.4823 10.1504/PCFD.2008.018081 10.1142/S0129183114500466 10.1103/PhysRevE.100.013301 10.1098/rspa.2000.0689 10.1016/j.compfluid.2018.01.015 10.1103/PhysRevE.59.4366 10.1007/s10955-011-0208-9 10.1023/A:1010414013942 10.1103/PhysRevE.74.046709 10.1103/PhysRevE.100.033305 10.1016/j.jcp.2017.02.043 10.1016/j.crme.2015.07.010 10.1016/j.combustflame.2019.09.029 10.1016/j.camwa.2015.05.001 10.1103/PhysRevE.82.046709 10.1142/S0129183107010784 10.1016/j.physa.2009.12.032 10.1103/PhysRevLett.119.240602 10.1103/PhysRevE.96.033306 10.1103/PhysRevE.100.043308 10.1103/PhysRevLett.81.6 10.1103/PhysRevE.94.043304 10.1016/j.jcp.2019.05.031 10.1098/rsta.2019.0399 10.1103/PhysRevE.78.066701 10.1103/PhysRevE.56.2243 10.1103/PhysRevE.79.066702 10.1016/j.camwa.2020.03.022 10.1209/epl/i2003-00496-6 10.1016/j.camwa.2018.03.015 10.1006/jcph.1997.5843 10.1103/PhysRevE.76.016702 10.1016/j.jcp.2017.05.040 10.1016/j.physa.2005.09.008 10.1209/epl/i1998-00255-3 10.1063/1.1597472 10.1002/fld.4716 10.1063/1.4866146 10.1006/jcph.1996.0016 10.1016/j.compfluid.2017.07.005 10.1103/PhysRevE.91.033313 10.1006/jcph.1998.6057 10.1007/978-3-030-27607-2_1 10.1006/jcph.1995.1205 10.1103/PhysRevE.69.035701 10.1098/rsta.2001.0955 10.1142/S0219876218500871 10.1142/S0129183119500748 10.1103/PhysRevE.73.047701 10.1063/1.4981227 10.1103/PhysRevE.50.2776 10.1103/PhysRevE.96.023311 10.1016/j.jcp.2008.10.021 10.1103/PhysRevE.61.6546 10.1146/annurev-fluid-122414-034259 10.1016/j.camwa.2011.08.047 10.1016/j.ijheatmasstransfer.2014.04.032 10.1209/0295-5075/90/50002 10.1051/proc/201552001 10.1016/j.jcp.2010.09.024 10.1016/j.camwa.2009.08.051 10.1103/PhysRevE.89.043302 10.1103/PhysRevE.78.016704 10.1103/PhysRevE.77.026707 10.1016/j.jcp.2009.03.030 10.1007/s10955-010-9969-9 10.1007/BF01341755 10.1103/PhysRevA.10.1355 10.1016/j.matcom.2006.05.017 10.1002/fld.594 10.1002/fld.4208 10.56021/9781421407944 10.1016/j.camwa.2009.02.008 10.1142/S0129183117501418 10.1016/j.jcp.2012.07.005 10.1016/j.jcp.2016.12.017 10.1103/PhysRevE.65.036309 10.1007/978-3-319-44649-3 10.1016/j.jcp.2013.11.021 10.1002/fld.4250 10.1016/j.physa.2007.03.037 10.1103/PhysRevE.68.016701 10.4208/cicp.2014.m394 10.1002/cpa.3160020403 10.1121/1.5006900 10.1093/oso/9780199592357.001.0001 10.1017/S0022112005008153 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1098/rsta.2019.0397 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
EISSN | 1471-2962 |
EndPage | 20190397 |
ExternalDocumentID | 10_1098_rsta_2019_0397 |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE AAYXX ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACIWK ACMTB ACNCT ACQIA ACTMH ADACV ADBBV ADODI AEUPB AEXZC AFVYC ALMA_UNASSIGNED_HOLDINGS ALMYZ BTFSW CITATION DCCCD DIK DQDLB DSRWC EBS ECEWR F5P H13 HH5 HQ6 HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 7X8 |
ID | FETCH-LOGICAL-c286t-44ad3aa8b677eef02365cff01bcff82d7a3f9fc8f24ed92bb3e45e87b0d2afd33 |
ISSN | 1364-503X |
IngestDate | Fri Oct 25 09:00:37 EDT 2024 Thu Sep 26 19:33:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2175 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-44ad3aa8b677eef02365cff01bcff82d7a3f9fc8f24ed92bb3e45e87b0d2afd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0711-9819 0000-0001-8012-8546 0000-0001-6627-5689 0000-0002-6638-0945 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0397 |
PQID | 2415829080 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2415829080 crossref_primary_10_1098_rsta_2019_0397 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-10 |
PublicationDateYYYYMMDD | 2020-07-10 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationYear | 2020 |
References | e_1_3_7_83_2 e_1_3_7_60_2 e_1_3_7_87_2 e_1_3_7_22_2 e_1_3_7_41_2 e_1_3_7_64_2 e_1_3_7_26_2 e_1_3_7_45_2 e_1_3_7_68_2 Wolf-Gladrow DA (e_1_3_7_63_2) 2004 e_1_3_7_49_2 e_1_3_7_103_2 e_1_3_7_126_2 e_1_3_7_107_2 e_1_3_7_122_2 Blazek J (e_1_3_7_59_2) 2015 e_1_3_7_91_2 e_1_3_7_119_2 e_1_3_7_72_2 e_1_3_7_99_2 e_1_3_7_30_2 e_1_3_7_76_2 e_1_3_7_11_2 e_1_3_7_53_2 e_1_3_7_95_2 e_1_3_7_34_2 e_1_3_7_130_2 e_1_3_7_15_2 e_1_3_7_38_2 e_1_3_7_19_2 e_1_3_7_4_2 e_1_3_7_111_2 e_1_3_7_134_2 e_1_3_7_8_2 e_1_3_7_115_2 e_1_3_7_61_2 e_1_3_7_65_2 e_1_3_7_88_2 e_1_3_7_42_2 e_1_3_7_23_2 e_1_3_7_69_2 e_1_3_7_46_2 e_1_3_7_121_2 e_1_3_7_27_2 e_1_3_7_102_2 e_1_3_7_129_2 e_1_3_7_106_2 e_1_3_7_125_2 e_1_3_7_9_2 e_1_3_7_50_2 e_1_3_7_73_2 e_1_3_7_96_2 e_1_3_7_31_2 e_1_3_7_54_2 e_1_3_7_77_2 e_1_3_7_92_2 e_1_3_7_12_2 e_1_3_7_35_2 e_1_3_7_16_2 e_1_3_7_39_2 e_1_3_7_110_2 e_1_3_7_114_2 e_1_3_7_137_2 e_1_3_7_118_2 e_1_3_7_133_2 e_1_3_7_5_2 d’Humières D (e_1_3_7_14_2) 1992; 159 e_1_3_7_109_2 e_1_3_7_62_2 e_1_3_7_81_2 e_1_3_7_20_2 e_1_3_7_43_2 e_1_3_7_66_2 e_1_3_7_85_2 e_1_3_7_24_2 e_1_3_7_47_2 e_1_3_7_89_2 e_1_3_7_28_2 e_1_3_7_120_2 e_1_3_7_128_2 e_1_3_7_105_2 e_1_3_7_124_2 e_1_3_7_51_2 e_1_3_7_97_2 Golub GH (e_1_3_7_57_2) 2013 e_1_3_7_70_2 e_1_3_7_55_2 Axelsson O (e_1_3_7_56_2) 1996 e_1_3_7_93_2 e_1_3_7_32_2 e_1_3_7_74_2 e_1_3_7_13_2 e_1_3_7_36_2 e_1_3_7_132_2 e_1_3_7_17_2 e_1_3_7_2_2 e_1_3_7_113_2 e_1_3_7_6_2 e_1_3_7_117_2 e_1_3_7_136_2 e_1_3_7_108_2 e_1_3_7_40_2 Hirsch C (e_1_3_7_58_2) 2007 e_1_3_7_82_2 e_1_3_7_44_2 e_1_3_7_86_2 e_1_3_7_21_2 Hosseini SA (e_1_3_7_78_2) 2020; 378 e_1_3_7_48_2 e_1_3_7_25_2 e_1_3_7_67_2 e_1_3_7_29_2 Huang K (e_1_3_7_80_2) 1987 Von Neumann J (e_1_3_7_101_2) 1996 e_1_3_7_127_2 e_1_3_7_100_2 e_1_3_7_123_2 e_1_3_7_104_2 e_1_3_7_90_2 e_1_3_7_71_2 e_1_3_7_98_2 e_1_3_7_10_2 e_1_3_7_33_2 e_1_3_7_52_2 e_1_3_7_75_2 e_1_3_7_94_2 e_1_3_7_37_2 e_1_3_7_79_2 Chapman S (e_1_3_7_84_2) 1970 e_1_3_7_131_2 e_1_3_7_18_2 e_1_3_7_112_2 e_1_3_7_3_2 e_1_3_7_116_2 e_1_3_7_135_2 e_1_3_7_7_2 |
References_xml | – ident: e_1_3_7_106_2 doi: 10.1016/j.jcp.2020.109645 – ident: e_1_3_7_129_2 doi: 10.1017/S0305004100023197 – ident: e_1_3_7_112_2 doi: 10.1103/PhysRevE.60.3380 – ident: e_1_3_7_105_2 doi: 10.1103/PhysRevE.64.031203 – ident: e_1_3_7_4_2 doi: 10.1103/PhysRev.94.511 – ident: e_1_3_7_73_2 doi: 10.1016/j.compfluid.2018.03.084 – ident: e_1_3_7_29_2 doi: 10.1016/j.jcp.2017.07.004 – ident: e_1_3_7_110_2 doi: 10.1016/j.jfluidstructs.2018.09.007 – ident: e_1_3_7_20_2 doi: 10.1140/epjst/e2009-01011-1 – ident: e_1_3_7_131_2 doi: 10.1002/fld.3767 – ident: e_1_3_7_16_2 doi: 10.1142/S0129183107010887 – ident: e_1_3_7_13_2 – volume-title: The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases year: 1970 ident: e_1_3_7_84_2 contributor: fullname: Chapman S – ident: e_1_3_7_107_2 doi: 10.1103/PhysRevE.55.R21 – ident: e_1_3_7_21_2 doi: 10.1016/j.camwa.2013.08.033 – ident: e_1_3_7_5_2 doi: 10.1142/8806 – ident: e_1_3_7_108_2 doi: 10.1103/PhysRevE.67.066709 – ident: e_1_3_7_37_2 doi: 10.1080/14685248.2018.1540879 – ident: e_1_3_7_76_2 doi: 10.1016/j.jcp.2018.12.015 – ident: e_1_3_7_77_2 doi: 10.1103/PhysRevE.100.063301 – ident: e_1_3_7_65_2 doi: 10.1016/j.physa.2005.09.012 – ident: e_1_3_7_115_2 doi: 10.1103/PhysRevE.88.033305 – ident: e_1_3_7_12_2 doi: 10.1103/PhysRevE.99.063305 – ident: e_1_3_7_46_2 doi: 10.1209/0295-5075/81/34005 – ident: e_1_3_7_62_2 doi: 10.1103/PhysRevE.68.036706 – ident: e_1_3_7_43_2 doi: 10.1209/0295-5075/21/3/001 – ident: e_1_3_7_55_2 doi: 10.1103/PhysRevE.95.053304 – ident: e_1_3_7_117_2 doi: 10.1016/j.compfluid.2016.03.009 – volume-title: Iterative solution methods year: 1996 ident: e_1_3_7_56_2 contributor: fullname: Axelsson O – ident: e_1_3_7_64_2 doi: 10.1007/s10955-004-2264-x – ident: e_1_3_7_19_2 doi: 10.1103/PhysRevE.73.066705 – ident: e_1_3_7_95_2 doi: 10.1016/j.compfluid.2021.104867 – ident: e_1_3_7_118_2 doi: 10.1063/1.5039479 – ident: e_1_3_7_30_2 doi: 10.1103/PhysRevE.48.4823 – ident: e_1_3_7_51_2 doi: 10.1504/PCFD.2008.018081 – ident: e_1_3_7_18_2 doi: 10.1142/S0129183114500466 – ident: e_1_3_7_24_2 doi: 10.1103/PhysRevE.100.013301 – volume-title: Lattice-gas cellular automata and lattice Boltzmann models: an introduction year: 2004 ident: e_1_3_7_63_2 contributor: fullname: Wolf-Gladrow DA – ident: e_1_3_7_89_2 doi: 10.1098/rspa.2000.0689 – ident: e_1_3_7_41_2 doi: 10.1016/j.compfluid.2018.01.015 – ident: e_1_3_7_85_2 doi: 10.1103/PhysRevE.59.4366 – ident: e_1_3_7_39_2 doi: 10.1007/s10955-011-0208-9 – ident: e_1_3_7_31_2 doi: 10.1023/A:1010414013942 – ident: e_1_3_7_127_2 doi: 10.1103/PhysRevE.74.046709 – ident: e_1_3_7_6_2 doi: 10.1103/PhysRevE.100.033305 – ident: e_1_3_7_102_2 doi: 10.1016/j.jcp.2017.02.043 – ident: e_1_3_7_71_2 doi: 10.1016/j.crme.2015.07.010 – ident: e_1_3_7_96_2 doi: 10.1016/j.combustflame.2019.09.029 – ident: e_1_3_7_27_2 doi: 10.1016/j.camwa.2015.05.001 – ident: e_1_3_7_114_2 doi: 10.1103/PhysRevE.82.046709 – ident: e_1_3_7_103_2 doi: 10.1142/S0129183107010784 – ident: e_1_3_7_87_2 doi: 10.1016/j.physa.2009.12.032 – ident: e_1_3_7_90_2 doi: 10.1103/PhysRevLett.119.240602 – ident: e_1_3_7_35_2 doi: 10.1103/PhysRevE.96.033306 – ident: e_1_3_7_49_2 doi: 10.1103/PhysRevE.100.043308 – ident: e_1_3_7_88_2 doi: 10.1103/PhysRevLett.81.6 – ident: e_1_3_7_7_2 doi: 10.1103/PhysRevE.94.043304 – ident: e_1_3_7_94_2 doi: 10.1016/j.jcp.2019.05.031 – volume: 378 start-page: 20190399 year: 2020 ident: e_1_3_7_78_2 article-title: Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2019.0399 contributor: fullname: Hosseini SA – ident: e_1_3_7_17_2 doi: 10.1103/PhysRevE.78.066701 – ident: e_1_3_7_61_2 doi: 10.1103/PhysRevE.56.2243 – ident: e_1_3_7_47_2 doi: 10.1103/PhysRevE.79.066702 – ident: e_1_3_7_130_2 doi: 10.1016/j.camwa.2020.03.022 – ident: e_1_3_7_135_2 doi: 10.1209/epl/i2003-00496-6 – ident: e_1_3_7_122_2 doi: 10.1016/j.camwa.2018.03.015 – volume-title: Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics year: 2007 ident: e_1_3_7_58_2 contributor: fullname: Hirsch C – ident: e_1_3_7_134_2 doi: 10.1006/jcph.1997.5843 – ident: e_1_3_7_86_2 doi: 10.1103/PhysRevE.76.016702 – ident: e_1_3_7_28_2 doi: 10.1016/j.jcp.2017.05.040 – ident: e_1_3_7_33_2 doi: 10.1016/j.physa.2005.09.008 – ident: e_1_3_7_45_2 doi: 10.1209/epl/i1998-00255-3 – ident: e_1_3_7_99_2 doi: 10.1063/1.1597472 – ident: e_1_3_7_75_2 doi: 10.1002/fld.4716 – ident: e_1_3_7_136_2 doi: 10.1063/1.4866146 – ident: e_1_3_7_60_2 doi: 10.1006/jcph.1996.0016 – ident: e_1_3_7_97_2 doi: 10.1016/j.compfluid.2017.07.005 – ident: e_1_3_7_116_2 doi: 10.1103/PhysRevE.91.033313 – ident: e_1_3_7_123_2 doi: 10.1006/jcph.1998.6057 – ident: e_1_3_7_42_2 doi: 10.1007/978-3-030-27607-2_1 – volume-title: Theory of self-reproducing automata year: 1996 ident: e_1_3_7_101_2 contributor: fullname: Von Neumann J – ident: e_1_3_7_133_2 doi: 10.1006/jcph.1995.1205 – ident: e_1_3_7_50_2 doi: 10.1103/PhysRevE.69.035701 – ident: e_1_3_7_15_2 doi: 10.1098/rsta.2001.0955 – ident: e_1_3_7_74_2 doi: 10.1142/S0219876218500871 – ident: e_1_3_7_98_2 doi: 10.1142/S0129183119500748 – ident: e_1_3_7_126_2 doi: 10.1103/PhysRevE.73.047701 – ident: e_1_3_7_23_2 doi: 10.1063/1.4981227 – ident: e_1_3_7_44_2 doi: 10.1103/PhysRevE.50.2776 – ident: e_1_3_7_132_2 doi: 10.1103/PhysRevE.96.023311 – ident: e_1_3_7_68_2 doi: 10.1016/j.jcp.2008.10.021 – ident: e_1_3_7_9_2 doi: 10.1103/PhysRevE.61.6546 – ident: e_1_3_7_100_2 doi: 10.1146/annurev-fluid-122414-034259 – ident: e_1_3_7_124_2 doi: 10.1016/j.camwa.2011.08.047 – ident: e_1_3_7_128_2 doi: 10.1016/j.ijheatmasstransfer.2014.04.032 – ident: e_1_3_7_52_2 doi: 10.1209/0295-5075/90/50002 – volume-title: Computational fluid dynamics: Principles and applications year: 2015 ident: e_1_3_7_59_2 contributor: fullname: Blazek J – ident: e_1_3_7_38_2 – ident: e_1_3_7_11_2 doi: 10.1051/proc/201552001 – ident: e_1_3_7_54_2 – ident: e_1_3_7_120_2 doi: 10.1016/j.jcp.2010.09.024 – ident: e_1_3_7_91_2 doi: 10.1016/j.camwa.2009.08.051 – ident: e_1_3_7_53_2 doi: 10.1103/PhysRevE.89.043302 – ident: e_1_3_7_93_2 doi: 10.1103/PhysRevE.78.016704 – ident: e_1_3_7_26_2 doi: 10.1103/PhysRevE.100.033305 – ident: e_1_3_7_66_2 doi: 10.1103/PhysRevE.77.026707 – ident: e_1_3_7_67_2 doi: 10.1016/j.jcp.2009.03.030 – ident: e_1_3_7_69_2 doi: 10.1007/s10955-010-9969-9 – ident: e_1_3_7_111_2 doi: 10.1007/BF01341755 – ident: e_1_3_7_104_2 doi: 10.1103/PhysRevA.10.1355 – ident: e_1_3_7_32_2 doi: 10.1016/j.matcom.2006.05.017 – ident: e_1_3_7_79_2 – ident: e_1_3_7_119_2 doi: 10.1002/fld.594 – ident: e_1_3_7_81_2 – ident: e_1_3_7_40_2 doi: 10.1002/fld.4208 – volume-title: Matrix computations year: 2013 ident: e_1_3_7_57_2 doi: 10.56021/9781421407944 contributor: fullname: Golub GH – ident: e_1_3_7_25_2 – ident: e_1_3_7_125_2 doi: 10.1016/j.camwa.2009.02.008 – ident: e_1_3_7_72_2 doi: 10.1142/S0129183117501418 – volume-title: Statistical mechanics year: 1987 ident: e_1_3_7_80_2 contributor: fullname: Huang K – ident: e_1_3_7_70_2 doi: 10.1016/j.jcp.2012.07.005 – ident: e_1_3_7_92_2 doi: 10.1016/j.jcp.2016.12.017 – ident: e_1_3_7_82_2 – ident: e_1_3_7_10_2 doi: 10.1103/PhysRevE.65.036309 – ident: e_1_3_7_3_2 doi: 10.1007/978-3-319-44649-3 – ident: e_1_3_7_48_2 doi: 10.1016/j.jcp.2013.11.021 – ident: e_1_3_7_121_2 doi: 10.1002/fld.4250 – volume: 159 start-page: 450 year: 1992 ident: e_1_3_7_14_2 article-title: Generalized lattice-Boltzmann equations publication-title: Prog. Astronaut. Aeronaut. contributor: fullname: d’Humières D – ident: e_1_3_7_109_2 doi: 10.1016/j.physa.2007.03.037 – ident: e_1_3_7_113_2 doi: 10.1103/PhysRevE.68.016701 – ident: e_1_3_7_22_2 doi: 10.4208/cicp.2014.m394 – ident: e_1_3_7_137_2 doi: 10.1002/cpa.3160020403 – ident: e_1_3_7_8_2 – ident: e_1_3_7_36_2 doi: 10.1121/1.5006900 – ident: e_1_3_7_2_2 doi: 10.1093/oso/9780199592357.001.0001 – ident: e_1_3_7_83_2 doi: 10.1017/S0022112005008153 – ident: e_1_3_7_34_2 |
SSID | ssj0011652 |
Score | 2.5360165 |
Snippet | The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 20190397 |
Title | Impact of collision models on the physical properties and the stability of lattice Boltzmann methods |
URI | https://search.proquest.com/docview/2415829080 |
Volume | 378 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJ7QGyAGDcZCQnQlJE5cS6PMG0asA2QWtG3yI5tCWkkY0kltL_Gn-Mc23FSwcPgJXLd1qnyfT0-PldCXsgEdATYCaKMqTJKuY6j0pRppGvDCpnlSlmD2-lZdrxIPyz5cjb7NYlaWvVyr776a17J_6AKc4ArZsn-A7JhUZiAMeALV0AYrtfC-H1IcUQ4bZa4a20z-AC84QKzrdDofonVU0PMJOiFNjLW-tjPRY9hcLvv2vP-6rtoGt9buptqr5-Hvgd2yX5sNd4NoQbOGjGEgqL_wbYL2UOZhPe25vzTUCrWdhsIP3KIJNVjjcRdv0MHzf8AW4n-dFlowcD79RuS7Ie18Y_xCq2rJDltLC2mrjBv64CDLVawdG4b7eQz7KURK9cFeJIXE6bCGYtPJTImyycuBtjv8NOpP3aQuMSsCMwqwrg_rIA7fHdaqvvsU3W0ODmp5ofL-Q1yk4GUQ_H68cvowtrPOAtVQos36yuua0HrSoDVbOZ3yR1_JKFvHb-2yEw322RzUqgSXo2Qddvklg0bxtGW3xo6-srXL399jyhHS9oaGmhJHS0pjGAhOiBOR1pSQN6-F2iJC3ha0kBL6ml5nyyODucHx5Fv5hHVrMj6KE2FSoTA_3-utcHGBbw2Jt6XcC2YykViSlMXhqValUzKRIPkKHIZKyaMSpIHZKNpG_2Q0DwV3CiTw0k-T8taypjzhCvJ6oRrntc75OXwcKsLV7OlcrEWRYUwVAhDhTDskOfDs69ArKKvTDS6XXUVKrYYY1DEj67xmcfk9kjXJ2Sjv1zpp6Cs9vKZJcVvJ9idtA |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+collision+models+on+the+physical+properties+and+the+stability+of+lattice+Boltzmann+methods&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Coreixas%2C+C&rft.au=Wissocq%2C+G&rft.au=Chopard%2C+B&rft.au=Latt%2C+J&rft.date=2020-07-10&rft.eissn=1471-2962&rft.volume=378&rft.issue=2175&rft.spage=20190397&rft.epage=20190397&rft_id=info:doi/10.1098%2Frsta.2019.0397&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |