Impact of collision models on the physical properties and the stability of lattice Boltzmann methods

The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consis...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 378; no. 2175; p. 20190397
Main Authors Coreixas, C., Wissocq, G., Chopard, B., Latt, J.
Format Journal Article
LanguageEnglish
Published 10.07.2020
Online AccessGet full text

Cover

Loading…
Abstract The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.
AbstractList The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.
Author Latt, J.
Wissocq, G.
Coreixas, C.
Chopard, B.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0002-0711-9819
  surname: Coreixas
  fullname: Coreixas, C.
  organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
– sequence: 2
  givenname: G.
  orcidid: 0000-0001-8012-8546
  surname: Wissocq
  fullname: Wissocq, G.
  organization: CERFACS, 42 Avenue G. Coriolis, 31057, Toulouse Cedex, France
– sequence: 3
  givenname: B.
  orcidid: 0000-0002-6638-0945
  surname: Chopard
  fullname: Chopard, B.
  organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
– sequence: 4
  givenname: J.
  orcidid: 0000-0001-6627-5689
  surname: Latt
  fullname: Latt, J.
  organization: Department of Computer Science, University of Geneva, 1204 Geneva, Switzerland
BookMark eNotkEtPwzAQhC1UJNrClbOPXBL8yMM5QsWjUiUuIHGzHHutGjlxiN1D-PUklMvuSDuaHX0btOpDDwjdUpJT0oj7MSaVM0KbnPCmvkBrWtQ0Y03FVrPmVZGVhH9eoU2MX4RQWpVsjcy-G5ROOFisg_cuutDjLhjwEc8qHQEPxyk6rTwexjDAmBxErHrzd5tfts67NC0BXqXkNODH4NNPp_o5CNIxmHiNLq3yEW7-9xZ9PD-9716zw9vLfvdwyDQTVcqKQhmulGirugawhPGq1NYS2s5TMFMrbhurhWUFmIa1LYeiBFG3xDBlDedbdHfOnZt-nyAm2bmowXvVQzhFyQpaCtYQQWZrfrbqMcQ4gpXD6Do1TpISueCUC0654JQLTv4LNntt9Q
CitedBy_id crossref_primary_10_1016_j_camwa_2023_06_002
crossref_primary_10_1063_5_0098032
crossref_primary_10_1016_j_amc_2023_128123
crossref_primary_10_1016_j_compfluid_2023_105833
crossref_primary_10_1016_j_compfluid_2021_104946
crossref_primary_10_1134_S0965542523060106
crossref_primary_10_1371_journal_pone_0250306
crossref_primary_10_1103_PhysRevE_104_035308
crossref_primary_10_1103_PhysRevE_108_065305
crossref_primary_10_1098_rsta_2020_0405
crossref_primary_10_1103_PhysRevE_105_045312
crossref_primary_10_1063_5_0135516
crossref_primary_10_31857_S0044466923060108
crossref_primary_10_1103_PhysRevE_108_025308
crossref_primary_10_1016_j_cma_2022_115756
crossref_primary_10_1088_1402_4896_ac3cf8
crossref_primary_10_1103_PhysRevE_107_025303
crossref_primary_10_1002_fld_5085
crossref_primary_10_1016_j_compfluid_2021_104970
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123259
crossref_primary_10_1063_5_0175908
crossref_primary_10_1155_2022_1082386
crossref_primary_10_1615_ComputThermalScien_2023045600
crossref_primary_10_1063_5_0027986
crossref_primary_10_3390_math10213928
crossref_primary_10_1063_5_0026316
crossref_primary_10_3390_computation10100171
crossref_primary_10_1016_j_jocs_2021_101353
crossref_primary_10_1063_5_0040850
crossref_primary_10_1103_PhysRevE_103_053308
crossref_primary_10_1103_PhysRevE_102_053305
crossref_primary_10_1063_5_0120201
crossref_primary_10_3390_en13195146
crossref_primary_10_1103_PhysRevFluids_8_073603
crossref_primary_10_1098_rsta_2019_0559
crossref_primary_10_1134_S1995080222070149
crossref_primary_10_4236_ojfd_2021_111003
crossref_primary_10_3389_fphy_2022_875628
Cites_doi 10.1016/j.jcp.2020.109645
10.1017/S0305004100023197
10.1103/PhysRevE.60.3380
10.1103/PhysRevE.64.031203
10.1103/PhysRev.94.511
10.1016/j.compfluid.2018.03.084
10.1016/j.jcp.2017.07.004
10.1016/j.jfluidstructs.2018.09.007
10.1140/epjst/e2009-01011-1
10.1002/fld.3767
10.1142/S0129183107010887
10.1103/PhysRevE.55.R21
10.1016/j.camwa.2013.08.033
10.1142/8806
10.1103/PhysRevE.67.066709
10.1080/14685248.2018.1540879
10.1016/j.jcp.2018.12.015
10.1103/PhysRevE.100.063301
10.1016/j.physa.2005.09.012
10.1103/PhysRevE.88.033305
10.1103/PhysRevE.99.063305
10.1209/0295-5075/81/34005
10.1103/PhysRevE.68.036706
10.1209/0295-5075/21/3/001
10.1103/PhysRevE.95.053304
10.1016/j.compfluid.2016.03.009
10.1007/s10955-004-2264-x
10.1103/PhysRevE.73.066705
10.1016/j.compfluid.2021.104867
10.1063/1.5039479
10.1103/PhysRevE.48.4823
10.1504/PCFD.2008.018081
10.1142/S0129183114500466
10.1103/PhysRevE.100.013301
10.1098/rspa.2000.0689
10.1016/j.compfluid.2018.01.015
10.1103/PhysRevE.59.4366
10.1007/s10955-011-0208-9
10.1023/A:1010414013942
10.1103/PhysRevE.74.046709
10.1103/PhysRevE.100.033305
10.1016/j.jcp.2017.02.043
10.1016/j.crme.2015.07.010
10.1016/j.combustflame.2019.09.029
10.1016/j.camwa.2015.05.001
10.1103/PhysRevE.82.046709
10.1142/S0129183107010784
10.1016/j.physa.2009.12.032
10.1103/PhysRevLett.119.240602
10.1103/PhysRevE.96.033306
10.1103/PhysRevE.100.043308
10.1103/PhysRevLett.81.6
10.1103/PhysRevE.94.043304
10.1016/j.jcp.2019.05.031
10.1098/rsta.2019.0399
10.1103/PhysRevE.78.066701
10.1103/PhysRevE.56.2243
10.1103/PhysRevE.79.066702
10.1016/j.camwa.2020.03.022
10.1209/epl/i2003-00496-6
10.1016/j.camwa.2018.03.015
10.1006/jcph.1997.5843
10.1103/PhysRevE.76.016702
10.1016/j.jcp.2017.05.040
10.1016/j.physa.2005.09.008
10.1209/epl/i1998-00255-3
10.1063/1.1597472
10.1002/fld.4716
10.1063/1.4866146
10.1006/jcph.1996.0016
10.1016/j.compfluid.2017.07.005
10.1103/PhysRevE.91.033313
10.1006/jcph.1998.6057
10.1007/978-3-030-27607-2_1
10.1006/jcph.1995.1205
10.1103/PhysRevE.69.035701
10.1098/rsta.2001.0955
10.1142/S0219876218500871
10.1142/S0129183119500748
10.1103/PhysRevE.73.047701
10.1063/1.4981227
10.1103/PhysRevE.50.2776
10.1103/PhysRevE.96.023311
10.1016/j.jcp.2008.10.021
10.1103/PhysRevE.61.6546
10.1146/annurev-fluid-122414-034259
10.1016/j.camwa.2011.08.047
10.1016/j.ijheatmasstransfer.2014.04.032
10.1209/0295-5075/90/50002
10.1051/proc/201552001
10.1016/j.jcp.2010.09.024
10.1016/j.camwa.2009.08.051
10.1103/PhysRevE.89.043302
10.1103/PhysRevE.78.016704
10.1103/PhysRevE.77.026707
10.1016/j.jcp.2009.03.030
10.1007/s10955-010-9969-9
10.1007/BF01341755
10.1103/PhysRevA.10.1355
10.1016/j.matcom.2006.05.017
10.1002/fld.594
10.1002/fld.4208
10.56021/9781421407944
10.1016/j.camwa.2009.02.008
10.1142/S0129183117501418
10.1016/j.jcp.2012.07.005
10.1016/j.jcp.2016.12.017
10.1103/PhysRevE.65.036309
10.1007/978-3-319-44649-3
10.1016/j.jcp.2013.11.021
10.1002/fld.4250
10.1016/j.physa.2007.03.037
10.1103/PhysRevE.68.016701
10.4208/cicp.2014.m394
10.1002/cpa.3160020403
10.1121/1.5006900
10.1093/oso/9780199592357.001.0001
10.1017/S0022112005008153
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1098/rsta.2019.0397
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
EISSN 1471-2962
EndPage 20190397
ExternalDocumentID 10_1098_rsta_2019_0397
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
AAYXX
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADACV
ADBBV
ADODI
AEUPB
AEXZC
AFVYC
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
BTFSW
CITATION
DCCCD
DIK
DQDLB
DSRWC
EBS
ECEWR
F5P
H13
HH5
HQ6
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
7X8
ID FETCH-LOGICAL-c286t-44ad3aa8b677eef02365cff01bcff82d7a3f9fc8f24ed92bb3e45e87b0d2afd33
ISSN 1364-503X
IngestDate Fri Oct 25 09:00:37 EDT 2024
Thu Sep 26 19:33:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2175
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-44ad3aa8b677eef02365cff01bcff82d7a3f9fc8f24ed92bb3e45e87b0d2afd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0711-9819
0000-0001-8012-8546
0000-0001-6627-5689
0000-0002-6638-0945
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0397
PQID 2415829080
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2415829080
crossref_primary_10_1098_rsta_2019_0397
PublicationCentury 2000
PublicationDate 2020-07-10
PublicationDateYYYYMMDD 2020-07-10
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-10
  day: 10
PublicationDecade 2020
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationYear 2020
References e_1_3_7_83_2
e_1_3_7_60_2
e_1_3_7_87_2
e_1_3_7_22_2
e_1_3_7_41_2
e_1_3_7_64_2
e_1_3_7_26_2
e_1_3_7_45_2
e_1_3_7_68_2
Wolf-Gladrow DA (e_1_3_7_63_2) 2004
e_1_3_7_49_2
e_1_3_7_103_2
e_1_3_7_126_2
e_1_3_7_107_2
e_1_3_7_122_2
Blazek J (e_1_3_7_59_2) 2015
e_1_3_7_91_2
e_1_3_7_119_2
e_1_3_7_72_2
e_1_3_7_99_2
e_1_3_7_30_2
e_1_3_7_76_2
e_1_3_7_11_2
e_1_3_7_53_2
e_1_3_7_95_2
e_1_3_7_34_2
e_1_3_7_130_2
e_1_3_7_15_2
e_1_3_7_38_2
e_1_3_7_19_2
e_1_3_7_4_2
e_1_3_7_111_2
e_1_3_7_134_2
e_1_3_7_8_2
e_1_3_7_115_2
e_1_3_7_61_2
e_1_3_7_65_2
e_1_3_7_88_2
e_1_3_7_42_2
e_1_3_7_23_2
e_1_3_7_69_2
e_1_3_7_46_2
e_1_3_7_121_2
e_1_3_7_27_2
e_1_3_7_102_2
e_1_3_7_129_2
e_1_3_7_106_2
e_1_3_7_125_2
e_1_3_7_9_2
e_1_3_7_50_2
e_1_3_7_73_2
e_1_3_7_96_2
e_1_3_7_31_2
e_1_3_7_54_2
e_1_3_7_77_2
e_1_3_7_92_2
e_1_3_7_12_2
e_1_3_7_35_2
e_1_3_7_16_2
e_1_3_7_39_2
e_1_3_7_110_2
e_1_3_7_114_2
e_1_3_7_137_2
e_1_3_7_118_2
e_1_3_7_133_2
e_1_3_7_5_2
d’Humières D (e_1_3_7_14_2) 1992; 159
e_1_3_7_109_2
e_1_3_7_62_2
e_1_3_7_81_2
e_1_3_7_20_2
e_1_3_7_43_2
e_1_3_7_66_2
e_1_3_7_85_2
e_1_3_7_24_2
e_1_3_7_47_2
e_1_3_7_89_2
e_1_3_7_28_2
e_1_3_7_120_2
e_1_3_7_128_2
e_1_3_7_105_2
e_1_3_7_124_2
e_1_3_7_51_2
e_1_3_7_97_2
Golub GH (e_1_3_7_57_2) 2013
e_1_3_7_70_2
e_1_3_7_55_2
Axelsson O (e_1_3_7_56_2) 1996
e_1_3_7_93_2
e_1_3_7_32_2
e_1_3_7_74_2
e_1_3_7_13_2
e_1_3_7_36_2
e_1_3_7_132_2
e_1_3_7_17_2
e_1_3_7_2_2
e_1_3_7_113_2
e_1_3_7_6_2
e_1_3_7_117_2
e_1_3_7_136_2
e_1_3_7_108_2
e_1_3_7_40_2
Hirsch C (e_1_3_7_58_2) 2007
e_1_3_7_82_2
e_1_3_7_44_2
e_1_3_7_86_2
e_1_3_7_21_2
Hosseini SA (e_1_3_7_78_2) 2020; 378
e_1_3_7_48_2
e_1_3_7_25_2
e_1_3_7_67_2
e_1_3_7_29_2
Huang K (e_1_3_7_80_2) 1987
Von Neumann J (e_1_3_7_101_2) 1996
e_1_3_7_127_2
e_1_3_7_100_2
e_1_3_7_123_2
e_1_3_7_104_2
e_1_3_7_90_2
e_1_3_7_71_2
e_1_3_7_98_2
e_1_3_7_10_2
e_1_3_7_33_2
e_1_3_7_52_2
e_1_3_7_75_2
e_1_3_7_94_2
e_1_3_7_37_2
e_1_3_7_79_2
Chapman S (e_1_3_7_84_2) 1970
e_1_3_7_131_2
e_1_3_7_18_2
e_1_3_7_112_2
e_1_3_7_3_2
e_1_3_7_116_2
e_1_3_7_135_2
e_1_3_7_7_2
References_xml – ident: e_1_3_7_106_2
  doi: 10.1016/j.jcp.2020.109645
– ident: e_1_3_7_129_2
  doi: 10.1017/S0305004100023197
– ident: e_1_3_7_112_2
  doi: 10.1103/PhysRevE.60.3380
– ident: e_1_3_7_105_2
  doi: 10.1103/PhysRevE.64.031203
– ident: e_1_3_7_4_2
  doi: 10.1103/PhysRev.94.511
– ident: e_1_3_7_73_2
  doi: 10.1016/j.compfluid.2018.03.084
– ident: e_1_3_7_29_2
  doi: 10.1016/j.jcp.2017.07.004
– ident: e_1_3_7_110_2
  doi: 10.1016/j.jfluidstructs.2018.09.007
– ident: e_1_3_7_20_2
  doi: 10.1140/epjst/e2009-01011-1
– ident: e_1_3_7_131_2
  doi: 10.1002/fld.3767
– ident: e_1_3_7_16_2
  doi: 10.1142/S0129183107010887
– ident: e_1_3_7_13_2
– volume-title: The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases
  year: 1970
  ident: e_1_3_7_84_2
  contributor:
    fullname: Chapman S
– ident: e_1_3_7_107_2
  doi: 10.1103/PhysRevE.55.R21
– ident: e_1_3_7_21_2
  doi: 10.1016/j.camwa.2013.08.033
– ident: e_1_3_7_5_2
  doi: 10.1142/8806
– ident: e_1_3_7_108_2
  doi: 10.1103/PhysRevE.67.066709
– ident: e_1_3_7_37_2
  doi: 10.1080/14685248.2018.1540879
– ident: e_1_3_7_76_2
  doi: 10.1016/j.jcp.2018.12.015
– ident: e_1_3_7_77_2
  doi: 10.1103/PhysRevE.100.063301
– ident: e_1_3_7_65_2
  doi: 10.1016/j.physa.2005.09.012
– ident: e_1_3_7_115_2
  doi: 10.1103/PhysRevE.88.033305
– ident: e_1_3_7_12_2
  doi: 10.1103/PhysRevE.99.063305
– ident: e_1_3_7_46_2
  doi: 10.1209/0295-5075/81/34005
– ident: e_1_3_7_62_2
  doi: 10.1103/PhysRevE.68.036706
– ident: e_1_3_7_43_2
  doi: 10.1209/0295-5075/21/3/001
– ident: e_1_3_7_55_2
  doi: 10.1103/PhysRevE.95.053304
– ident: e_1_3_7_117_2
  doi: 10.1016/j.compfluid.2016.03.009
– volume-title: Iterative solution methods
  year: 1996
  ident: e_1_3_7_56_2
  contributor:
    fullname: Axelsson O
– ident: e_1_3_7_64_2
  doi: 10.1007/s10955-004-2264-x
– ident: e_1_3_7_19_2
  doi: 10.1103/PhysRevE.73.066705
– ident: e_1_3_7_95_2
  doi: 10.1016/j.compfluid.2021.104867
– ident: e_1_3_7_118_2
  doi: 10.1063/1.5039479
– ident: e_1_3_7_30_2
  doi: 10.1103/PhysRevE.48.4823
– ident: e_1_3_7_51_2
  doi: 10.1504/PCFD.2008.018081
– ident: e_1_3_7_18_2
  doi: 10.1142/S0129183114500466
– ident: e_1_3_7_24_2
  doi: 10.1103/PhysRevE.100.013301
– volume-title: Lattice-gas cellular automata and lattice Boltzmann models: an introduction
  year: 2004
  ident: e_1_3_7_63_2
  contributor:
    fullname: Wolf-Gladrow DA
– ident: e_1_3_7_89_2
  doi: 10.1098/rspa.2000.0689
– ident: e_1_3_7_41_2
  doi: 10.1016/j.compfluid.2018.01.015
– ident: e_1_3_7_85_2
  doi: 10.1103/PhysRevE.59.4366
– ident: e_1_3_7_39_2
  doi: 10.1007/s10955-011-0208-9
– ident: e_1_3_7_31_2
  doi: 10.1023/A:1010414013942
– ident: e_1_3_7_127_2
  doi: 10.1103/PhysRevE.74.046709
– ident: e_1_3_7_6_2
  doi: 10.1103/PhysRevE.100.033305
– ident: e_1_3_7_102_2
  doi: 10.1016/j.jcp.2017.02.043
– ident: e_1_3_7_71_2
  doi: 10.1016/j.crme.2015.07.010
– ident: e_1_3_7_96_2
  doi: 10.1016/j.combustflame.2019.09.029
– ident: e_1_3_7_27_2
  doi: 10.1016/j.camwa.2015.05.001
– ident: e_1_3_7_114_2
  doi: 10.1103/PhysRevE.82.046709
– ident: e_1_3_7_103_2
  doi: 10.1142/S0129183107010784
– ident: e_1_3_7_87_2
  doi: 10.1016/j.physa.2009.12.032
– ident: e_1_3_7_90_2
  doi: 10.1103/PhysRevLett.119.240602
– ident: e_1_3_7_35_2
  doi: 10.1103/PhysRevE.96.033306
– ident: e_1_3_7_49_2
  doi: 10.1103/PhysRevE.100.043308
– ident: e_1_3_7_88_2
  doi: 10.1103/PhysRevLett.81.6
– ident: e_1_3_7_7_2
  doi: 10.1103/PhysRevE.94.043304
– ident: e_1_3_7_94_2
  doi: 10.1016/j.jcp.2019.05.031
– volume: 378
  start-page: 20190399
  year: 2020
  ident: e_1_3_7_78_2
  article-title: Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2019.0399
  contributor:
    fullname: Hosseini SA
– ident: e_1_3_7_17_2
  doi: 10.1103/PhysRevE.78.066701
– ident: e_1_3_7_61_2
  doi: 10.1103/PhysRevE.56.2243
– ident: e_1_3_7_47_2
  doi: 10.1103/PhysRevE.79.066702
– ident: e_1_3_7_130_2
  doi: 10.1016/j.camwa.2020.03.022
– ident: e_1_3_7_135_2
  doi: 10.1209/epl/i2003-00496-6
– ident: e_1_3_7_122_2
  doi: 10.1016/j.camwa.2018.03.015
– volume-title: Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics
  year: 2007
  ident: e_1_3_7_58_2
  contributor:
    fullname: Hirsch C
– ident: e_1_3_7_134_2
  doi: 10.1006/jcph.1997.5843
– ident: e_1_3_7_86_2
  doi: 10.1103/PhysRevE.76.016702
– ident: e_1_3_7_28_2
  doi: 10.1016/j.jcp.2017.05.040
– ident: e_1_3_7_33_2
  doi: 10.1016/j.physa.2005.09.008
– ident: e_1_3_7_45_2
  doi: 10.1209/epl/i1998-00255-3
– ident: e_1_3_7_99_2
  doi: 10.1063/1.1597472
– ident: e_1_3_7_75_2
  doi: 10.1002/fld.4716
– ident: e_1_3_7_136_2
  doi: 10.1063/1.4866146
– ident: e_1_3_7_60_2
  doi: 10.1006/jcph.1996.0016
– ident: e_1_3_7_97_2
  doi: 10.1016/j.compfluid.2017.07.005
– ident: e_1_3_7_116_2
  doi: 10.1103/PhysRevE.91.033313
– ident: e_1_3_7_123_2
  doi: 10.1006/jcph.1998.6057
– ident: e_1_3_7_42_2
  doi: 10.1007/978-3-030-27607-2_1
– volume-title: Theory of self-reproducing automata
  year: 1996
  ident: e_1_3_7_101_2
  contributor:
    fullname: Von Neumann J
– ident: e_1_3_7_133_2
  doi: 10.1006/jcph.1995.1205
– ident: e_1_3_7_50_2
  doi: 10.1103/PhysRevE.69.035701
– ident: e_1_3_7_15_2
  doi: 10.1098/rsta.2001.0955
– ident: e_1_3_7_74_2
  doi: 10.1142/S0219876218500871
– ident: e_1_3_7_98_2
  doi: 10.1142/S0129183119500748
– ident: e_1_3_7_126_2
  doi: 10.1103/PhysRevE.73.047701
– ident: e_1_3_7_23_2
  doi: 10.1063/1.4981227
– ident: e_1_3_7_44_2
  doi: 10.1103/PhysRevE.50.2776
– ident: e_1_3_7_132_2
  doi: 10.1103/PhysRevE.96.023311
– ident: e_1_3_7_68_2
  doi: 10.1016/j.jcp.2008.10.021
– ident: e_1_3_7_9_2
  doi: 10.1103/PhysRevE.61.6546
– ident: e_1_3_7_100_2
  doi: 10.1146/annurev-fluid-122414-034259
– ident: e_1_3_7_124_2
  doi: 10.1016/j.camwa.2011.08.047
– ident: e_1_3_7_128_2
  doi: 10.1016/j.ijheatmasstransfer.2014.04.032
– ident: e_1_3_7_52_2
  doi: 10.1209/0295-5075/90/50002
– volume-title: Computational fluid dynamics: Principles and applications
  year: 2015
  ident: e_1_3_7_59_2
  contributor:
    fullname: Blazek J
– ident: e_1_3_7_38_2
– ident: e_1_3_7_11_2
  doi: 10.1051/proc/201552001
– ident: e_1_3_7_54_2
– ident: e_1_3_7_120_2
  doi: 10.1016/j.jcp.2010.09.024
– ident: e_1_3_7_91_2
  doi: 10.1016/j.camwa.2009.08.051
– ident: e_1_3_7_53_2
  doi: 10.1103/PhysRevE.89.043302
– ident: e_1_3_7_93_2
  doi: 10.1103/PhysRevE.78.016704
– ident: e_1_3_7_26_2
  doi: 10.1103/PhysRevE.100.033305
– ident: e_1_3_7_66_2
  doi: 10.1103/PhysRevE.77.026707
– ident: e_1_3_7_67_2
  doi: 10.1016/j.jcp.2009.03.030
– ident: e_1_3_7_69_2
  doi: 10.1007/s10955-010-9969-9
– ident: e_1_3_7_111_2
  doi: 10.1007/BF01341755
– ident: e_1_3_7_104_2
  doi: 10.1103/PhysRevA.10.1355
– ident: e_1_3_7_32_2
  doi: 10.1016/j.matcom.2006.05.017
– ident: e_1_3_7_79_2
– ident: e_1_3_7_119_2
  doi: 10.1002/fld.594
– ident: e_1_3_7_81_2
– ident: e_1_3_7_40_2
  doi: 10.1002/fld.4208
– volume-title: Matrix computations
  year: 2013
  ident: e_1_3_7_57_2
  doi: 10.56021/9781421407944
  contributor:
    fullname: Golub GH
– ident: e_1_3_7_25_2
– ident: e_1_3_7_125_2
  doi: 10.1016/j.camwa.2009.02.008
– ident: e_1_3_7_72_2
  doi: 10.1142/S0129183117501418
– volume-title: Statistical mechanics
  year: 1987
  ident: e_1_3_7_80_2
  contributor:
    fullname: Huang K
– ident: e_1_3_7_70_2
  doi: 10.1016/j.jcp.2012.07.005
– ident: e_1_3_7_92_2
  doi: 10.1016/j.jcp.2016.12.017
– ident: e_1_3_7_82_2
– ident: e_1_3_7_10_2
  doi: 10.1103/PhysRevE.65.036309
– ident: e_1_3_7_3_2
  doi: 10.1007/978-3-319-44649-3
– ident: e_1_3_7_48_2
  doi: 10.1016/j.jcp.2013.11.021
– ident: e_1_3_7_121_2
  doi: 10.1002/fld.4250
– volume: 159
  start-page: 450
  year: 1992
  ident: e_1_3_7_14_2
  article-title: Generalized lattice-Boltzmann equations
  publication-title: Prog. Astronaut. Aeronaut.
  contributor:
    fullname: d’Humières D
– ident: e_1_3_7_109_2
  doi: 10.1016/j.physa.2007.03.037
– ident: e_1_3_7_113_2
  doi: 10.1103/PhysRevE.68.016701
– ident: e_1_3_7_22_2
  doi: 10.4208/cicp.2014.m394
– ident: e_1_3_7_137_2
  doi: 10.1002/cpa.3160020403
– ident: e_1_3_7_8_2
– ident: e_1_3_7_36_2
  doi: 10.1121/1.5006900
– ident: e_1_3_7_2_2
  doi: 10.1093/oso/9780199592357.001.0001
– ident: e_1_3_7_83_2
  doi: 10.1017/S0022112005008153
– ident: e_1_3_7_34_2
SSID ssj0011652
Score 2.5360165
Snippet The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 20190397
Title Impact of collision models on the physical properties and the stability of lattice Boltzmann methods
URI https://search.proquest.com/docview/2415829080
Volume 378
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJ7QGyAGDcZCQnQlJE5cS6PMG0asA2QWtG3yI5tCWkkY0kltL_Gn-Mc23FSwcPgJXLd1qnyfT0-PldCXsgEdATYCaKMqTJKuY6j0pRppGvDCpnlSlmD2-lZdrxIPyz5cjb7NYlaWvVyr776a17J_6AKc4ArZsn-A7JhUZiAMeALV0AYrtfC-H1IcUQ4bZa4a20z-AC84QKzrdDofonVU0PMJOiFNjLW-tjPRY9hcLvv2vP-6rtoGt9buptqr5-Hvgd2yX5sNd4NoQbOGjGEgqL_wbYL2UOZhPe25vzTUCrWdhsIP3KIJNVjjcRdv0MHzf8AW4n-dFlowcD79RuS7Ie18Y_xCq2rJDltLC2mrjBv64CDLVawdG4b7eQz7KURK9cFeJIXE6bCGYtPJTImyycuBtjv8NOpP3aQuMSsCMwqwrg_rIA7fHdaqvvsU3W0ODmp5ofL-Q1yk4GUQ_H68cvowtrPOAtVQos36yuua0HrSoDVbOZ3yR1_JKFvHb-2yEw322RzUqgSXo2Qddvklg0bxtGW3xo6-srXL399jyhHS9oaGmhJHS0pjGAhOiBOR1pSQN6-F2iJC3ha0kBL6ml5nyyODucHx5Fv5hHVrMj6KE2FSoTA_3-utcHGBbw2Jt6XcC2YykViSlMXhqValUzKRIPkKHIZKyaMSpIHZKNpG_2Q0DwV3CiTw0k-T8taypjzhCvJ6oRrntc75OXwcKsLV7OlcrEWRYUwVAhDhTDskOfDs69ArKKvTDS6XXUVKrYYY1DEj67xmcfk9kjXJ2Sjv1zpp6Cs9vKZJcVvJ9idtA
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+collision+models+on+the+physical+properties+and+the+stability+of+lattice+Boltzmann+methods&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Coreixas%2C+C&rft.au=Wissocq%2C+G&rft.au=Chopard%2C+B&rft.au=Latt%2C+J&rft.date=2020-07-10&rft.eissn=1471-2962&rft.volume=378&rft.issue=2175&rft.spage=20190397&rft.epage=20190397&rft_id=info:doi/10.1098%2Frsta.2019.0397&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon