Performance analysis of study material recommendation system to reduce dropout in online learning using optimal behavior prediction cluster and online poll bot
Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations rec...
Saved in:
Published in | Interactive learning environments Vol. 32; no. 9; pp. 5779 - 5800 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Routledge
20.10.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations receive materials from their leftovers, and their constant behavioral classification has decided the material to learn. The rate at which many students gave up on their studies was predominantly higher in online classroom than in offline classroom due to the lack of direct interaction between the students and teachers. To eradicate this and to make online classroom an effective one, the proposed model can be put forth in each class to predict the student's behavior based on their keen interests. The model predicts and recommends their live session-wise apt course materials to learn. This model uses machine learning generic algorithms and the chi-square test to analyze their manners. The intelligent Online Poll Bot (OPB) acts as a teacher in this virtual learning environment by engaging in live interactions during class time. It is developed using GAN and the IBM Watson Framework. This paper analyzes the time complexity and accuracy of the developed poll bot, and 96.82% accuracy was achieved with the proposed GAN-based poll bot. Students can be categorized according to their learning behavior by using the Optimal Behavior Prediction Cluster (OBPC). These OBPCs will let know the number of clusters at the beginning of the process itself. According to the model, the study materials are preferred based on the students' performance in each class. In online learning environments, the Live Behavior Analysis (LBA) method using the proposed OBPC and OPB can create interactive learning environments and deliver behavior-based study materials to learners, thus reducing dropout rates. The proposed experiments show that the accuracy of the OBPC-based system is 97.43%, and LBA produces 96.52% accuracy, 95.13% F-Score, 97.13% recall, and 96.14% precision compared to existing approaches. This technology will reduce the number of dropouts and can effectively predict the behavior of all students in the virtual environment where they are placed. |
---|---|
AbstractList | Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took heed or gave close and thoughtful attention to the lectures they were on. In the current educational system, our young generations receive materials from their leftovers, and their constant behavioral classification has decided the material to learn. The rate at which many students gave up on their studies was predominantly higher in online classroom than in offline classroom due to the lack of direct interaction between the students and teachers. To eradicate this and to make online classroom an effective one, the proposed model can be put forth in each class to predict the student's behavior based on their keen interests. The model predicts and recommends their live session-wise apt course materials to learn. This model uses machine learning generic algorithms and the chi-square test to analyze their manners. The intelligent Online Poll Bot (OPB) acts as a teacher in this virtual learning environment by engaging in live interactions during class time. It is developed using GAN and the IBM Watson Framework. This paper analyzes the time complexity and accuracy of the developed poll bot, and 96.82% accuracy was achieved with the proposed GAN-based poll bot. Students can be categorized according to their learning behavior by using the Optimal Behavior Prediction Cluster (OBPC). These OBPCs will let know the number of clusters at the beginning of the process itself. According to the model, the study materials are preferred based on the students' performance in each class. In online learning environments, the Live Behavior Analysis (LBA) method using the proposed OBPC and OPB can create interactive learning environments and deliver behavior-based study materials to learners, thus reducing dropout rates. The proposed experiments show that the accuracy of the OBPC-based system is 97.43%, and LBA produces 96.52% accuracy, 95.13% F-Score, 97.13% recall, and 96.14% precision compared to existing approaches. This technology will reduce the number of dropouts and can effectively predict the behavior of all students in the virtual environment where they are placed. |
Author | Selvakumar, S. Sageengrana, S. Srinivasan, S. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0001-8229-6738 surname: Sageengrana fullname: Sageengrana, S. email: sageengranadhas@gmail.com organization: Anna University Research Scholar, Information Technology, Sathyabama Institute of Science and Technology – sequence: 2 givenname: S. surname: Selvakumar fullname: Selvakumar, S. organization: Visvesvaraya College of Engineering Technology – sequence: 3 givenname: S. surname: Srinivasan fullname: Srinivasan, S. organization: R.M.D Engineering College |
BookMark | eNp9kU1vFiEUhYmpif36CSYkrueVr06ZnabRatJEF3ZNGOaiNAx3BEYzv8a_WqZvu3UDBJ5zbjjnjJwkTEDIW84OnGn2njM1KC3YQTAhD0JIoYV8RU75tVLdFR_4STs3ptuhN-SslAfGuJK9OiX_vkP2mGebHFCbbNxKKBQ9LXWdNjrbCjnYSDM4nGdIk60BEy1bqTDTiu1hWpt0yrjgWmlIFFMMCWgEm1NIP-la9hWXGuZmNMIv-ydgpktTBvfk5uLa7HKbP72oF4yNxXpBXnsbC1w-7-fk_vOnHzdfurtvt19vPt51Tui-dsJZz62VVrKhdxL0pNkgJ-6Zd5qDt1IKz_txGKQTrAcHtgftRpCjaJejPCfvjr5Lxt8rlGoecM0tj2IkF4O-Vr1Sjbo6Ui5jKRm8WXL7Vd4MZ2bvwrx0YfYuzHMXTffhqAvpKey_mONkqt0iZp9b9mEf81-LR5SKl4A |
Cites_doi | 10.1109/RITA.2021.3089925 10.1109/CAIDA51941.2021.9425208 10.1109/ACCESS.2019.2956019 10.1109/ESCI48226.2020.9167547 10.1109/ACCESS.2022.3171807 10.1109/TE.2020.3008751 10.1109/TSE.2021.3078384 10.1109/TLT.2017.2720738 10.1109/ICICV50876.2021.9388633 10.1109/TLT.2018.2793193 10.1109/ICNSC48988.2020.9238052 10.1109/ACCESS.2020.2984591 10.1109/RITA.2020.2987727 10.1109/IC3.2016.7880242 10.1109/ACCESS.2020.3045157 10.1111/jcal.12555 10.1109/ACCESS.2021.3100890 10.24191/ajue.v17i3.14514 10.1108/13665620210412795 10.1109/ACCESS.2020.3036572 10.1109/TLT.2021.3103331 10.1109/ACCESS.2020.3024102 10.1109/ISNCC49221.2020.9297176 10.1109/ACCESS.2022.3160177 10.1109/ACCESS.2022.3141992 10.1109/ACCESS.2020.3004152 10.1109/ACCESS.2021.3117117 10.1109/ICHCI51889.2020.00042 10.1109/ACCESS.2021.3080837 10.3217/jucs-021-01-0023 10.1109/ACCESS.2021.3083518 10.1140/epjds/s13688-018-0138-8 10.1109/ICUS50048.2020.9274820 10.1177/2329490615606733 10.1080/01969722.2022.2137640 10.2991/iceemt-16.2016.94 10.1109/TLT.2019.2911070 10.4236/jcc.2021.98005 10.1109/TIM.2022.3184353 10.1007/s10639-021-10523-1 10.1145/3471988.3471990 10.1109/CcS49175.2020.9231474 10.1109/ACCESS.2021.3115851 10.1109/TKDE.2019.2906173 10.1109/PerComWorkshops51409.2021.9431031 10.1109/FIE43999.2019.9028545 10.1109/FG47880.2020.00011 10.1109/ACCESS.2020.2976898 10.1109/TFUZZ.2021.3057705 10.1108/13665620810852250 10.1109/TETC.2020.2974478 10.1109/ACCESS.2020.3016142 10.1080/10494820.2021.1928235 10.1109/ACCESS.2020.2988252 10.1109/ACCESS.2020.3042775 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION AHOVV |
DOI | 10.1080/10494820.2023.2232823 |
DatabaseName | CrossRef Education Research Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education |
EISSN | 1744-5191 |
EndPage | 5800 |
ExternalDocumentID | 10_1080_10494820_2023_2232823 2232823 |
Genre | Review Article |
GroupedDBID | .7I .DC .QK 0BK 0R~ 29J 4.4 5VS AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZJI AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACTIO ACTOA ADAHI ADCVX ADKVQ ADLRE ADXPE ADYSH AECIN AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AGDLA AGMYJ AGRBW AHDZW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS E~B E~C G-F GTTXZ HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z NA5 NX. O9- P2P PQQKQ RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TED TFH TFL TFW TNTFI TRJHH TUROJ UT5 UT9 VAE ~01 ~S~ AAGDL AAHIA AAYXX AEFOU AFRVT AIYEW AMPGV CITATION H13 AHOVV TASJS |
ID | FETCH-LOGICAL-c286t-2caf1aa3a3096c3e8d8093d1f0fc81efa332f16b993c206ecea6e8cbe3b2b99b3 |
ISSN | 1049-4820 |
IngestDate | Sun Jul 27 14:10:33 EDT 2025 Tue Jul 01 05:25:28 EDT 2025 Thu Mar 06 04:56:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-2caf1aa3a3096c3e8d8093d1f0fc81efa332f16b993c206ecea6e8cbe3b2b99b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8229-6738 |
PQID | 3129874644 |
PQPubID | 436408 |
PageCount | 22 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10494820_2023_2232823 crossref_primary_10_1080_10494820_2023_2232823 proquest_journals_3129874644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-20 |
PublicationDateYYYYMMDD | 2024-10-20 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Interactive learning environments |
PublicationYear | 2024 |
Publisher | Routledge Taylor & Francis Ltd |
Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_62_1 e_1_3_2_60_1 Shaikh A. (e_1_3_2_48_1) 2019; 6 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_3_1 Gao Z. (e_1_3_2_19_1) 2021 e_1_3_2_50_1 Felder R. (e_1_3_2_17_1) 1988; 78 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 Khan M. (e_1_3_2_34_1) 2020 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_61_1 e_1_3_2_40_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_59_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 e_1_3_2_51_1 |
References_xml | – ident: e_1_3_2_47_1 doi: 10.1109/RITA.2021.3089925 – ident: e_1_3_2_6_1 doi: 10.1109/CAIDA51941.2021.9425208 – ident: e_1_3_2_18_1 doi: 10.1109/ACCESS.2019.2956019 – ident: e_1_3_2_25_1 doi: 10.1109/ESCI48226.2020.9167547 – ident: e_1_3_2_33_1 doi: 10.1109/ACCESS.2022.3171807 – ident: e_1_3_2_36_1 doi: 10.1109/TE.2020.3008751 – ident: e_1_3_2_2_1 doi: 10.1109/TSE.2021.3078384 – ident: e_1_3_2_41_1 doi: 10.1109/TLT.2017.2720738 – ident: e_1_3_2_32_1 doi: 10.1109/ICICV50876.2021.9388633 – ident: e_1_3_2_14_1 doi: 10.1109/TLT.2018.2793193 – ident: e_1_3_2_30_1 doi: 10.1109/ICNSC48988.2020.9238052 – ident: e_1_3_2_46_1 doi: 10.1109/ACCESS.2020.2984591 – ident: e_1_3_2_10_1 doi: 10.1109/RITA.2020.2987727 – ident: e_1_3_2_4_1 doi: 10.1109/IC3.2016.7880242 – ident: e_1_3_2_63_1 doi: 10.1109/ACCESS.2020.3045157 – ident: e_1_3_2_51_1 doi: 10.1111/jcal.12555 – volume: 78 start-page: 674 year: 1988 ident: e_1_3_2_17_1 article-title: Learning and teaching styles in engineering education publication-title: Engineering Education – ident: e_1_3_2_23_1 doi: 10.1109/ACCESS.2021.3100890 – ident: e_1_3_2_7_1 doi: 10.24191/ajue.v17i3.14514 – ident: e_1_3_2_8_1 doi: 10.1108/13665620210412795 – ident: e_1_3_2_3_1 doi: 10.1109/ACCESS.2020.3036572 – ident: e_1_3_2_35_1 doi: 10.1109/TLT.2021.3103331 – ident: e_1_3_2_11_1 doi: 10.1109/ACCESS.2020.3024102 – ident: e_1_3_2_21_1 doi: 10.1109/ISNCC49221.2020.9297176 – ident: e_1_3_2_42_1 doi: 10.1109/ACCESS.2022.3160177 – ident: e_1_3_2_45_1 doi: 10.1109/ACCESS.2022.3141992 – ident: e_1_3_2_60_1 doi: 10.1109/ACCESS.2020.3004152 – ident: e_1_3_2_12_1 doi: 10.1109/ACCESS.2021.3117117 – ident: e_1_3_2_37_1 doi: 10.1109/ICHCI51889.2020.00042 – ident: e_1_3_2_39_1 doi: 10.1109/ACCESS.2021.3080837 – ident: e_1_3_2_9_1 doi: 10.3217/jucs-021-01-0023 – ident: e_1_3_2_13_1 doi: 10.1109/ACCESS.2021.3083518 – start-page: 1 year: 2021 ident: e_1_3_2_19_1 article-title: Evaluating human-AI hybrid conversational systems with chatbot message suggestions publication-title: International Conference on Information and Knowledge Management – ident: e_1_3_2_31_1 doi: 10.1140/epjds/s13688-018-0138-8 – ident: e_1_3_2_59_1 doi: 10.1109/ICUS50048.2020.9274820 – ident: e_1_3_2_24_1 doi: 10.1177/2329490615606733 – ident: e_1_3_2_56_1 doi: 10.1109/TE.2020.3008751 – ident: e_1_3_2_38_1 doi: 10.1080/01969722.2022.2137640 – volume: 6 start-page: 1786 year: 2019 ident: e_1_3_2_48_1 article-title: A survey paper on chatbots publication-title: International Research Journal of Engineering and Technology – ident: e_1_3_2_61_1 doi: 10.2991/iceemt-16.2016.94 – ident: e_1_3_2_29_1 doi: 10.1109/TLT.2019.2911070 – ident: e_1_3_2_55_1 doi: 10.4236/jcc.2021.98005 – ident: e_1_3_2_26_1 doi: 10.1109/TIM.2022.3184353 – ident: e_1_3_2_22_1 doi: 10.1007/s10639-021-10523-1 – ident: e_1_3_2_43_1 doi: 10.1145/3471988.3471990 – ident: e_1_3_2_58_1 doi: 10.1109/CcS49175.2020.9231474 – ident: e_1_3_2_20_1 doi: 10.1109/ACCESS.2021.3115851 – ident: e_1_3_2_44_1 doi: 10.1109/TKDE.2019.2906173 – ident: e_1_3_2_50_1 doi: 10.1109/PerComWorkshops51409.2021.9431031 – start-page: 173 year: 2020 ident: e_1_3_2_34_1 article-title: Development of an e-commerce sales chatbot. Smart Communities: Improving Quality of Life Using ICT publication-title: IoT and AI – ident: e_1_3_2_53_1 doi: 10.1109/FIE43999.2019.9028545 – ident: e_1_3_2_49_1 doi: 10.1109/FG47880.2020.00011 – ident: e_1_3_2_57_1 – ident: e_1_3_2_62_1 doi: 10.1109/ACCESS.2020.2976898 – ident: e_1_3_2_52_1 doi: 10.1109/TFUZZ.2021.3057705 – ident: e_1_3_2_16_1 doi: 10.1108/13665620810852250 – ident: e_1_3_2_15_1 doi: 10.1109/TETC.2020.2974478 – ident: e_1_3_2_40_1 doi: 10.1109/ACCESS.2020.3016142 – ident: e_1_3_2_5_1 doi: 10.1080/10494820.2021.1928235 – ident: e_1_3_2_54_1 doi: 10.1109/ACCESS.2020.2988252 – ident: e_1_3_2_27_1 doi: 10.1109/TIM.2022.3184353 – ident: e_1_3_2_28_1 doi: 10.1109/ACCESS.2020.3042775 |
SSID | ssj0014364 |
Score | 2.3376102 |
SecondaryResourceType | review_article |
Snippet | Students are termed "multitaskers," and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took... Students are termed “multitaskers,” and it is likely that they easily fall prey to other subjects or topics that most interest them. They occasionally took... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5779 |
SubjectTerms | Accuracy Algorithms CAI Chi-square test Classrooms Clusters Computer assisted instruction Course Content Distance learning dropout Dropout Rate Educational Environment Electronic Learning live behavior analysis Machine learning online learning online poll bot optimal behavior prediction cluster Psychological Patterns Recommender systems Student Surveys Students Students behaviors Teachers Virtual environments |
Title | Performance analysis of study material recommendation system to reduce dropout in online learning using optimal behavior prediction cluster and online poll bot |
URI | https://www.tandfonline.com/doi/abs/10.1080/10494820.2023.2232823 https://www.proquest.com/docview/3129874644 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW7YUL4ikKBfnAbZWQ2M6uc0QItKoEQrCVeotsx64quklVkh74M_wI_iDjVx5qJV6XaOWsnWjn2_HMeOYbhF7BlrvhktnSrYIlTFGWgGfLE224zorCSMJtNfKHj-vtCTs-LU4Xi5-TrKW-k6n6fmtdyb9IFcZArrZK9i8kOywKA_AZ5AtXkDBc_0jGn2ZZ_yO7iOOMXYEt6l5iZZ3e_V6H9kmBvNkanVeWt1WvatspoXe9AjxxRuwlcbbqXSihBb2yh4ViTb9lFqjPfZNxddFbrgV3CBFmXwK2VrKdRf1d5FE45TquPq2yG0I9oOB0cwZbqDNrv6TDDX1xLb7GjPDJuD2DuhbfQiQ3ncYxCLMbAMkG5M0ToLwyBu8lYTx8SfuxDWMJWJ35VIOPEdI-5qh7dVxsfKeasLUX3LGi3tw2fJ5l7rhySJbalvIp2E3gjtJxnxyyF8OdO-iAgG9Cluhg9_l4ux0Orxh1rGXD68fCMZ69vvURM5NoRph7w0BwVs_uProX3BX8xmPvAVro5qHt9B2ygh6hHxMM4ohB3BrsMIgjBvEcg9hjEHct9hjEAYP4vMEeRTiiBDsM4oBBHDGIRwzigEF4fh1nWwxiwOBjdPL-3e7tNglNPxJF-LpLiBImF4IKCs61oprXPCtpnZvMKJ5rIyglJl9LsKsVydZaabHWXElNJYFBSZ-gZdM2-inCpCwUL5UQqoCtSTFuSgneATEll5tMZocojb97dem5Xao8UOZGQVVWUFUQ1CEqp9KpOhdUM74DTkV_M_coirIKKsROIaAZGfgkz_5j6efo7viHOkLL7qrXL8BU7uTLAM1fduPD7A |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagPcCFXV6i0IU5cE2U2E7qHBHaKlvaCqGutLfIdu0KQZtqlV74M_xVZhKH3S5Ce9hTpFgzSZzxPOyZbxj7iCZ3ooyk0q1MRtIKGWFkqyLnlUuyzBuuqBp5sczLSzm7yq5u1cJQWiXF0L4Dimh1NS1u2ozuU-LwSqAmPImp93eMBg7jBvGYDbNCCgzAhqtvs7L8e5YgRQsiRUQRUfV1PP9jdGShjvBL_9HXrRGanjDbv36Xe_IjPjQmtr_uIDs-7PtO2bPgo8KnTqies0du94LaO4dUkJfs99ebcgPQAdYEag8tWC2gE9zKNVC0vd260LcJOtRoaGocQGYO1tSi4dDA9x10LwqhicUGKB9_AzUqtC0y6sEEYH9NB0stN_vzQCAP-Px1T71HoQZTN6_Y5fR89bmMQqeHyHKVNxG32qdaCy0worLCqbVKCrFOfeKtSp3XQnCf5gadKcuT3Fmnc6esccJwvGnEazbY1Tv3hgEvMqsKq7XNUB9ZqXxh0CXkvlBmkphkxOL-71b7DtCjSgNOaj_vFc17FeZ9xIrbMlA17U6K79qeVOIe2nEvMFXQDUTCcTlIdETfPoD1B_akXC3m1fxi-eUde4pDkkwqT8Zs0Fwf3Bn6So15HxbDH4igC1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SIhLC6UIKC1z6DVRYjvBOVYtq-UphEDiFtmOjRDsZkWzl_6Z_lVmErtAUdUDp0ixZuI443nEM98w9hVN7r4ykkq3CplIK2SCka1KnFcuKwpvuKJq5NOzcnwlj66LmE34M6RVUgztB6CIXlfT5p41PmbE4ZUwTXiWUuvvFO0bhg1ikS2XaI9QyJcvL47G4z9HCVL0GFJElBBVLOP5F6MXBuoFfOkrdd3boNF7ZuLsh9STu3TemdT--gvY8U2vt8beBQ8Vvg0itc4W3PQDNXcOiSAb7Pf5U7EB6ABqAq2HHqoW0AXupRoo1p5MXOjaBANmNHQtDiAzBw01aJh3cDuFYZ4QWljcAGXj30CL6myCjCKUAMwe6Fip52bv5wTxgM9vIvUMRRpM231kV6ODy-_jJPR5SCxXZZdwq32utdAC4ykrnGpUVokm95m3KndeC8F9Xhp0pSzPSmedLp2yxgnD8aYRm2xp2k7dFgNeFVZVVmtboDayUvnKoEPIfaXMfmaybZbGj1vPBjiPOg8oqXHda1r3Oqz7Nquei0Dd9f9R_ND0pBb_od2N8lIHzUAkHDeDRDd05w2s99jK-Y9RfXJ4dvyJreKIJHvKs1221D3M3Wd0lDrzJWyFRzwwCfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+study+material+recommendation+system+to+reduce+dropout+in+online+learning+using+optimal+behavior+prediction+cluster+and+online+poll+bot&rft.jtitle=Interactive+learning+environments&rft.au=Sageengrana%2C+S.&rft.au=Selvakumar%2C+S.&rft.au=Srinivasan%2C+S.&rft.date=2024-10-20&rft.pub=Routledge&rft.issn=1049-4820&rft.eissn=1744-5191&rft.volume=32&rft.issue=9&rft.spage=5779&rft.epage=5800&rft_id=info:doi/10.1080%2F10494820.2023.2232823&rft.externalDocID=2232823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-4820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-4820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-4820&client=summon |