Partial sequential testing for comparing two univariate normal distributions

This article provides a two-stage procedure to develop a partial sequential test procedure for both the location and scale parameters of a normal distribution. The first stage is taken to be of a fixed sample size. The stopping rule is obtained by adopting a two-stage procedure on the number of inde...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 44; no. 1; pp. 111 - 133
Main Authors Basak, Sancharee, Bandyopadhyay, Uttam, Biswas, Atanu
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.01.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article provides a two-stage procedure to develop a partial sequential test procedure for both the location and scale parameters of a normal distribution. The first stage is taken to be of a fixed sample size. The stopping rule is obtained by adopting a two-stage procedure on the number of index subjects using an inverse sampling scheme in the second stage. Different asymptotic results associated with the procedure are obtained. The findings are supported by detailed simulation studies followed by three data illustrations.
AbstractList This article provides a two-stage procedure to develop a partial sequential test procedure for both the location and scale parameters of a normal distribution. The first stage is taken to be of a fixed sample size. The stopping rule is obtained by adopting a two-stage procedure on the number of index subjects using an inverse sampling scheme in the second stage. Different asymptotic results associated with the procedure are obtained. The findings are supported by detailed simulation studies followed by three data illustrations.
Author Biswas, Atanu
Basak, Sancharee
Bandyopadhyay, Uttam
Author_xml – sequence: 1
  givenname: Sancharee
  orcidid: 0009-0001-4610-0002
  surname: Basak
  fullname: Basak, Sancharee
  organization: Department of Statistics, St. Xavier's College (Autonomous)
– sequence: 2
  givenname: Uttam
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Uttam
  organization: Department of Statistics, University of Calcutta
– sequence: 3
  givenname: Atanu
  surname: Biswas
  fullname: Biswas, Atanu
  organization: Applied Statistics Unit, Indian Statistical Institute
BookMark eNp9kE1LAzEQhoNUsK3-BGHB89Ykm90kN6VoFQp60HOIuxNJ2SY1yVr6783aevU0Hzwz78w7QxPnHSB0TfCCYIFvMWecSdYsKKZsQRmrGK7P0JTUFS0Z4c0ETUemHKELNItxgzERBPMpWr_qkKzuiwhfA7jfNEFM1n0Wxoei9dudDmOV9r4YnP3OlU5QOB-2me1sTMF-DMl6Fy_RudF9hKtTnKP3x4e35VO5flk9L-_XZUtFk0pGjeQAnNGmAdF1RuIOdyCMqEBCvqvWklJWM8Oq3GEcGtF2GlpZCZl_qubo5rh3F3y-Oia18UNwWVJVRGJZE1LzTNVHqg0-xgBG7YLd6nBQBKvROPVnnBqNUyfj8tzdcc46Mz6596HvVNKH3gcTtGvtKPPvih_xrXcg
Cites_doi 10.1080/10485250802496731
10.1214/aoms/1177730491
10.1080/07474940701620915
10.24432/C5H30K
10.1080/07474946.2016.1165535
10.1080/03610928008827929
10.1002/bimj.4710370302
10.1080/00949655.2021.1998499
10.1016/B978-012642350-1/50021-7
10.1214/aoms/1177705688
10.1080/00949650008812003
10.1002/9781118165928
10.1080/10485250213901
10.1016/j.jspi.2011.02.017
10.1093/biomet/58.1.213
10.2307/2530428
10.1080/01621459.1977.10479939
10.1177/0008068319920306
10.1007/978-3-319-39065-9_9
10.1080/02331888.2014.960868
10.1080/07474940500310981
10.1080/07474946.2016.1238257
10.1080/07474940601112500
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
2025 Taylor & Francis Group, LLC
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
– notice: 2025 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2024.2443405
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 133
ExternalDocumentID 10_1080_07474946_2024_2443405
2443405
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
AMPGV
CITATION
DGEBU
H13
NY~
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-42f97ee74266e8ddf90d0de8f83e9e8105a922454f433e947e68cdaec93895323
ISSN 0747-4946
IngestDate Mon Aug 25 14:14:56 EDT 2025
Sun Jul 06 05:06:11 EDT 2025
Thu Apr 17 08:40:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-42f97ee74266e8ddf90d0de8f83e9e8105a922454f433e947e68cdaec93895323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4610-0002
PQID 3190951157
PQPubID 216170
PageCount 23
ParticipantIDs crossref_primary_10_1080_07474946_2024_2443405
proquest_journals_3190951157
informaworld_taylorfrancis_310_1080_07474946_2024_2443405
PublicationCentury 2000
PublicationDate 1/2/2025
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 1/2/2025
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Rublík F. (e_1_3_3_23_1) 2005; 41
Kössler W. (e_1_3_3_16_1) 2006
Montgomery D. C. (e_1_3_3_19_1) 2009
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_11_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_10_1
  doi: 10.1080/10485250802496731
– ident: e_1_3_3_18_1
  doi: 10.1214/aoms/1177730491
– volume-title: Introduction to Statistical Quality Control
  year: 2009
  ident: e_1_3_3_19_1
– ident: e_1_3_3_6_1
  doi: 10.1080/07474940701620915
– ident: e_1_3_3_8_1
  doi: 10.24432/C5H30K
– ident: e_1_3_3_24_1
  doi: 10.1080/07474946.2016.1165535
– ident: e_1_3_3_22_1
  doi: 10.1080/03610928008827929
– ident: e_1_3_3_15_1
  doi: 10.1002/bimj.4710370302
– ident: e_1_3_3_25_1
  doi: 10.1080/00949655.2021.1998499
– ident: e_1_3_3_13_1
  doi: 10.1016/B978-012642350-1/50021-7
– volume-title: Asymptotic Power and Efficiency of Lepage-Type Tests for the Treatment of Combined Location-Scale Alternatives
  year: 2006
  ident: e_1_3_3_16_1
– ident: e_1_3_3_2_1
  doi: 10.1214/aoms/1177705688
– ident: e_1_3_3_7_1
  doi: 10.1080/00949650008812003
– ident: e_1_3_3_12_1
  doi: 10.1002/9781118165928
– ident: e_1_3_3_9_1
  doi: 10.1080/10485250213901
– ident: e_1_3_3_20_1
  doi: 10.1016/j.jspi.2011.02.017
– ident: e_1_3_3_17_1
  doi: 10.1093/biomet/58.1.213
– ident: e_1_3_3_14_1
  doi: 10.2307/2530428
– ident: e_1_3_3_26_1
  doi: 10.1080/01621459.1977.10479939
– ident: e_1_3_3_3_1
  doi: 10.1177/0008068319920306
– ident: e_1_3_3_27_1
  doi: 10.1007/978-3-319-39065-9_9
– ident: e_1_3_3_11_1
  doi: 10.1080/02331888.2014.960868
– ident: e_1_3_3_4_1
  doi: 10.1080/07474940500310981
– ident: e_1_3_3_21_1
  doi: 10.1080/07474946.2016.1238257
– ident: e_1_3_3_5_1
  doi: 10.1080/07474940601112500
– volume: 41
  start-page: 713
  issue: 6
  year: 2005
  ident: e_1_3_3_23_1
  article-title: The Multisample Version of the Lepage Test
  publication-title: Kybernetika
SSID ssj0018107
Score 2.3106408
Snippet This article provides a two-stage procedure to develop a partial sequential test procedure for both the location and scale parameters of a normal distribution....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 111
SubjectTerms 62L15
Ansari-Bradley test
Asymptotic methods
inverse sampling
Lepage's test
Normal distribution
stopping rule
two-stage procedure
univariate normal distribution
Wilcoxon-Mann-Whitney test
Title Partial sequential testing for comparing two univariate normal distributions
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2443405
https://www.proquest.com/docview/3190951157
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKucChghZEoSAfequ8SmxnYx8rBKoQrZDYlXqLnHiiVogUsVmq9tcz_ki8y1ZqgUuU9Sp2NPMyfjP2jAk5zAS0OShgNRcNk5JLZkypmVEGslbUNfhq-6dn05O5_HRenP-RXdLXk-b2zrySf9EqtqFeXZbsX2h27BQb8B71i1fUMF4fpOMvrs0lfPj90P62d1Uz4ubIsL_c50NdXx0tu8tf-Au55VHniKpfnBnPu1qsstSvqT8Ti5akiOfCfAuh5M5lbEFalTedvUEX3F7cGK-5ed-b7ykIv7gOuWPHSEeXq8EGXvhgQ3JNZxvnfqyYK3RMmNQxoAiDOeVM5uGEl8HehnqPa7gKxnMwu2EezkOBjA0TH_dE4mhuMPTwuZwgRxEyK9KcNu40jP88Io85-hHuiAuRnY3LTCoP-fTDqw8pXq74-l0DrJGXtdK2G1O55yezZ2QnOhb0OKDkOdmCbpc8PR2r8i72yOeIF5rwQiNeKI5BR7xQxAtNeKEBL3QNLy_I_OOH2fsTFk_TYA1X055J3uoSoHSUDJS1rc5sZkG1SoAGlERhNPK5QrZSYIssYaoaa6DRyGlRj-Il2e6uOnhFqCuhKY1VuShBgvMhuIWsKWtlylZys08mg5iqH6FoSpUPtWijXCsn1yrKdZ_oVWFWvcdZGyBWiXuePRgkX8Vv0z2ine-QF-Xr_-j6DXmSPoIDst3_XMJb5KB9_c7j6DdrtIOV
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6JQIANrSmI7sT0iRFWgrRhaqVvkJGeEQCmiKUj8enx5VC0IMXSLo5wV3519X5zzd4RcegyMDxLcmLLE5ZxyV2uhXC01eIbFMRRs-_1B2B3x-3EwXjgLg2mV-A1tSqKIYq3GyY2b0XVK3BWSvnPFMcOA8rYNUIwjjel6oEKBVQyYN5j_SZB-eWTairgoU5_i-aubpfi0xF76a7UuQlBnhyT1y5eZJy_tWR63k68fvI6rjW6XbFcI1bkuXWqPrEG2T7b6c3rX6QHpPaLD2YfKROziMke6juzJsSNxysR2bOWfE2eWPX_YlgW1TobDfHVSZOutCm1ND8moczu86bpVWQY3oTLMXU6NEgACYzvINDXKS70UpJEMFFh9B1pZYBBww5m9wwWEMkk1JMqCo4BRdkQa2SSDY-IgFyPXqfSZAA4IRmkKXiJiqYXhVDdJuzZG9Fayb0R-TWpaqSlCNUWVmppELZosyottD1PWKInYP7Kt2r5RNZFRRCEI9QNxskLXF2SjO-z3ot7d4OGUbFKsIYzbOLRFGvn7DM4ssMnj88JzvwG6aetp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yQfTgtzid2oPX1jZJ1-Qo6pi6jR0ceCtp8yKidMN1Cv715vVjOEU87NaUvtC8fLxf019-j5Bzn4EJQICbUJa6nFPuKhVJVwkFvmFJAoXafn_Q7o743WNYswmnFa0Sv6FNKRRRrNU4uSfa1Iy4C9R855IjwYByz8YnxlHFdLWN4uF4isMfzH8kiKA8MW1NXLSpD_H8Vc1CeFoQL_21WBcRqLNFkvrdS-LJizfLEy_9_CHruFTjtslmhU-dy3JA7ZAVyHbJRn8u7jrdI70hDjf7UEnDLi5zFOvInhzbEKektWMp_xg7s-z53ZYspHUybOWro1Grt0qzNd0no87Nw1XXrZIyuCkV7dzl1MgIIMLIDkJrI33taxBGMJBg3R0qaWFByA1n9g6PoC1SrSCVFhqFjLID0sjGGRwSB5UYudIiYBFwQChKNfhplAgVGU5Vk3h1X8STUnsjDmpJ08pNMboprtzUJPJ7j8V5selhygwlMfvHtlV3b1xNYzSRCEGDMDpaouozsja87sS928H9MVmnmEAY93BoizTytxmcWFSTJ6fFuP0C4B_qDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+sequential+testing+for+comparing+two+univariate+normal+distributions&rft.jtitle=Sequential+analysis&rft.au=Basak%2C+Sancharee&rft.au=Bandyopadhyay%2C+Uttam&rft.au=Biswas%2C+Atanu&rft.date=2025-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=44&rft.issue=1&rft.spage=111&rft.epage=133&rft_id=info:doi/10.1080%2F07474946.2024.2443405&rft.externalDocID=2443405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon