Performance analysis of study material recommendation system to reduce dropout in online learning using optimal behavior prediction cluster and online poll bot

Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations rec...

Full description

Saved in:
Bibliographic Details
Published inInteractive learning environments Vol. 32; no. 9; pp. 5779 - 5800
Main Authors Sageengrana, S., Selvakumar, S., Srinivasan, S.
Format Journal Article
LanguageEnglish
Published Abingdon Routledge 20.10.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations receive materials from their leftovers, and their constant behavioral classification has decided the material to learn. The rate at which many students gave up on their studies was predominantly higher in online classroom than in offline classroom due to the lack of direct interaction between the students and teachers. To eradicate this and to make online classroom an effective one, the proposed model can be put forth in each class to predict the student's behavior based on their keen interests. The model predicts and recommends their live session-wise apt course materials to learn. This model uses machine learning generic algorithms and the chi-square test to analyze their manners. The intelligent Online Poll Bot (OPB) acts as a teacher in this virtual learning environment by engaging in live interactions during class time. It is developed using GAN and the IBM Watson Framework. This paper analyzes the time complexity and accuracy of the developed poll bot, and 96.82% accuracy was achieved with the proposed GAN-based poll bot. Students can be categorized according to their learning behavior by using the Optimal Behavior Prediction Cluster (OBPC). These OBPCs will let know the number of clusters at the beginning of the process itself. According to the model, the study materials are preferred based on the students' performance in each class. In online learning environments, the Live Behavior Analysis (LBA) method using the proposed OBPC and OPB can create interactive learning environments and deliver behavior-based study materials to learners, thus reducing dropout rates. The proposed experiments show that the accuracy of the OBPC-based system is 97.43%, and LBA produces 96.52% accuracy, 95.13% F-Score, 97.13% recall, and 96.14% precision compared to existing approaches. This technology will reduce the number of dropouts and can effectively predict the behavior of all students in the virtual environment where they are placed.
AbstractList Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations receive materials from their leftovers, and their constant behavioral classification has decided the material to learn. The rate at which many students gave up on their studies was predominantly higher in online classroom than in offline classroom due to the lack of direct interaction between the students and teachers. To eradicate this and to make online classroom an effective one, the proposed model can be put forth in each class to predict the student's behavior based on their keen interests. The model predicts and recommends their live session-wise apt course materials to learn. This model uses machine learning generic algorithms and the chi-square test to analyze their manners. The intelligent Online Poll Bot (OPB) acts as a teacher in this virtual learning environment by engaging in live interactions during class time. It is developed using GAN and the IBM Watson Framework. This paper analyzes the time complexity and accuracy of the developed poll bot, and 96.82% accuracy was achieved with the proposed GAN-based poll bot. Students can be categorized according to their learning behavior by using the Optimal Behavior Prediction Cluster (OBPC). These OBPCs will let know the number of clusters at the beginning of the process itself. According to the model, the study materials are preferred based on the students' performance in each class. In online learning environments, the Live Behavior Analysis (LBA) method using the proposed OBPC and OPB can create interactive learning environments and deliver behavior-based study materials to learners, thus reducing dropout rates. The proposed experiments show that the accuracy of the OBPC-based system is 97.43%, and LBA produces 96.52% accuracy, 95.13% F-Score, 97.13% recall, and 96.14% precision compared to existing approaches. This technology will reduce the number of dropouts and can effectively predict the behavior of all students in the virtual environment where they are placed.
Author Selvakumar, S.
Sageengrana, S.
Srinivasan, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0001-8229-6738
  surname: Sageengrana
  fullname: Sageengrana, S.
  email: sageengranadhas@gmail.com
  organization: Anna University Research Scholar, Information Technology, Sathyabama Institute of Science and Technology
– sequence: 2
  givenname: S.
  surname: Selvakumar
  fullname: Selvakumar, S.
  organization: Visvesvaraya College of Engineering Technology
– sequence: 3
  givenname: S.
  surname: Srinivasan
  fullname: Srinivasan, S.
  organization: R.M.D Engineering College
BookMark eNp9kU1vFiEUhYmpif36CSYkrueVr06ZnabRatJEF3ZNGOaiNAx3BEYzv8a_WqZvu3UDBJ5zbjjnjJwkTEDIW84OnGn2njM1KC3YQTAhD0JIoYV8RU75tVLdFR_4STs3ptuhN-SslAfGuJK9OiX_vkP2mGebHFCbbNxKKBQ9LXWdNjrbCjnYSDM4nGdIk60BEy1bqTDTiu1hWpt0yrjgWmlIFFMMCWgEm1NIP-la9hWXGuZmNMIv-ydgpktTBvfk5uLa7HKbP72oF4yNxXpBXnsbC1w-7-fk_vOnHzdfurtvt19vPt51Tui-dsJZz62VVrKhdxL0pNkgJ-6Zd5qDt1IKz_txGKQTrAcHtgftRpCjaJejPCfvjr5Lxt8rlGoecM0tj2IkF4O-Vr1Sjbo6Ui5jKRm8WXL7Vd4MZ2bvwrx0YfYuzHMXTffhqAvpKey_mONkqt0iZp9b9mEf81-LR5SKl4A
Cites_doi 10.1109/RITA.2021.3089925
10.1109/CAIDA51941.2021.9425208
10.1109/ACCESS.2019.2956019
10.1109/ESCI48226.2020.9167547
10.1109/ACCESS.2022.3171807
10.1109/TE.2020.3008751
10.1109/TSE.2021.3078384
10.1109/TLT.2017.2720738
10.1109/ICICV50876.2021.9388633
10.1109/TLT.2018.2793193
10.1109/ICNSC48988.2020.9238052
10.1109/ACCESS.2020.2984591
10.1109/RITA.2020.2987727
10.1109/IC3.2016.7880242
10.1109/ACCESS.2020.3045157
10.1111/jcal.12555
10.1109/ACCESS.2021.3100890
10.24191/ajue.v17i3.14514
10.1108/13665620210412795
10.1109/ACCESS.2020.3036572
10.1109/TLT.2021.3103331
10.1109/ACCESS.2020.3024102
10.1109/ISNCC49221.2020.9297176
10.1109/ACCESS.2022.3160177
10.1109/ACCESS.2022.3141992
10.1109/ACCESS.2020.3004152
10.1109/ACCESS.2021.3117117
10.1109/ICHCI51889.2020.00042
10.1109/ACCESS.2021.3080837
10.3217/jucs-021-01-0023
10.1109/ACCESS.2021.3083518
10.1140/epjds/s13688-018-0138-8
10.1109/ICUS50048.2020.9274820
10.1177/2329490615606733
10.1080/01969722.2022.2137640
10.2991/iceemt-16.2016.94
10.1109/TLT.2019.2911070
10.4236/jcc.2021.98005
10.1109/TIM.2022.3184353
10.1007/s10639-021-10523-1
10.1145/3471988.3471990
10.1109/CcS49175.2020.9231474
10.1109/ACCESS.2021.3115851
10.1109/TKDE.2019.2906173
10.1109/PerComWorkshops51409.2021.9431031
10.1109/FIE43999.2019.9028545
10.1109/FG47880.2020.00011
10.1109/ACCESS.2020.2976898
10.1109/TFUZZ.2021.3057705
10.1108/13665620810852250
10.1109/TETC.2020.2974478
10.1109/ACCESS.2020.3016142
10.1080/10494820.2021.1928235
10.1109/ACCESS.2020.2988252
10.1109/ACCESS.2020.3042775
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
AHOVV
DOI 10.1080/10494820.2023.2232823
DatabaseName CrossRef
Education Research Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1744-5191
EndPage 5800
ExternalDocumentID 10_1080_10494820_2023_2232823
2232823
Genre Review Article
GroupedDBID .7I
.DC
.QK
0BK
0R~
29J
4.4
5VS
AAGZJ
AAMFJ
AAMIU
AAPUL
AATTQ
AAZJI
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADXPE
ADYSH
AECIN
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
E~B
E~C
G-F
GTTXZ
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
NA5
NX.
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TED
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
~01
~S~
AAGDL
AAHIA
AAYXX
AEFOU
AFRVT
AIYEW
AMPGV
CITATION
H13
AHOVV
TASJS
ID FETCH-LOGICAL-c286t-2caf1aa3a3096c3e8d8093d1f0fc81efa332f16b993c206ecea6e8cbe3b2b99b3
ISSN 1049-4820
IngestDate Sun Jul 27 14:10:33 EDT 2025
Tue Jul 01 05:25:28 EDT 2025
Thu Mar 06 04:56:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-2caf1aa3a3096c3e8d8093d1f0fc81efa332f16b993c206ecea6e8cbe3b2b99b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8229-6738
PQID 3129874644
PQPubID 436408
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_10494820_2023_2232823
crossref_primary_10_1080_10494820_2023_2232823
proquest_journals_3129874644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-20
PublicationDateYYYYMMDD 2024-10-20
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Interactive learning environments
PublicationYear 2024
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_62_1
e_1_3_2_60_1
Shaikh A. (e_1_3_2_48_1) 2019; 6
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_3_1
Gao Z. (e_1_3_2_19_1) 2021
e_1_3_2_50_1
Felder R. (e_1_3_2_17_1) 1988; 78
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
Khan M. (e_1_3_2_34_1) 2020
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_61_1
e_1_3_2_40_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_55_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
e_1_3_2_51_1
References_xml – ident: e_1_3_2_47_1
  doi: 10.1109/RITA.2021.3089925
– ident: e_1_3_2_6_1
  doi: 10.1109/CAIDA51941.2021.9425208
– ident: e_1_3_2_18_1
  doi: 10.1109/ACCESS.2019.2956019
– ident: e_1_3_2_25_1
  doi: 10.1109/ESCI48226.2020.9167547
– ident: e_1_3_2_33_1
  doi: 10.1109/ACCESS.2022.3171807
– ident: e_1_3_2_36_1
  doi: 10.1109/TE.2020.3008751
– ident: e_1_3_2_2_1
  doi: 10.1109/TSE.2021.3078384
– ident: e_1_3_2_41_1
  doi: 10.1109/TLT.2017.2720738
– ident: e_1_3_2_32_1
  doi: 10.1109/ICICV50876.2021.9388633
– ident: e_1_3_2_14_1
  doi: 10.1109/TLT.2018.2793193
– ident: e_1_3_2_30_1
  doi: 10.1109/ICNSC48988.2020.9238052
– ident: e_1_3_2_46_1
  doi: 10.1109/ACCESS.2020.2984591
– ident: e_1_3_2_10_1
  doi: 10.1109/RITA.2020.2987727
– ident: e_1_3_2_4_1
  doi: 10.1109/IC3.2016.7880242
– ident: e_1_3_2_63_1
  doi: 10.1109/ACCESS.2020.3045157
– ident: e_1_3_2_51_1
  doi: 10.1111/jcal.12555
– volume: 78
  start-page: 674
  year: 1988
  ident: e_1_3_2_17_1
  article-title: Learning and teaching styles in engineering education
  publication-title: Engineering Education
– ident: e_1_3_2_23_1
  doi: 10.1109/ACCESS.2021.3100890
– ident: e_1_3_2_7_1
  doi: 10.24191/ajue.v17i3.14514
– ident: e_1_3_2_8_1
  doi: 10.1108/13665620210412795
– ident: e_1_3_2_3_1
  doi: 10.1109/ACCESS.2020.3036572
– ident: e_1_3_2_35_1
  doi: 10.1109/TLT.2021.3103331
– ident: e_1_3_2_11_1
  doi: 10.1109/ACCESS.2020.3024102
– ident: e_1_3_2_21_1
  doi: 10.1109/ISNCC49221.2020.9297176
– ident: e_1_3_2_42_1
  doi: 10.1109/ACCESS.2022.3160177
– ident: e_1_3_2_45_1
  doi: 10.1109/ACCESS.2022.3141992
– ident: e_1_3_2_60_1
  doi: 10.1109/ACCESS.2020.3004152
– ident: e_1_3_2_12_1
  doi: 10.1109/ACCESS.2021.3117117
– ident: e_1_3_2_37_1
  doi: 10.1109/ICHCI51889.2020.00042
– ident: e_1_3_2_39_1
  doi: 10.1109/ACCESS.2021.3080837
– ident: e_1_3_2_9_1
  doi: 10.3217/jucs-021-01-0023
– ident: e_1_3_2_13_1
  doi: 10.1109/ACCESS.2021.3083518
– start-page: 1
  year: 2021
  ident: e_1_3_2_19_1
  article-title: Evaluating human-AI hybrid conversational systems with chatbot message suggestions
  publication-title: International Conference on Information and Knowledge Management
– ident: e_1_3_2_31_1
  doi: 10.1140/epjds/s13688-018-0138-8
– ident: e_1_3_2_59_1
  doi: 10.1109/ICUS50048.2020.9274820
– ident: e_1_3_2_24_1
  doi: 10.1177/2329490615606733
– ident: e_1_3_2_56_1
  doi: 10.1109/TE.2020.3008751
– ident: e_1_3_2_38_1
  doi: 10.1080/01969722.2022.2137640
– volume: 6
  start-page: 1786
  year: 2019
  ident: e_1_3_2_48_1
  article-title: A survey paper on chatbots
  publication-title: International Research Journal of Engineering and Technology
– ident: e_1_3_2_61_1
  doi: 10.2991/iceemt-16.2016.94
– ident: e_1_3_2_29_1
  doi: 10.1109/TLT.2019.2911070
– ident: e_1_3_2_55_1
  doi: 10.4236/jcc.2021.98005
– ident: e_1_3_2_26_1
  doi: 10.1109/TIM.2022.3184353
– ident: e_1_3_2_22_1
  doi: 10.1007/s10639-021-10523-1
– ident: e_1_3_2_43_1
  doi: 10.1145/3471988.3471990
– ident: e_1_3_2_58_1
  doi: 10.1109/CcS49175.2020.9231474
– ident: e_1_3_2_20_1
  doi: 10.1109/ACCESS.2021.3115851
– ident: e_1_3_2_44_1
  doi: 10.1109/TKDE.2019.2906173
– ident: e_1_3_2_50_1
  doi: 10.1109/PerComWorkshops51409.2021.9431031
– start-page: 173
  year: 2020
  ident: e_1_3_2_34_1
  article-title: Development of an e-commerce sales chatbot. Smart Communities: Improving Quality of Life Using ICT
  publication-title: IoT and AI
– ident: e_1_3_2_53_1
  doi: 10.1109/FIE43999.2019.9028545
– ident: e_1_3_2_49_1
  doi: 10.1109/FG47880.2020.00011
– ident: e_1_3_2_57_1
– ident: e_1_3_2_62_1
  doi: 10.1109/ACCESS.2020.2976898
– ident: e_1_3_2_52_1
  doi: 10.1109/TFUZZ.2021.3057705
– ident: e_1_3_2_16_1
  doi: 10.1108/13665620810852250
– ident: e_1_3_2_15_1
  doi: 10.1109/TETC.2020.2974478
– ident: e_1_3_2_40_1
  doi: 10.1109/ACCESS.2020.3016142
– ident: e_1_3_2_5_1
  doi: 10.1080/10494820.2021.1928235
– ident: e_1_3_2_54_1
  doi: 10.1109/ACCESS.2020.2988252
– ident: e_1_3_2_27_1
  doi: 10.1109/TIM.2022.3184353
– ident: e_1_3_2_28_1
  doi: 10.1109/ACCESS.2020.3042775
SSID ssj0014364
Score 2.3376102
SecondaryResourceType review_article
Snippet Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took...
Students are termed “multitaskers,” and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 5779
SubjectTerms Accuracy
Algorithms
CAI
Chi-square test
Classrooms
Clusters
Computer assisted instruction
Course Content
Distance learning
dropout
Dropout Rate
Educational Environment
Electronic Learning
live behavior analysis
Machine learning
online learning
online poll bot
optimal behavior prediction cluster
Psychological Patterns
Recommender systems
Student Surveys
Students
Students behaviors
Teachers
Virtual environments
Title Performance analysis of study material recommendation system to reduce dropout in online learning using optimal behavior prediction cluster and online poll bot
URI https://www.tandfonline.com/doi/abs/10.1080/10494820.2023.2232823
https://www.proquest.com/docview/3129874644
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW7YUL4ikKBfnAbZWQ2M6uc0QItKoEQrCVeotsx64quklVkh74M_wI_iDjVx5qJV6XaOWsnWjn2_HMeOYbhF7BlrvhktnSrYIlTFGWgGfLE224zorCSMJtNfKHj-vtCTs-LU4Xi5-TrKW-k6n6fmtdyb9IFcZArrZK9i8kOywKA_AZ5AtXkDBc_0jGn2ZZ_yO7iOOMXYEt6l5iZZ3e_V6H9kmBvNkanVeWt1WvatspoXe9AjxxRuwlcbbqXSihBb2yh4ViTb9lFqjPfZNxddFbrgV3CBFmXwK2VrKdRf1d5FE45TquPq2yG0I9oOB0cwZbqDNrv6TDDX1xLb7GjPDJuD2DuhbfQiQ3ncYxCLMbAMkG5M0ToLwyBu8lYTx8SfuxDWMJWJ35VIOPEdI-5qh7dVxsfKeasLUX3LGi3tw2fJ5l7rhySJbalvIp2E3gjtJxnxyyF8OdO-iAgG9Cluhg9_l4ux0Orxh1rGXD68fCMZ69vvURM5NoRph7w0BwVs_uProX3BX8xmPvAVro5qHt9B2ygh6hHxMM4ohB3BrsMIgjBvEcg9hjEHct9hjEAYP4vMEeRTiiBDsM4oBBHDGIRwzigEF4fh1nWwxiwOBjdPL-3e7tNglNPxJF-LpLiBImF4IKCs61oprXPCtpnZvMKJ5rIyglJl9LsKsVydZaabHWXElNJYFBSZ-gZdM2-inCpCwUL5UQqoCtSTFuSgneATEll5tMZocojb97dem5Xao8UOZGQVVWUFUQ1CEqp9KpOhdUM74DTkV_M_coirIKKsROIaAZGfgkz_5j6efo7viHOkLL7qrXL8BU7uTLAM1fduPD7A
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagPcCFXV6i0IU5cE2U2E7qHBHaKlvaCqGutLfIdu0KQZtqlV74M_xVZhKH3S5Ce9hTpFgzSZzxPOyZbxj7iCZ3ooyk0q1MRtIKGWFkqyLnlUuyzBuuqBp5sczLSzm7yq5u1cJQWiXF0L4Dimh1NS1u2ozuU-LwSqAmPImp93eMBg7jBvGYDbNCCgzAhqtvs7L8e5YgRQsiRUQRUfV1PP9jdGShjvBL_9HXrRGanjDbv36Xe_IjPjQmtr_uIDs-7PtO2bPgo8KnTqies0du94LaO4dUkJfs99ebcgPQAdYEag8tWC2gE9zKNVC0vd260LcJOtRoaGocQGYO1tSi4dDA9x10LwqhicUGKB9_AzUqtC0y6sEEYH9NB0stN_vzQCAP-Px1T71HoQZTN6_Y5fR89bmMQqeHyHKVNxG32qdaCy0worLCqbVKCrFOfeKtSp3XQnCf5gadKcuT3Fmnc6esccJwvGnEazbY1Tv3hgEvMqsKq7XNUB9ZqXxh0CXkvlBmkphkxOL-71b7DtCjSgNOaj_vFc17FeZ9xIrbMlA17U6K79qeVOIe2nEvMFXQDUTCcTlIdETfPoD1B_akXC3m1fxi-eUde4pDkkwqT8Zs0Fwf3Bn6So15HxbDH4igC1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SIhLC6UIKC1z6DVRYjvBOVYtq-UphEDiFtmOjRDsZkWzl_6Z_lVmErtAUdUDp0ixZuI443nEM98w9hVN7r4ykkq3CplIK2SCka1KnFcuKwpvuKJq5NOzcnwlj66LmE34M6RVUgztB6CIXlfT5p41PmbE4ZUwTXiWUuvvFO0bhg1ikS2XaI9QyJcvL47G4z9HCVL0GFJElBBVLOP5F6MXBuoFfOkrdd3boNF7ZuLsh9STu3TemdT--gvY8U2vt8beBQ8Vvg0itc4W3PQDNXcOiSAb7Pf5U7EB6ABqAq2HHqoW0AXupRoo1p5MXOjaBANmNHQtDiAzBw01aJh3cDuFYZ4QWljcAGXj30CL6myCjCKUAMwe6Fip52bv5wTxgM9vIvUMRRpM231kV6ODy-_jJPR5SCxXZZdwq32utdAC4ykrnGpUVokm95m3KndeC8F9Xhp0pSzPSmedLp2yxgnD8aYRm2xp2k7dFgNeFVZVVmtboDayUvnKoEPIfaXMfmaybZbGj1vPBjiPOg8oqXHda1r3Oqz7Nquei0Dd9f9R_ND0pBb_od2N8lIHzUAkHDeDRDd05w2s99jK-Y9RfXJ4dvyJreKIJHvKs1221D3M3Wd0lDrzJWyFRzwwCfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+study+material+recommendation+system+to+reduce+dropout+in+online+learning+using+optimal+behavior+prediction+cluster+and+online+poll+bot&rft.jtitle=Interactive+learning+environments&rft.au=Sageengrana%2C+S.&rft.au=Selvakumar%2C+S.&rft.au=Srinivasan%2C+S.&rft.date=2024-10-20&rft.pub=Routledge&rft.issn=1049-4820&rft.eissn=1744-5191&rft.volume=32&rft.issue=9&rft.spage=5779&rft.epage=5800&rft_id=info:doi/10.1080%2F10494820.2023.2232823&rft.externalDocID=2232823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-4820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-4820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-4820&client=summon