Set-membership state estimation for time-varying complex networks: two zonotopic design methods

This article studies the zonotopic set-membership state estimation problem for linear time-varying complex networks with unknown-but-bounded (UBB) noises, where the UBB noises are contained by a set of zonotopes. The objective of the addressed problem is to give two design methods, namely the correc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of general systems Vol. 54; no. 2; pp. 218 - 239
Main Authors Yao, Mengyuan, Chen, Dongyan, Hu, Jun, Yang, Ning
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 17.02.2025
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0308-1079
1563-5104
DOI10.1080/03081079.2024.2375443

Cover

Abstract This article studies the zonotopic set-membership state estimation problem for linear time-varying complex networks with unknown-but-bounded (UBB) noises, where the UBB noises are contained by a set of zonotopes. The objective of the addressed problem is to give two design methods, namely the correction matrix method and the state observer method, where a time-varying zonotopic sequence containing all possible states of the system is obtained. The expressions of the correction matrix and the observer gain are given under the F-radius criterion, and the desired minimum zonotopes are obtained. In addition, a state observer based on the measured output at the current moment is designed to analyze the equivalence between the above two methods. Finally, in order to demonstrate the effectiveness of the proposed state estimation algorithms, two simulation examples are presented.
AbstractList This article studies the zonotopic set-membership state estimation problem for linear time-varying complex networks with unknown-but-bounded (UBB) noises, where the UBB noises are contained by a set of zonotopes. The objective of the addressed problem is to give two design methods, namely the correction matrix method and the state observer method, where a time-varying zonotopic sequence containing all possible states of the system is obtained. The expressions of the correction matrix and the observer gain are given under the F-radius criterion, and the desired minimum zonotopes are obtained. In addition, a state observer based on the measured output at the current moment is designed to analyze the equivalence between the above two methods. Finally, in order to demonstrate the effectiveness of the proposed state estimation algorithms, two simulation examples are presented.
Author Chen, Dongyan
Hu, Jun
Yao, Mengyuan
Yang, Ning
Author_xml – sequence: 1
  givenname: Mengyuan
  surname: Yao
  fullname: Yao, Mengyuan
  organization: Harbin University of Science and Technology
– sequence: 2
  givenname: Dongyan
  surname: Chen
  fullname: Chen, Dongyan
  email: chendongyan@hrbust.edu.cn
  organization: Harbin University of Science and Technology
– sequence: 3
  givenname: Jun
  surname: Hu
  fullname: Hu, Jun
  email: jhu@hrbust.edu.cn
  organization: Harbin University of Science and Technology
– sequence: 4
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  organization: Harbin University of Science and Technology
BookMark eNp9kMtOwzAQRS1UJNrCJyBZYp1ix48krEAVLwmJBbC2XD_alMYOtguUr8dRy5bVaDR37tw5EzBy3hkAzjGaYVSjS0RQjVHVzEpU0llJKkYpOQJjzDgpGEZ0BMaDphhEJ2AS4xohTFhNx0C8mFR0pluYEFdtD2OSyUATU9vJ1HoHrQ8wN6b4lGHXuiVUvus35hs6k758eI9XMFf4451Pvm8V1Ca2Swc7k1Zex1NwbOUmmrNDnYK3u9vX-UPx9Hz_OL95KlRZ81QQbaTkGNmmsUrWmHCLLMc11Tm34Y3GlVGM27LitKSsonmopKZEY61YuSBTcLH37YP_2Ob8Yu23weWTgmDOESGsJFnF9ioVfIzBWNGH_GjYCYzEwFL8sRQDS3Fgmfeu93utyzw6mR_faJHkbuODDdKpdjjzr8UvqfR-IQ
Cites_doi 10.1080/00207721.2021.1995528
10.1109/TNNLS.2022.3209135
10.1016/j.automatica.2004.12.008
10.1049/cth2.v14.13
10.1109/TNSE.2021.3137320
10.1109/TAC.2015.2390554
10.1109/TAC.2006.878750
10.1016/j.jfranklin.2017.08.012
10.1016/j.automatica.2013.08.014
10.1080/00207721.2020.1814898
10.1007/s12555-018-0780-8
10.1016/j.neucom.2021.10.070
10.1109/TSMC.2021.3049306
10.1016/j.automatica.2018.03.082
10.3182/20110828-6-IT-1002.02496
10.1016/S0005-1098(97)00188-X
10.1002/asjc.v23.5
10.1080/00207179608921869
10.23919/ECC.2003.7085991
10.1016/j.neucom.2020.06.020
10.1023/A:1011978200643
10.1002/rnc.v23.14
10.1109/TNNLS.5962385
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/03081079.2024.2375443
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1563-5104
EndPage 239
ExternalDocumentID 10_1080_03081079_2024_2375443
2375443
Genre Research Article
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province of China
  grantid: ZD2022F003
– fundername: National Natural Science Foundation of China
  grantid: 12171124; 12071102; 12301568
– fundername: Fundamental Research Foundation for Universities of Heilongjiang Province
  grantid: 2022-KYYWF-0140
GroupedDBID .7F
.DC
.QJ
0BK
0R~
29J
30N
3R3
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EAP
EBS
EST
ESX
E~A
E~B
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
AMPGV
CITATION
DGEBU
NX~
7SC
8FD
ACUHS
H13
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-3deaa610f99fca8136f0f6184d308e69d17ec56f276424574f61cad43d1dc52b3
ISSN 0308-1079
IngestDate Wed Aug 13 04:04:13 EDT 2025
Tue Jul 01 01:43:52 EDT 2025
Thu Feb 13 04:15:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-3deaa610f99fca8136f0f6184d308e69d17ec56f276424574f61cad43d1dc52b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3166033523
PQPubID 53024
PageCount 22
ParticipantIDs proquest_journals_3166033523
informaworld_taylorfrancis_310_1080_03081079_2024_2375443
crossref_primary_10_1080_03081079_2024_2375443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-17
PublicationDateYYYYMMDD 2025-02-17
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-17
  day: 17
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of general systems
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_20_1
e_1_3_2_10_1
e_1_3_2_21_1
e_1_3_2_11_1
e_1_3_2_22_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_23_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_24_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_8_1
  doi: 10.1080/00207721.2021.1995528
– ident: e_1_3_2_22_1
  doi: 10.1109/TNNLS.2022.3209135
– ident: e_1_3_2_2_1
  doi: 10.1016/j.automatica.2004.12.008
– ident: e_1_3_2_9_1
  doi: 10.1049/cth2.v14.13
– ident: e_1_3_2_23_1
  doi: 10.1109/TNSE.2021.3137320
– ident: e_1_3_2_13_1
  doi: 10.1109/TAC.2015.2390554
– ident: e_1_3_2_3_1
  doi: 10.1109/TAC.2006.878750
– ident: e_1_3_2_14_1
  doi: 10.1016/j.jfranklin.2017.08.012
– ident: e_1_3_2_11_1
  doi: 10.1016/j.automatica.2013.08.014
– ident: e_1_3_2_24_1
  doi: 10.1080/00207721.2020.1814898
– ident: e_1_3_2_5_1
  doi: 10.1007/s12555-018-0780-8
– ident: e_1_3_2_21_1
  doi: 10.1016/j.neucom.2021.10.070
– ident: e_1_3_2_12_1
  doi: 10.1109/TSMC.2021.3049306
– ident: e_1_3_2_19_1
  doi: 10.1016/j.automatica.2018.03.082
– ident: e_1_3_2_10_1
  doi: 10.3182/20110828-6-IT-1002.02496
– ident: e_1_3_2_16_1
  doi: 10.1016/S0005-1098(97)00188-X
– ident: e_1_3_2_20_1
  doi: 10.1002/asjc.v23.5
– ident: e_1_3_2_18_1
  doi: 10.1080/00207179608921869
– ident: e_1_3_2_6_1
  doi: 10.23919/ECC.2003.7085991
– ident: e_1_3_2_15_1
  doi: 10.1016/j.neucom.2020.06.020
– ident: e_1_3_2_7_1
  doi: 10.1023/A:1011978200643
– ident: e_1_3_2_4_1
  doi: 10.1002/rnc.v23.14
– ident: e_1_3_2_17_1
  doi: 10.1109/TNNLS.5962385
SSID ssj0013584
Score 2.362341
Snippet This article studies the zonotopic set-membership state estimation problem for linear time-varying complex networks with unknown-but-bounded (UBB) noises,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 218
SubjectTerms Algorithms
correction matrix
Matrix methods
set-membership state estimation
Simulation
State estimation
state observer
State observers
Time-varying complex networks
zonotopes
Title Set-membership state estimation for time-varying complex networks: two zonotopic design methods
URI https://www.tandfonline.com/doi/abs/10.1080/03081079.2024.2375443
https://www.proquest.com/docview/3166033523
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW9gIHxFMUCvKB28rRJk4ch1vVglYcemErCpcoiW1UiSarkkW0_4H_zNiebBxtJV6XJHLkOPF88YztmW8IeV0oo2plEqZTqVhaxA2rcilYxQ3PtG7s3qD1tjgVy7P0_Xl2Ppv9DLyWNn0dNTe3xpX8i1ShDORqo2T_QrLbh0IBXIN84QgShuMfyfiDhlmrtik9nM-VCw6aW9qMy8CF8OJSs-_V1TVG166_6h_z1jt_O3c4uJrfdG3Xd-uLZq6cRwcmlv4Wmq7TtcOAceKLZ65GUuitjf6pcquw1m32ejNi8BjDQU46KB-LlxsfI9KO1f0odDroVlyaSFyot4_EdGBa7WQJCQY37mhlfSKZSOPgKzjLMB3xMDp7imlEYTIZamWgtRNPibSjENCDElqzjUXwlmmUcMf6N2rArV8i3rlD9pM8t7v--0fLk88fx22pTHo-Mnz5ISTMkrXf1sTE2JlQ4e6ofmfPrB6Q-zgRoUceVQ_JTLePyL2AnvIxKaf4og5fdMQXhYZoiC-K-KIDvt5QONMtuqhHF0V0PSFn796ujpcME3KwJpGiZ1zpqgJ72xSFaSoZc2EWxmYMUvDxWhQqznWTCZPkwm6o5yncbCqVchWrJktq_pTstV2rnxGqawPKRqSFhvlHnEtpc2DHSua1kVW64AckGnquXHvelTIe6Gyxq0vb1SV29QEpwv4tewc-43FX8t_UPRyEUeLvY6sIsbARifz5fzz6Bbk7_hmHZK-_2uiXYMb29SsE1y-9FZuR
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA86D-rBtzidmoPX1rZp09abiGPq3MUNdgttHiBCO7ZOZH-9-ZIWN0U8eOqhNDTv70t-D4SuUqFELlTgyDARTpj63MnihDoZUSSSksPdIKAtBrQ3Ch_H0XiJCwOwSsihlRWKMGs1TG44jG4gcdegsaLTFuCZBKEbECPito42Ih27wygn3uDrJiFKrISUkTGN04bF81sxK_vTinrpj9XabEHdXcSbn7fIkzd3XuUuX3zTdfxf7fbQTh2h4ls7pPbRmiwO0PaSbuEhYi9Sp8sSvEQA7IUNKwmDXoclQmJdHQyu9c57NgUeFTbIdfmBC4s6n91g_cSLsiircvLKsTBAEmz9rGdHaNS9H971nNqpweFBQiuHCJllOhBTaap4lviEKk-BlYzQdZE0FX4seURVEFO4aY1D_ZJnIiTCFzwKcnKMWkVZyBOEZa70KkTDVOrA1NcJOpgj-yKJc5VkoUfayG36h02sIAfzG53TuuUYtByrW66N0uVeZJU5CVHWtoSRP77tNF3O6rkNn1DqAVWNnP6j6Eu02Rs-91n_YfB0hrYCsBUGn5m4g1rVdC7PdaxT5RdmMH8Csr7x9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzivefA1dW3atPVN1DEvDEEHvoU2FxChHVsnsl9vTtLipogPe-pDSejJ5eSc5jvfh9B5KrXMpQ6IChNJwtQXJIsTRjKqaaSUgLtBQFv0WW8Q3r9GDZpwXMMqIYfWjijC-mrY3EOpG0TcBVCsmKwFykyC0Auo5XBbRivMhCeA6qOd_vdFQpQ4BinLYhqnTRHPX93MHU9z5KW_nLU9gbqbKG--3QFP3r1JlXti-oPWcSHjttBGHZ_iK7egttGSKnbQ-gxr4S7iz8okywqURADqhW1NEga2DlcGiY01GDTryUc2gioqbHHr6hMXDnM-vsTmiadlUVbl8E1gaWEk2KlZj_fQoHv7ct0jtU4DEUHCKkKlyjIThuk01SJLfMp0R4OQjDS2KJZKP1YiYjqIGdyzxqF5KTIZUulLEQU53UetoizUAcIq18YHsTBVJiz1TXoO0si-TOJcJ1nYoW3kNdPDh46Og_sNy2k9chxGjtcj10bp7CTyyv4H0U60hNN_2h43M87rnQ1NGOtAoRo9XKDrM7T6dNPlj3f9hyO0FoCmMIjMxMeoVY0m6sQEOlV-apfyF77P8Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Set-membership+state+estimation+for+time-varying+complex+networks%3A+two+zonotopic+design+methods&rft.jtitle=International+journal+of+general+systems&rft.au=Yao%2C+Mengyuan&rft.au=Chen%2C+Dongyan&rft.au=Hu%2C+Jun&rft.au=Yang%2C+Ning&rft.date=2025-02-17&rft.pub=Taylor+%26+Francis&rft.issn=0308-1079&rft.eissn=1563-5104&rft.volume=54&rft.issue=2&rft.spage=218&rft.epage=239&rft_id=info:doi/10.1080%2F03081079.2024.2375443&rft.externalDocID=2375443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1079&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1079&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1079&client=summon