Soil organic nitrogen priming to nitrous oxide: A synthesis

The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mine...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 189; p. 109254
Main Authors Daly, Erin J., Hernandez-Ramirez, Guillermo, Congreves, Kate A., Clough, Tim, Voigt, Carolina, Harris, Eliza, Ruser, Reiner
Format Journal Article
LanguageEnglish
Published 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mineralization, but fewer publications have focused on how the PE affects the soil N cycle and nitrous oxide (N₂O) production from soil organic N mineralization (SOM-N), despite the potency of N₂O as a greenhouse gas and ability to destroy stratospheric ozone. This review summarizes our current understanding of how the PE can alter the rates of SOM-N mineralization and subsequently amplify, diminish, or maintain N₂O production in and release from soils, henceforth referred to as N₂O priming. Additionally, the concept of process priming, the differential augmentation of N₂O-producing processes (e.g. priming of nitrification) is introduced. Diverse results across studies suggest that the mechanisms of N₂O priming cannot be fully explained by a single hypothesis, and it is currently unclear how significant the contribution of N₂O priming to net N₂O emissions is, but a preliminary estimate suggests that N₂O emissions resulting from priming mechanisms can range from -39 – 76% following C and N amendments compared to a control. To disentangle the complexity of N₂O priming, an expansion of current research efforts is required. The promotion of open data sharing and publication of full datasets will facilitate the development and validation of models that can accurately simulate the complexity of soil N dynamics and account for the feedback effects of climate change on N₂O priming, which is a key research gap. This is particularly the case in under-studied areas such as permafrost-affected soils of arctic, subarctic, and alpine regions, and vulnerable tropical regions, where climate warming may amplify N₂O priming.
AbstractList The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mineralization, but fewer publications have focused on how the PE affects the soil N cycle and nitrous oxide (N₂O) production from soil organic N mineralization (SOM-N), despite the potency of N₂O as a greenhouse gas and ability to destroy stratospheric ozone. This review summarizes our current understanding of how the PE can alter the rates of SOM-N mineralization and subsequently amplify, diminish, or maintain N₂O production in and release from soils, henceforth referred to as N₂O priming. Additionally, the concept of process priming, the differential augmentation of N₂O-producing processes (e.g. priming of nitrification) is introduced. Diverse results across studies suggest that the mechanisms of N₂O priming cannot be fully explained by a single hypothesis, and it is currently unclear how significant the contribution of N₂O priming to net N₂O emissions is, but a preliminary estimate suggests that N₂O emissions resulting from priming mechanisms can range from -39 – 76% following C and N amendments compared to a control. To disentangle the complexity of N₂O priming, an expansion of current research efforts is required. The promotion of open data sharing and publication of full datasets will facilitate the development and validation of models that can accurately simulate the complexity of soil N dynamics and account for the feedback effects of climate change on N₂O priming, which is a key research gap. This is particularly the case in under-studied areas such as permafrost-affected soils of arctic, subarctic, and alpine regions, and vulnerable tropical regions, where climate warming may amplify N₂O priming.
ArticleNumber 109254
Author Voigt, Carolina
Clough, Tim
Ruser, Reiner
Harris, Eliza
Congreves, Kate A.
Daly, Erin J.
Hernandez-Ramirez, Guillermo
Author_xml – sequence: 1
  givenname: Erin J.
  orcidid: 0000-0001-7061-9405
  surname: Daly
  fullname: Daly, Erin J.
– sequence: 2
  givenname: Guillermo
  surname: Hernandez-Ramirez
  fullname: Hernandez-Ramirez, Guillermo
– sequence: 3
  givenname: Kate A.
  surname: Congreves
  fullname: Congreves, Kate A.
– sequence: 4
  givenname: Tim
  surname: Clough
  fullname: Clough, Tim
– sequence: 5
  givenname: Carolina
  surname: Voigt
  fullname: Voigt, Carolina
– sequence: 6
  givenname: Eliza
  surname: Harris
  fullname: Harris, Eliza
– sequence: 7
  givenname: Reiner
  surname: Ruser
  fullname: Ruser, Reiner
BookMark eNqFkD1PwzAQhj0UiRb4CUgZWVLOdhw7dKoqvqRKDMBs2Y5TXKV2sV2J_ntSpRML00mv3ud098zQxAdvEbrFMMeA6_vtPAXXaxfmBAgdsoawaoKmAFSUwDG_RLOUtgBAGKZTtHgf6kWIG-WdKbzLMWysL_bR7ZzfFDmM2SEV4ce19qFYFuno85dNLl2ji071yd6c5xX6fHr8WL2U67fn19VyXRoi6lziihDBdKdMVwHjTLfQ1VoIDRSLBrDWBINpOVECVw1XQnRWtC0FbQwnWNErdDfu3cfwfbApy51Lxva98na4TFLMaA2CNnyosrFqYkgp2k6ePlHxKDHIkyC5lWdB8iRIjoIGbvGHMy6r7ILPUbn-H_oXucBzVg
CitedBy_id crossref_primary_10_3390_su16104120
crossref_primary_10_1038_s43247_024_01680_5
crossref_primary_10_1111_sum_13136
crossref_primary_10_1016_j_fcr_2024_109406
crossref_primary_10_1016_j_geoderma_2025_117195
crossref_primary_10_1016_j_agee_2024_109031
crossref_primary_10_1016_j_scitotenv_2024_176342
crossref_primary_10_3390_agronomy15010115
crossref_primary_10_1016_j_csag_2024_100010
Cites_doi 10.1111/j.1574-6941.2010.00856.x
10.1016/j.copbio.2016.01.014
10.1016/j.scitotenv.2018.03.116
10.1111/j.1365-2486.2005.00973.x
10.1016/j.soilbio.2007.07.016
10.1016/j.soilbio.2018.05.024
10.1016/j.soilbio.2014.02.007
10.1016/j.soilbio.2010.04.005
10.1007/s00374-008-0334-y
10.1002/jpln.201700312
10.1016/j.soilbio.2018.04.003
10.1111/1365-2435.14038
10.1016/j.soilbio.2015.02.019
10.1016/j.soilbio.2005.06.025
10.2136/sssaj1988.03615995005200050021x
10.1111/gcb.13648
10.1007/s10533-021-00880-x
10.2307/1938918
10.1016/j.still.2006.08.006
10.1111/1758-2229.12816
10.3389/fsufs.2020.614349
10.1007/s10705-010-9346-8
10.1007/s11104-021-05241-z
10.1016/j.soilbio.2014.06.016
10.1111/j.1365-2486.2012.02779.x
10.1038/s41598-021-96559-2
10.1111/gcb.13069
10.1038/s41598-020-70612-y
10.1093/femsec/fiab025
10.1016/j.soilbio.2019.107617
10.1111/j.1462-2920.2008.01701.x
10.1038/s41467-022-32001-z
10.1023/A:1004789407065
10.1002/jeq2.20119
10.1038/s41467-019-11472-7
10.1016/S0038-0717(00)00084-5
10.2136/sssaj2016.08.0269
10.1016/j.apsoil.2018.03.001
10.1007/s00374-020-01435-2
10.1073/pnas.1322434111
10.1111/j.1365-2389.1996.tb01386.x
10.1038/ncomms4694
10.1016/j.scitotenv.2020.142884
10.1111/gcb.12493
10.3763/ghgmm.2010.0007
10.1098/rstb.2013.0122
10.1126/sciadv.abb7118
10.1038/s41467-019-13119-z
10.1016/j.soilbio.2018.05.006
10.5194/soil-5-265-2019
10.1029/95JD02270
10.1016/j.soilbio.2020.107720
10.3390/microorganisms9050983
10.1016/j.geoderma.2019.113979
10.1038/s41467-020-16757-w
10.1088/1748-9326/10/3/034008
10.1016/j.fmre.2021.12.016
10.1016/j.soilbio.2015.01.021
10.1016/j.agee.2011.06.022
10.1007/s11104-021-04872-6
10.1111/gcb.14847
10.1016/j.soilbio.2021.108166
10.1016/j.soilbio.2022.108565
10.1111/j.1365-2389.1991.tb00413.x
10.1097/00010694-192610000-00001
10.1016/S0038-0717(98)00050-9
10.1111/gcb.13296
10.1111/gcb.16345
10.1038/srep09697
10.1007/s11104-016-2958-2
10.1016/j.soilbio.2019.03.027
10.1016/j.soilbio.2023.108961
10.1016/j.agee.2021.107802
10.1038/ngeo2907
10.1016/j.soilbio.2020.107942
10.1002/eap.1745
10.1111/j.1365-2486.2011.02442.x
10.1073/pnas.1702902114
10.1038/s41467-018-08240-4
10.1016/j.soilbio.2017.10.040
10.1071/CP10360
10.1080/00288233.2015.1031405
10.1111/1365-2435.14050
10.1016/j.soilbio.2015.06.001
10.1002/ppp.1958
10.1016/j.scitotenv.2020.139669
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
10.1080/00103624.2018.1431271
10.1016/j.scitotenv.2021.145645
10.1016/j.geoderma.2019.114122
10.1016/j.soilbio.2019.04.003
10.1038/s41598-020-72696-y
10.1016/j.apsoil.2021.104033
10.1016/j.mimet.2007.08.011
10.1002/saj2.20419
10.1016/j.tplants.2022.01.010
10.1111/nph.12440
10.1002/jpln.200421393
10.1016/j.scitotenv.2022.155510
10.1128/AEM.02993-09
10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C
10.1038/srep19865
10.1111/j.1365-2486.2012.02663.x
10.1038/ngeo434
10.1038/nclimate2580
10.1021/ac9904563
10.1016/j.soilbio.2014.04.033
10.1016/j.soilbio.2017.10.013
10.3390/agronomy11040770
10.3390/atmos9040128
10.1007/s10584-011-0122-9
10.1016/j.soilbio.2016.10.002
10.1016/j.apsoil.2019.103401
10.1016/j.soilbio.2015.12.004
10.1139/cjss-2020-0102
10.1016/S0038-0717(97)00094-1
10.2136/sssaj2013.06.0221
10.1016/j.scitotenv.2022.158274
10.1111/gcb.12475
10.1038/s41467-021-27386-2
10.1038/s43017-020-0063-9
10.1016/j.soilbio.2014.01.013
10.1111/gcbb.12730
10.1016/j.agee.2021.107577
10.2136/sssaj2017.03.0093
10.1016/j.soilbio.2019.107573
10.1111/j.1365-2389.1985.tb00348.x
10.1016/j.soilbio.2018.01.003
10.3923/ja.2002.54.59
10.1016/j.soilbio.2010.04.003
10.2134/jeq2013.05.0192
10.1016/j.ecolmodel.2015.10.030
10.3389/fmicb.2012.00407
10.1111/gcb.13563
10.2136/sssaj1992.03615995005600030020x
10.1126/science.1176985
10.1111/gcbb.12462
10.1016/j.cosust.2011.07.002
10.1007/978-3-642-10637-8_23
10.5194/bg-15-703-2018
10.1038/s43247-022-00498-3
10.1016/S0038-0717(02)00169-4
10.1016/S0038-0717(02)00251-1
10.1016/S0038-0717(03)00123-8
10.1016/j.cbpa.2018.09.003
10.1016/j.agee.2017.01.012
10.1016/j.soilbio.2016.11.015
10.2136/sssaj2008.0183
10.1371/journal.pone.0108144
10.1038/s41558-022-01455-w
10.1046/j.1365-2486.1997.00100.x
10.1016/j.soilbio.2005.05.005
10.1016/j.apsoil.2013.10.002
10.1016/j.ejsobi.2018.04.001
10.1128/mbio.03293-21
10.1111/gcb.16750
10.1016/j.soilbio.2018.01.034
10.1016/j.soilbio.2005.08.006
10.2136/sssaj2007.0353
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2023.109254
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
ExternalDocumentID 10_1016_j_soilbio_2023_109254
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSH
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
7S9
L.6
ID FETCH-LOGICAL-c286t-142285bfacf40575bd0f6b88b0318901bb210cd72a81497a88fe8dd30bcc721a3
ISSN 0038-0717
IngestDate Wed Jul 02 04:33:13 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Tue Jul 01 00:54:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-142285bfacf40575bd0f6b88b0318901bb210cd72a81497a88fe8dd30bcc721a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7061-9405
PQID 3153608397
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153608397
crossref_primary_10_1016_j_soilbio_2023_109254
crossref_citationtrail_10_1016_j_soilbio_2023_109254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2024
References Hütsch (10.1016/j.soilbio.2023.109254_bib60) 2002; 165
Konapala (10.1016/j.soilbio.2023.109254_bib70) 2020; 11
Ramm (10.1016/j.soilbio.2023.109254_bib125) 2021
Biskaborn (10.1016/j.soilbio.2023.109254_bib16) 2019; 10
Mehnaz (10.1016/j.soilbio.2023.109254_bib103) 2019; 134
Perveen (10.1016/j.soilbio.2023.109254_bib120) 2019; 134
Sanchez-Martin (10.1016/j.soilbio.2023.109254_bib138) 2008; 40
Flessa (10.1016/j.soilbio.2023.109254_bib43) 1995; 100
Abbott (10.1016/j.soilbio.2023.109254_bib2) 2015; 21
Liu (10.1016/j.soilbio.2023.109254_bib93) 2020; 56
Mooshammer (10.1016/j.soilbio.2023.109254_bib107) 2014; 5
Roman‐Perez (10.1016/j.soilbio.2023.109254_bib133) 2021; 50
Gan (10.1016/j.soilbio.2023.109254_bib47) 2011; 62
Zou (10.1016/j.soilbio.2023.109254_bib173) 2014; 77
Berardi (10.1016/j.soilbio.2023.109254_bib14) 2020; 12
Davidson (10.1016/j.soilbio.2023.109254_bib35) 1991
Qiao (10.1016/j.soilbio.2023.109254_bib124) 2016; 6
Tang (10.1016/j.soilbio.2023.109254_bib150) 2020; 10
Kuzyakov (10.1016/j.soilbio.2023.109254_bib76) 2000; 32
Easterling (10.1016/j.soilbio.2023.109254_bib39) 2017
Fierer (10.1016/j.soilbio.2023.109254_bib41) 2003; 35
Batjes (10.1016/j.soilbio.2023.109254_bib12) 1996; 47
Chen (10.1016/j.soilbio.2023.109254_bib25) 2022; 471
Möller (10.1016/j.soilbio.2023.109254_bib105) 2010; 87
Katulanda (10.1016/j.soilbio.2023.109254_bib64) 2018; 129
Lazcano (10.1016/j.soilbio.2023.109254_bib80) 2021; 9
Putz (10.1016/j.soilbio.2023.109254_bib123) 2018; 123
Blagodatskaya (10.1016/j.soilbio.2023.109254_bib18) 2008; 45
Ingold (10.1016/j.soilbio.2023.109254_bib175) 2018; 49
Zhu (10.1016/j.soilbio.2023.109254_bib171) 2014; 76
Vanden Heuvel (10.1016/j.soilbio.2023.109254_bib158) 1988; 52
Henderson (10.1016/j.soilbio.2023.109254_bib57) 2010; 76
Kemmitt (10.1016/j.soilbio.2023.109254_bib66) 2006; 38
Mganga (10.1016/j.soilbio.2023.109254_bib104) 2018; 87
Baral (10.1016/j.soilbio.2023.109254_bib10) 2017; 239
Hernandez-Ramirez (10.1016/j.soilbio.2023.109254_bib58) 2009; 73
Giles (10.1016/j.soilbio.2023.109254_bib48) 2012; 3
Voigt (10.1016/j.soilbio.2023.109254_bib160) 2017; 114
Ravishankara (10.1016/j.soilbio.2023.109254_bib127) 2009; 326
Thilakarathna (10.1016/j.soilbio.2023.109254_bib151) 2021; 155
Köster (10.1016/j.soilbio.2023.109254_bib71) 2015; 84
Arcand (10.1016/j.soilbio.2023.109254_bib6) 2020; 147
Wen (10.1016/j.soilbio.2023.109254_bib165) 2022; 2
Beermann (10.1016/j.soilbio.2023.109254_bib13) 2017; 28
Buckthought (10.1016/j.soilbio.2023.109254_bib19) 2015; 58
Guardia (10.1016/j.soilbio.2023.109254_bib50) 2018; 116
Risk (10.1016/j.soilbio.2023.109254_bib129) 2014; 78
Russow (10.1016/j.soilbio.2023.109254_bib177) 1996; 32
Chen (10.1016/j.soilbio.2023.109254_bib23) 2014; 20
Lucas (10.1016/j.soilbio.2023.109254_bib97) 2014; 75
Samad (10.1016/j.soilbio.2023.109254_bib137) 2016; 6
Chen (10.1016/j.soilbio.2023.109254_bib24) 2019; 10
Cheng (10.1016/j.soilbio.2023.109254_bib26) 2014; 201
Molstad (10.1016/j.soilbio.2023.109254_bib106) 2007; 71
Takeda (10.1016/j.soilbio.2023.109254_bib149) 2022
Cui (10.1016/j.soilbio.2023.109254_bib31) 2020; 142
Davidson (10.1016/j.soilbio.2023.109254_bib36) 1991; 42
He (10.1016/j.soilbio.2023.109254_bib55) 2016; 321
Lapsansky (10.1016/j.soilbio.2023.109254_bib79) 2016; 38
He (10.1016/j.soilbio.2023.109254_bib56) 2023
Lin (10.1016/j.soilbio.2023.109254_bib90) 2017; 81
Rantanen (10.1016/j.soilbio.2023.109254_bib126) 2022; 3
Repo (10.1016/j.soilbio.2023.109254_bib128) 2009; 2
van der Bom (10.1016/j.soilbio.2023.109254_bib156) 2018; 122
Kuzyakov (10.1016/j.soilbio.2023.109254_bib75) 2006; 38
Giltrap (10.1016/j.soilbio.2023.109254_bib49) 2020; 49
Kumar (10.1016/j.soilbio.2023.109254_bib72) 2016; 409
Xu (10.1016/j.soilbio.2023.109254_bib166) 2021; 764
Wagner-Riddle (10.1016/j.soilbio.2023.109254_bib162) 2008; 72
Németh (10.1016/j.soilbio.2023.109254_bib112) 2014; 73
Banerjee (10.1016/j.soilbio.2023.109254_bib9) 2016; 95
Liu (10.1016/j.soilbio.2023.109254_bib92) 2020; 140
Ostrom (10.1016/j.soilbio.2023.109254_bib117) 2012
Blagodatskaya (10.1016/j.soilbio.2023.109254_bib17) 1998; 30
Blagodatsky (10.1016/j.soilbio.2023.109254_bib179) 2010; 42
Marushchak (10.1016/j.soilbio.2023.109254_bib100) 2011; 17
Chivenge (10.1016/j.soilbio.2023.109254_bib27) 2007; 94
Lin (10.1016/j.soilbio.2023.109254_bib87) 2020; 738
Bader (10.1016/j.soilbio.2023.109254_bib8) 2018; 15
Congreves (10.1016/j.soilbio.2023.109254_bib30) 2019; 5
Shcherbak (10.1016/j.soilbio.2023.109254_bib142) 2014; 111
Bernard (10.1016/j.soilbio.2023.109254_bib15) 2022; 36
Fontaine (10.1016/j.soilbio.2023.109254_bib44) 2003; 35
Hallett (10.1016/j.soilbio.2023.109254_bib52) 2022
Aaltonen (10.1016/j.soilbio.2023.109254_bib1) 2022; 86
Lloyd (10.1016/j.soilbio.2023.109254_bib95) 2016; 103
Keuper (10.1016/j.soilbio.2023.109254_bib67) 2012; 18
Tian (10.1016/j.soilbio.2023.109254_bib154) 2020; 12
Voigt (10.1016/j.soilbio.2023.109254_bib159) 2017; 23
Nottingham (10.1016/j.soilbio.2023.109254_bib114) 2022; 36
Marushchak (10.1016/j.soilbio.2023.109254_bib101) 2021; 12
Roman-Perez (10.1016/j.soilbio.2023.109254_bib132) 2021; 320
Liu (10.1016/j.soilbio.2023.109254_bib91) 2010; 72
Syakila (10.1016/j.soilbio.2023.109254_bib148) 2011; 1
van Kessel (10.1016/j.soilbio.2023.109254_bib157) 2013; 19
Li (10.1016/j.soilbio.2023.109254_bib84) 2020; 26
Liu (10.1016/j.soilbio.2023.109254_bib94) 2020; 362
Curtin (10.1016/j.soilbio.2023.109254_bib32) 1998; 30
Harris (10.1016/j.soilbio.2023.109254_bib54) 2022; 13
Mullen (10.1016/j.soilbio.2023.109254_bib109) 2011
Klemedtsson (10.1016/j.soilbio.2023.109254_bib69) 2005; 11
Smith (10.1016/j.soilbio.2023.109254_bib143) 1997; 3
Leip (10.1016/j.soilbio.2023.109254_bib82) 2011; 3
Liang (10.1016/j.soilbio.2023.109254_bib86) 2015; 10
Stein (10.1016/j.soilbio.2023.109254_bib146) 2019; 49
Löhnis (10.1016/j.soilbio.2023.109254_bib96) 1926; 22
Nicol (10.1016/j.soilbio.2023.109254_bib113) 2008; 10
Sprunger (10.1016/j.soilbio.2023.109254_bib144) 2019; 137
Butterbach-Bahl (10.1016/j.soilbio.2023.109254_bib20) 2013; 368
Kuzyakov (10.1016/j.soilbio.2023.109254_bib73) 2002; 165
Nadelhoffer (10.1016/j.soilbio.2023.109254_bib111) 1991; 72
Xu (10.1016/j.soilbio.2023.109254_bib167) 2023; 178
Adler (10.1016/j.soilbio.2023.109254_bib4) 2018; 10
Morley (10.1016/j.soilbio.2023.109254_bib108) 2014; 9
Abraha (10.1016/j.soilbio.2023.109254_bib3) 2018; 28
Orlowsky (10.1016/j.soilbio.2023.109254_bib116) 2012; 110
Enggrob (10.1016/j.soilbio.2023.109254_bib40) 2020; 10
Congreves (10.1016/j.soilbio.2023.109254_bib29) 2018; 117
Denk (10.1016/j.soilbio.2023.109254_bib38) 2017; 105
Lacroix (10.1016/j.soilbio.2023.109254_bib77) 2022
Olaya-Abril (10.1016/j.soilbio.2023.109254_bib115) 2021; 11
Wagner-Riddle (10.1016/j.soilbio.2023.109254_bib163) 2017; 10
Jiang (10.1016/j.soilbio.2023.109254_bib63) 2021; 462
Leiber-Sauheitl (10.1016/j.soilbio.2023.109254_bib81) 2015; 88
Roman-Perez (10.1016/j.soilbio.2023.109254_bib131) 2021
Liao (10.1016/j.soilbio.2023.109254_bib174) 2021; 773
Ruser (10.1016/j.soilbio.2023.109254_bib136) 2009
Langarica-Fuentes (10.1016/j.soilbio.2023.109254_bib78) 2018; 120
Pfab (10.1016/j.soilbio.2023.109254_bib121) 2011
Clarholm (10.1016/j.soilbio.2023.109254_bib28) 2015; 84
Kim (10.1016/j.soilbio.2023.109254_bib68) 2022; 166
Mason-Jones (10.1016/j.soilbio.2023.109254_bib102) 2018; 124
Arah (10.1016/j.soilbio.2023.109254_bib5) 1992; 56
Webb (10.1016/j.soilbio.2023.109254_bib164) 2022; 12
Jenkinson (10.1016/j.soilbio.2023.109254_bib62) 1985; 36
Rochette (10.1016/j.soilbio.2023.109254_bib130) 2013; 42
Harris (10.1016/j.soilbio.2023.109254_bib53) 2021; 7
Thomas (10.1016/j.soilbio.2023.109254_bib153) 2017; 81
Senbayram (10.1016/j.soilbio.2023.109254_bib141) 2012; 147
Wang (10.1016/j.soilbio.2023.109254_bib178) 2021; 11
Sehy (10.1016/j.soilbio.2023.109254_bib140) 2004; 167
Bastida (10.1016/j.soilbio.2023.109254_bib11) 2019; 10
Forster (10.1016/j.soilbio.2023.109254_bib45) 2021
Gabbarini (10.1016/j.soilbio.2023.109254_bib46) 2021; 97
(10.1016/j.soilbio.2023.109254_bib61) 2021
Toyoda (10.1016/j.soilbio.2023.109254_bib155) 1999; 71
Zheng (10.1016/j.soilbio.2023.109254_bib169) 2022
Li (10.1016/j.soilbio.2023.109254_bib83) 2018; 119
Chen (10.1016/j.soilbio.2023.109254_bib22) 2020; 358
Maeda (10.1016/j.soilbio.2023.109254_bib98) 2015; 5
Rousk (10.1016/j.soilbio.2023.109254_bib134) 2016; 22
Daly (10.1016/j.soilbio.2023.109254_bib34) 2022; 326
Holtan-Hartwig (10.1016/j.soilbio.2023.109254_bib59) 2002; 34
Li (10.1016/j.soilbio.2023.109254_bib85) 2022; 851
Paterson (10.1016/j.soilbio.2023.109254_bib176) 1999; 216
Müller (10.1016/j.soilbio.2023.109254_bib110) 2014; 72
Perveen (10.1016/j.soilbio.2023.109254_bib119) 2014; 20
Schleusner (10.1016/j.soilbio.2023.109254_bib139) 2018; 181
Thilakarathna (10.1016/j.soilbio.2023.109254_bib152) 2020; 50
Daly (10.1016/j.soilbio.2023.109254_bib33) 2020; 149
Flesch (10.1016/j.soilbio.2023.109254_bib42) 2018; 9
Voigt (10.1016/j.soilbio.2023.109254_bib161) 2020; 1
Azam (10.1016/j.soilbio.2023.109254_bib7) 2002; 1
Häfner (10.1016/j.soilbio.2023.109254_bib51) 2021; 4
Zhou (10.1016/j.soilbio.2023.109254_bib170) 2017; 23
Keiluweit (10.1016/j.soilbio.2023.109254_bib65) 2015; 5
Lin (10.1016/j.soilbio.2023.109254_bib88) 2021; 101
Ruser (10.1016/j.soilbio.2023.109254_bib135) 2006; 38
De Notaris (10.1016/j.soilbio.2023.109254_bib37) 2022; 835
Magdoff (10.1016/j.soilbio.2023.109254_bib99) 2004
Zhu (10.1016/j.soilbio.2023.109254_bib172) 2021; 167
Suleiman (10.1016/j.soilbio.2023.109254_bib147) 2018; 631
Lin (10.1016/j.soilbio.2023.109254_bib89) 2022; 157
Kuzyakov (10.1016/j.soilbio.2023.109254_bib74) 2010; 42
References_xml – volume: 72
  start-page: 407
  issue: 3
  year: 2010
  ident: 10.1016/j.soilbio.2023.109254_bib91
  article-title: Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2010.00856.x
– volume: 32
  start-page: 289
  issue: 2–3
  year: 1996
  ident: 10.1016/j.soilbio.2023.109254_bib177
  article-title: Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. Isotopes in Environmental and
  publication-title: Health studies
– volume: 38
  start-page: 137
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib79
  article-title: Soil memory as a potential mechanism for encouraging sustainable plant health and productivity
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2016.01.014
– volume: 631
  start-page: 1089
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib147
  article-title: Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.03.116
– volume: 11
  start-page: 1142
  issue: 7
  year: 2005
  ident: 10.1016/j.soilbio.2023.109254_bib69
  article-title: Soil CN ratio as a scalar parameter to predict nitrous oxide emissions
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.00973.x
– start-page: 923
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib45
  article-title: The earth's energy budget, climate feedbacks, and climate sensitivity
– volume: 40
  start-page: 142
  issue: 1
  year: 2008
  ident: 10.1016/j.soilbio.2023.109254_bib138
  article-title: The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2007.07.016
– volume: 124
  start-page: 38
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib102
  article-title: Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.05.024
– volume: 73
  start-page: 1
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib112
  article-title: Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.02.007
– volume: 42
  start-page: 1275
  issue: 8
  year: 2010
  ident: 10.1016/j.soilbio.2023.109254_bib179
  article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.04.005
– volume: 45
  start-page: 115
  year: 2008
  ident: 10.1016/j.soilbio.2023.109254_bib18
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 181
  start-page: 621
  issue: 4
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib139
  article-title: Primed N2O emission from native soil nitrogen: a 15N‐tracing laboratory experiment
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.201700312
– volume: 122
  start-page: 91
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib156
  article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.04.003
– volume: 36
  start-page: 1355
  issue: 6
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib15
  article-title: Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.14038
– volume: 84
  start-page: 168
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib28
  article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter–the unbutton model
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.02.019
– volume: 38
  start-page: 747
  issue: 4
  year: 2006
  ident: 10.1016/j.soilbio.2023.109254_bib75
  article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2005.06.025
– volume: 52
  start-page: 1322
  issue: 5
  year: 1988
  ident: 10.1016/j.soilbio.2023.109254_bib158
  article-title: Evaluation of nitrogen‐15 tracer techniques for direct measurement of denitrification in soil: II. Simulation studies
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1988.03615995005200050021x
– volume: 23
  start-page: 4068
  issue: 10
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib170
  article-title: Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta‐analysis
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13648
– volume: 157
  start-page: 379
  issue: 3
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib89
  article-title: Increased soil-derived N2O production following a simulated fall-freeze–thaw cycle: effects of fall urea addition, soil moisture, and history of manure applications
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-021-00880-x
– volume: 72
  start-page: 242
  issue: 1
  year: 1991
  ident: 10.1016/j.soilbio.2023.109254_bib111
  article-title: Effects of temperature and substrate quality on element mineralization in six arctic soils
  publication-title: Ecology
  doi: 10.2307/1938918
– volume: 94
  start-page: 328
  issue: 2
  year: 2007
  ident: 10.1016/j.soilbio.2023.109254_bib27
  article-title: Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2006.08.006
– start-page: 1
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib131
  article-title: Nitrous oxide production and nitrogen transformations in a soil amended with biosolids
  publication-title: Canadian Journal of Soil Science
– volume: 12
  start-page: 160
  issue: 2
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib154
  article-title: The role of rhizodeposits in shaping rhizomicrobiome
  publication-title: Environmental Microbiology Reports
  doi: 10.1111/1758-2229.12816
– volume: 4
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib51
  article-title: Field application of organic fertilizers triggers N2O emissions from the soil N pool as indicated by 15N-labeled digestates
  publication-title: Frontiers in Sustainable Food Systems
  doi: 10.3389/fsufs.2020.614349
– volume: 87
  start-page: 395
  issue: 3
  year: 2010
  ident: 10.1016/j.soilbio.2023.109254_bib105
  article-title: Effects of organic wastes digestion for biogas production on mineral nutrient availability of biogas effluents
  publication-title: Nutrient Cycling in Agroecosystems
  doi: 10.1007/s10705-010-9346-8
– volume: 471
  start-page: 559
  issue: 1
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib25
  article-title: Soil properties and substrate quality determine the priming of soil organic carbon during vegetation succession
  publication-title: Plant and Soil
  doi: 10.1007/s11104-021-05241-z
– volume: 77
  start-page: 276
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib173
  article-title: Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (Camellia sinensis) in Shizuoka, central Japan
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.06.016
– volume: 19
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.soilbio.2023.109254_bib157
  article-title: Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐analysis
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2012.02779.x
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib115
  article-title: Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-96559-2
– volume: 21
  start-page: 4570
  issue: 12
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib2
  article-title: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13069
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib150
  article-title: Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-70612-y
– volume: 97
  issue: 4
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib46
  article-title: Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils
  publication-title: FEMS Microbiology Ecology
  doi: 10.1093/femsec/fiab025
– volume: 140
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib92
  article-title: The soil priming effect: consistent across ecosystems, elusive mechanisms
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.107617
– volume: 10
  start-page: 2966
  issue: 11
  year: 2008
  ident: 10.1016/j.soilbio.2023.109254_bib113
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2008.01701.x
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib54
  article-title: Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-32001-z
– volume: 216
  start-page: 155
  year: 1999
  ident: 10.1016/j.soilbio.2023.109254_bib176
  article-title: Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation
  publication-title: Plant and Soil
  doi: 10.1023/A:1004789407065
– volume: 49
  start-page: 1168
  issue: 5
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib49
  article-title: Global Research Alliance N2O chamber methodology guidelines: summary of modeling approaches
  publication-title: Journal of Environmental Quality
  doi: 10.1002/jeq2.20119
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib11
  article-title: Global ecological predictors of the soil priming effect
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11472-7
– volume: 32
  start-page: 1485
  issue: 11–12
  year: 2000
  ident: 10.1016/j.soilbio.2023.109254_bib76
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 81
  start-page: 189
  issue: 1
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib153
  article-title: Non‐legume cover crops can increase non‐growing season nitrous oxide emissions
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2016.08.0269
– volume: 129
  start-page: 13
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib64
  article-title: Land use legacy regulates microbial community composition in transplanted Chernozems
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2018.03.001
– volume: 56
  start-page: 583
  issue: 5
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib93
  article-title: Legacy effects of 8-year nitrogen inputs on bacterial assemblage in wheat rhizosphere
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-020-01435-2
– volume: 111
  start-page: 9199
  issue: 25
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib142
  article-title: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1322434111
– volume: 47
  start-page: 151
  issue: 2
  year: 1996
  ident: 10.1016/j.soilbio.2023.109254_bib12
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib107
  article-title: Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling
  publication-title: Nature Communications
  doi: 10.1038/ncomms4694
– volume: 764
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib166
  article-title: Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: an in situ 15N tracing study
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.142884
– volume: 20
  start-page: 1174
  issue: 4
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib119
  article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12493
– volume: 1
  start-page: 17
  issue: 1
  year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib148
  article-title: The global nitrous oxide budget revisited
  publication-title: Greenhouse Gas Measurement and Management
  doi: 10.3763/ghgmm.2010.0007
– volume: 368
  issue: 1621
  year: 2013
  ident: 10.1016/j.soilbio.2023.109254_bib20
  article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2013.0122
– volume: 7
  issue: 6
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib53
  article-title: Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting
  publication-title: Science Advances
  doi: 10.1126/sciadv.abb7118
– year: 2004
  ident: 10.1016/j.soilbio.2023.109254_bib99
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib24
  article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13119-z
– volume: 123
  start-page: 97
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib123
  article-title: Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.05.006
– volume: 5
  start-page: 265
  issue: 2
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib30
  article-title: A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways
  publication-title: Soils
  doi: 10.5194/soil-5-265-2019
– volume: 100
  start-page: 23115
  issue: D11
  year: 1995
  ident: 10.1016/j.soilbio.2023.109254_bib43
  article-title: Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/95JD02270
– volume: 142
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib31
  article-title: Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107720
– volume: 9
  start-page: 983
  issue: 5
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib80
  article-title: Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9050983
– start-page: 207
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib39
  article-title: Precipitation change in the United States
– volume: 358
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib22
  article-title: Land-use legacy effects shape microbial contribution to N2O production in three tropical forests
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113979
– start-page: 1
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib149
  article-title: Interaction between soil and fertiliser nitrogen drives plant nitrogen uptake and nitrous oxide (N2O) emissions in tropical sugarcane systems
  publication-title: Plant and Soil
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib70
  article-title: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-16757-w
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib86
  article-title: Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/10/3/034008
– volume: 2
  start-page: 697
  issue: 5
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib165
  article-title: Root exudate chemistry affects soil carbon mobilization via microbial community reassembly
  publication-title: Fundamental Research
  doi: 10.1016/j.fmre.2021.12.016
– volume: 84
  start-page: 65
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib71
  article-title: Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification–An N2O isotopomer case study
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.01.021
– volume: 147
  start-page: 4
  year: 2012
  ident: 10.1016/j.soilbio.2023.109254_bib141
  article-title: N2O emission and the N2O/(N2O+ N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2011.06.022
– volume: 462
  start-page: 489
  issue: 1
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib63
  article-title: Effects of nitrogen fertilization on the rhizosphere priming
  publication-title: Plant and Soil
  doi: 10.1007/s11104-021-04872-6
– volume: 26
  start-page: 931
  issue: 2
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib84
  article-title: Terrestrial N2O emissions and related functional genes under climate change: a global meta‐analysis
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14847
– volume: 155
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib151
  article-title: Primings of soil organic matter and denitrification mediate the effects of moisture on nitrous oxide production
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108166
– volume: 166
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib68
  article-title: Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2022.108565
– volume: 42
  start-page: 335
  issue: 3
  year: 1991
  ident: 10.1016/j.soilbio.2023.109254_bib36
  article-title: Measuring gross nitrogen mineralization, and nitrification by 15 N isotopic pool dilution in intact soil cores
  publication-title: Journal of Soil Science
  doi: 10.1111/j.1365-2389.1991.tb00413.x
– year: 2009
  ident: 10.1016/j.soilbio.2023.109254_bib136
  article-title: N2O release of two croplands with different yield and expectations after incorporation of 15N-labeled mustard [Poster presentation]
– start-page: 67
  year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib109
  article-title: Nutrient cycling in soils: nitrogen
– volume: 22
  start-page: 253
  issue: 4
  year: 1926
  ident: 10.1016/j.soilbio.2023.109254_bib96
  article-title: Nitrogen availability of green manures
  publication-title: Soil Science
  doi: 10.1097/00010694-192610000-00001
– volume: 30
  start-page: 1269
  issue: 10–11
  year: 1998
  ident: 10.1016/j.soilbio.2023.109254_bib17
  article-title: Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(98)00050-9
– volume: 22
  start-page: 4150
  issue: 12
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib134
  article-title: Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13296
– year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib77
  article-title: Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic
  publication-title: Global Change Biology
  doi: 10.1111/gcb.16345
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib98
  article-title: N2O production, a widespread trait in fungi
  publication-title: Scientific Reports
  doi: 10.1038/srep09697
– volume: 409
  start-page: 87
  issue: 1
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib72
  article-title: Maize rhizosphere priming: field estimates using 13C natural abundance
  publication-title: Plant and Soil
  doi: 10.1007/s11104-016-2958-2
– volume: 134
  start-page: 162
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib120
  article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.03.027
– volume: 178
  year: 2023
  ident: 10.1016/j.soilbio.2023.109254_bib167
  article-title: Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2023.108961
– volume: 326
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib34
  article-title: Perennial grain crops reduce N2O emissions under specific site conditions
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2021.107802
– volume: 10
  start-page: 279
  issue: 4
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib163
  article-title: Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo2907
– volume: 149
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib33
  article-title: Sources and priming of soil N2O and CO2 production: nitrogen and simulated exudate additions
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2020.107942
– volume: 28
  start-page: 1362
  issue: 5
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib3
  article-title: Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems
  publication-title: Ecological Applications
  doi: 10.1002/eap.1745
– volume: 17
  start-page: 2601
  issue: 8
  year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib100
  article-title: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2011.02442.x
– volume: 114
  start-page: 6238
  issue: 24
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib160
  article-title: Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1702902114
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib16
  article-title: Permafrost is warming at a global scale
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-08240-4
– volume: 117
  start-page: 5
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib29
  article-title: Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.10.040
– volume: 62
  start-page: 496
  issue: 6
  year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib47
  article-title: C: N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops
  publication-title: Crop & Pasture Science
  doi: 10.1071/CP10360
– volume: 58
  start-page: 311
  issue: 3
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib19
  article-title: Fertiliser and seasonal urine effects on N2O emissions from the urine-fertiliser interface of a grazed pasture
  publication-title: New Zealand Journal of Agricultural Research
  doi: 10.1080/00288233.2015.1031405
– volume: 36
  start-page: 1338
  issue: 6
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib114
  article-title: Soil carbon and microbes in the warming tropics
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.14050
– year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib125
  article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils–changing the paradigm
  publication-title: Environmental Research Letters
– volume: 88
  start-page: 282
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib81
  article-title: Sheep excreta cause no positive priming of peat-derived CO2 and N2O emissions
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.06.001
– volume: 28
  start-page: 605
  issue: 4
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib13
  article-title: Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia
  publication-title: Permafrost and Periglacial Processes
  doi: 10.1002/ppp.1958
– volume: 738
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib87
  article-title: Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.139669
– year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib61
  article-title: Summary for policymakers
– volume: 165
  start-page: 382
  issue: 4
  year: 2002
  ident: 10.1016/j.soilbio.2023.109254_bib73
  article-title: Factors affecting rhizosphere priming effects
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
– volume: 49
  start-page: 537
  issue: 5
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib175
  article-title: NH3 volatilization, N2O emission and microbial biomass turnover from 15N-labeled manure under laboratory conditions
  publication-title: Communications in Soil Science and Plant Analysis
  doi: 10.1080/00103624.2018.1431271
– volume: 773
  start-page: 145645
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib174
  article-title: Effect of field-aged biochar on fertilizer N retention and N2O emissions: A field microplot experiment with 15N-labeled urea
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2021.145645
– volume: 362
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib94
  article-title: C: N stoichiometry of stable and labile organic compounds determine priming patterns
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114122
– volume: 134
  start-page: 175
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib103
  article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.04.003
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib40
  article-title: Gram-positive bacteria control the rapid anabolism of protein-sized soil organic nitrogen compounds questioning the present paradigm
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-72696-y
– volume: 167
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib172
  article-title: Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2021.104033
– volume: 71
  start-page: 202
  issue: 3
  year: 2007
  ident: 10.1016/j.soilbio.2023.109254_bib106
  article-title: Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures
  publication-title: Journal of Microbiological Methods
  doi: 10.1016/j.mimet.2007.08.011
– year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib121
– volume: 86
  start-page: 1625
  issue: 6
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib1
  article-title: The effects of glucose addition and water table manipulation on peat quality of drained peatland forests with different management practices
  publication-title: Soil Science Society of America Journal
  doi: 10.1002/saj2.20419
– year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib52
  article-title: Building soil sustainability from root–soil interface traits
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2022.01.010
– volume: 201
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib26
  article-title: Synthesis and modeling perspectives of rhizosphere priming
  publication-title: New Phytologist
  doi: 10.1111/nph.12440
– volume: 167
  start-page: 471
  issue: 4
  year: 2004
  ident: 10.1016/j.soilbio.2023.109254_bib140
  article-title: Adding dissolved organic carbon to simulate freeze‐thaw related N2O emissions from soil
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.200421393
– volume: 835
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib37
  article-title: Potential for the adoption of measures to reduce N2O emissions from crop residues in Denmark
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2022.155510
– volume: 76
  start-page: 2155
  issue: 7
  year: 2010
  ident: 10.1016/j.soilbio.2023.109254_bib57
  article-title: Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02993-09
– volume: 165
  start-page: 397
  issue: 4
  year: 2002
  ident: 10.1016/j.soilbio.2023.109254_bib60
  article-title: Plant rhizodeposition—an important source for carbon turnover in soils
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib124
  article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum
  publication-title: Scientific Reports
  doi: 10.1038/srep19865
– volume: 18
  start-page: 1998
  issue: 6
  year: 2012
  ident: 10.1016/j.soilbio.2023.109254_bib67
  article-title: A frozen feast: thawing permafrost increases plant‐available nitrogen in subarctic peatlands
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2012.02663.x
– volume: 2
  start-page: 189
  issue: 3
  year: 2009
  ident: 10.1016/j.soilbio.2023.109254_bib128
  article-title: Large N2O emissions from cryoturbated peat soil in tundra
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo434
– volume: 5
  start-page: 588
  issue: 6
  year: 2015
  ident: 10.1016/j.soilbio.2023.109254_bib65
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2580
– volume: 71
  start-page: 4711
  issue: 20
  year: 1999
  ident: 10.1016/j.soilbio.2023.109254_bib155
  article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer
  publication-title: Analytical Chemistry
  doi: 10.1021/ac9904563
– volume: 76
  start-page: 183
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib171
  article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.04.033
– volume: 116
  start-page: 193
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib50
  article-title: Fate of 15N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.10.013
– volume: 11
  start-page: 770
  issue: 4
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib178
  article-title: Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review
  publication-title: Agronomy
  doi: 10.3390/agronomy11040770
– volume: 9
  start-page: 128
  issue: 4
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib42
  article-title: Micrometeorological measurements reveal large nitrous oxide losses during spring thaw in Alberta
  publication-title: Atmosphere
  doi: 10.3390/atmos9040128
– volume: 110
  start-page: 669
  issue: 3
  year: 2012
  ident: 10.1016/j.soilbio.2023.109254_bib116
  article-title: Global changes in extreme events: regional and seasonal dimension
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0122-9
– volume: 103
  start-page: 512
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib95
  article-title: Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.10.002
– volume: 147
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib6
  article-title: Elucidating microbial carbon utilization and nitrous oxide dynamics with 13C-substrates and N2O isotopomers in contrasting horticultural soils
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2019.103401
– start-page: 219
  year: 1991
  ident: 10.1016/j.soilbio.2023.109254_bib35
  article-title: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib137
  article-title: Phylogenetic and functional potential links pH and N2O emissions in pasture soils
  publication-title: Scientific Reports
– volume: 95
  start-page: 40
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib9
  article-title: Legacy effects of soil moisture on microbial community structure and N2O emissions
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.12.004
– volume: 101
  start-page: 290
  issue: 2
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib88
  article-title: Nitrogen turnover and N2O production in incubated soils after receiving field applications of liquid manure and nitrification inhibitors
  publication-title: Canadian Journal of Soil Science
  doi: 10.1139/cjss-2020-0102
– volume: 30
  start-page: 57
  issue: 1
  year: 1998
  ident: 10.1016/j.soilbio.2023.109254_bib32
  article-title: Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(97)00094-1
– volume: 78
  start-page: 180
  issue: 1
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib129
  article-title: Comparison of simultaneous soil profile N2O concentration and surface N2O flux measurements overwinter and at spring thaw in an agricultural soil
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2013.06.0221
– volume: 50
  start-page: 78
  issue: 1
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib152
  article-title: How does management legacy, nitrogen addition, and nitrification inhibition affect soil organic matter priming and nitrous oxide production?
– volume: 851
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib85
  article-title: Organic matter contributions to nitrous oxide emissions following nitrate addition are not proportional to substrate-induced soil carbon priming
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2022.158274
– volume: 20
  start-page: 2356
  issue: 7
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib23
  article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12475
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib101
  article-title: Thawing Yedoma permafrost is a neglected nitrous oxide source
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-27386-2
– volume: 1
  start-page: 420
  issue: 8
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib161
  article-title: Nitrous oxide emissions from permafrost-affected soils
  publication-title: Nature Reviews Earth & Environment
  doi: 10.1038/s43017-020-0063-9
– volume: 72
  start-page: 44
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib110
  article-title: Quantification of N2O emission pathways via a 15N tracing model
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2014.01.013
– volume: 12
  start-page: 774
  issue: 10
  year: 2020
  ident: 10.1016/j.soilbio.2023.109254_bib14
  article-title: 21st‐century biogeochemical modeling: challenges for Century‐based models and where do we go from here?
  publication-title: Global Change Biology Bioenergy
  doi: 10.1111/gcbb.12730
– volume: 320
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib132
  article-title: Greenhouse gas emissions, nitrogen dynamics and barley productivity as impacted by biosolids applications
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2021.107577
– volume: 81
  start-page: 1595
  issue: 6
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib90
  article-title: Timing of manure injection and nitrification inhibitors impacts on nitrous oxide emissions and nitrogen transformations in a barley crop
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2017.03.0093
– volume: 137
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib144
  article-title: Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.107573
– volume: 50
  start-page: 94
  issue: No. 1
  year: 2021
  ident: 10.1016/j.soilbio.2023.109254_bib133
  article-title: Sources and priming of nitrous oxide production across a range of moisture contents in a soil with high organic matter
– volume: 36
  start-page: 425
  issue: 3
  year: 1985
  ident: 10.1016/j.soilbio.2023.109254_bib62
  article-title: Interactions between fertilizer nitrogen and soil nitrogen—the so‐called ‘priming’effect
  publication-title: Journal of Soil Science
  doi: 10.1111/j.1365-2389.1985.tb00348.x
– volume: 119
  start-page: 41
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib83
  article-title: Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.01.003
– volume: 1
  start-page: 54
  issue: 1
  year: 2002
  ident: 10.1016/j.soilbio.2023.109254_bib7
  article-title: Added nitrogen interaction in the soil-plant system–a review
  publication-title: Pakistan Journal of Agronomy
  doi: 10.3923/ja.2002.54.59
– volume: 42
  start-page: 1363
  issue: 9
  year: 2010
  ident: 10.1016/j.soilbio.2023.109254_bib74
  article-title: Priming effects: interactions between living and dead organic matter
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.04.003
– volume: 42
  start-page: 1635
  issue: 6
  year: 2013
  ident: 10.1016/j.soilbio.2023.109254_bib130
  article-title: Ammonia volatilization and nitrogen retention: how deep to incorporate urea?
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2013.05.0192
– volume: 321
  start-page: 46
  year: 2016
  ident: 10.1016/j.soilbio.2023.109254_bib55
  article-title: Factors controlling nitrous oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2015.10.030
– volume: 3
  start-page: 407
  year: 2012
  ident: 10.1016/j.soilbio.2023.109254_bib48
  article-title: Soil nitrate reducing processes–drivers, mechanisms for spatial variation, and significance for nitrous oxide production
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2012.00407
– volume: 23
  start-page: 3121
  issue: 8
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib159
  article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases–carbon dioxide, methane, and nitrous oxide
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13563
– volume: 56
  start-page: 795
  issue: 3
  year: 1992
  ident: 10.1016/j.soilbio.2023.109254_bib5
  article-title: New formulae for mass spectrometric analysis of nitrous oxide and dinitrogen emissions
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1992.03615995005600030020x
– volume: 326
  start-page: 123
  issue: 5949
  year: 2009
  ident: 10.1016/j.soilbio.2023.109254_bib127
  article-title: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century
  publication-title: Science
  doi: 10.1126/science.1176985
– volume: 10
  start-page: 123
  issue: 2
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib4
  article-title: Legacy effects of individual crops affect N2O emissions accounting within crop rotations
  publication-title: Global Change Biology Bioenergy
  doi: 10.1111/gcbb.12462
– volume: 3
  start-page: 328
  issue: 5
  year: 2011
  ident: 10.1016/j.soilbio.2023.109254_bib82
  article-title: Estimation of N2O fluxes at the regional scale: data, models, challenges
  publication-title: Current Opinion in Environmental Sustainability
  doi: 10.1016/j.cosust.2011.07.002
– start-page: 453
  year: 2012
  ident: 10.1016/j.soilbio.2023.109254_bib117
  article-title: The isotopomers of nitrous oxide: analytical considerations and application to resolution of microbial production pathways
  doi: 10.1007/978-3-642-10637-8_23
– volume: 15
  start-page: 703
  issue: 3
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib8
  article-title: Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-703-2018
– volume: 3
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib126
  article-title: The Arctic has warmed nearly four times faster than the globe since 1979
  publication-title: Communications Earth and Environment
  doi: 10.1038/s43247-022-00498-3
– volume: 34
  start-page: 1797
  issue: 11
  year: 2002
  ident: 10.1016/j.soilbio.2023.109254_bib59
  article-title: Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00169-4
– volume: 35
  start-page: 167
  issue: 1
  year: 2003
  ident: 10.1016/j.soilbio.2023.109254_bib41
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00251-1
– volume: 35
  start-page: 837
  issue: 6
  year: 2003
  ident: 10.1016/j.soilbio.2023.109254_bib44
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(03)00123-8
– volume: 49
  start-page: 9
  year: 2019
  ident: 10.1016/j.soilbio.2023.109254_bib146
  article-title: Insights into the physiology of ammonia-oxidizing microorganisms
  publication-title: Current Opinion in Chemical Biology
  doi: 10.1016/j.cbpa.2018.09.003
– volume: 239
  start-page: 188
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib10
  article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2017.01.012
– volume: 105
  start-page: 121
  year: 2017
  ident: 10.1016/j.soilbio.2023.109254_bib38
  article-title: The nitrogen cycle: a review of isotope effects and isotope modeling approaches
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.11.015
– volume: 73
  start-page: 1182
  issue: 4
  year: 2009
  ident: 10.1016/j.soilbio.2023.109254_bib58
  article-title: Nitrous oxide production in an eastern corn belt soil: sources and redox range
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2008.0183
– volume: 9
  issue: 9
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib108
  article-title: Substrate induced denitrification over or under estimates shifts in soil N2/N2O ratios
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0108144
– volume: 12
  start-page: 841
  issue: 9
  year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib164
  article-title: Permafrost thaw drives surface water decline across lake-rich regions of the Arctic
  publication-title: Nature Climate Change
  doi: 10.1038/s41558-022-01455-w
– volume: 3
  start-page: 327
  issue: 4
  year: 1997
  ident: 10.1016/j.soilbio.2023.109254_bib143
  article-title: The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.1997.00100.x
– volume: 38
  start-page: 263
  issue: 2
  year: 2006
  ident: 10.1016/j.soilbio.2023.109254_bib135
  article-title: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2005.05.005
– volume: 75
  start-page: 13
  year: 2014
  ident: 10.1016/j.soilbio.2023.109254_bib97
  article-title: Improving soil structure by promoting fungal abundance with organic soil amendments
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2013.10.002
– volume: 87
  start-page: 9
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib104
  article-title: Land use and fertilisation affect priming in tropical andosols
  publication-title: European Journal of Soil Biology
  doi: 10.1016/j.ejsobi.2018.04.001
– year: 2022
  ident: 10.1016/j.soilbio.2023.109254_bib169
  article-title: Nematode predation and competitive interactions affect microbe-mediated phosphorus dynamics
  publication-title: mBio
  doi: 10.1128/mbio.03293-21
– year: 2023
  ident: 10.1016/j.soilbio.2023.109254_bib56
  article-title: Priming effect stimulates carbon release from thawed permafrost
  publication-title: Global Change Biology
  doi: 10.1111/gcb.16750
– volume: 120
  start-page: 70
  year: 2018
  ident: 10.1016/j.soilbio.2023.109254_bib78
  article-title: Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.01.034
– volume: 38
  start-page: 898
  issue: 5
  year: 2006
  ident: 10.1016/j.soilbio.2023.109254_bib66
  article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2005.08.006
– volume: 72
  start-page: 908
  issue: 4
  year: 2008
  ident: 10.1016/j.soilbio.2023.109254_bib162
  article-title: Linking nitrous oxide flux during spring thaw to nitrate denitrification in the soil profile
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2007.0353
SSID ssj0002513
Score 2.4928436
SecondaryResourceType review_article
Snippet The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 109254
SubjectTerms biochemistry
carbon dioxide
climate
climate change
data collection
greenhouse gases
mineralization
nitrification
nitrogen
nitrogen cycle
nitrous oxide
ozone
soil
soil organic carbon
soil organic nitrogen
stratosphere
Title Soil organic nitrogen priming to nitrous oxide: A synthesis
URI https://www.proquest.com/docview/3153608397
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOQAHBAXUlocWiVtk42zW9ro9RRFQ9cABWqk3a1-OUqU2ih0Jeuhv78x6bSdQAeViWat4ZO98mZ2Znf2GkPfGqoLJzARWcRNwmUaB4iqCUGXCYlEIWBIc2-eX5PiMn5zH50O5rTtd0qhQX916ruR_tApjoFc8JXsHzfZCYQDuQb9wBQ3D9Z90_K1aLH1fJj2C_-aqmruSK-zUNUev0o2t61H1Y2H8IfT6Zwk-X72oN91SJ6jjY0IwwL3uWsENyey2KzWYznJ0Eg5ZVJ-JDr7KSzCgLiP9ee3OGF5W_R5HVc6RLar2JRx2NO0lzJbYKsgjZzMNwXhXuTyYVrCcGBxum9ZswziOo4y1jNG_2e02hXCBBMZL-MIQm7qHw--3ebJ_Wb_6qsKuYO0i92JyFJO3Yu6TBwwiCWxyEV4PVUDg3nle5vbth0NeH259m233ZXv1di7J6VPyxMcSdNoC4xm5Z8td8ng6X3k-FbtLHs46LT4nR6hl6uFCO7hQDxfaVNTDhTq4HNIp7cHygpx9-ng6Ow5874xAM5E0Aab2RKwKqQvnkisTFYkSQqERBx9QKYj1tUmZFBAjp1KIwgpjJpHSOmVjOXlJdsqqtHuEqsgyDn6pFXHGTcIlbqXHyNwox0wxs094NyW59sTy2N9kmf9RIfsk7B_73jKr_O2Bd9185zBzuLElSwuzkk9g2U4glsjSg7sKfUUeDWh-TXaa1dq-ATezUW8dUG4ANWl8Uw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+nitrogen+priming+to+nitrous+oxide%3A+A+synthesis&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Daly%2C+Erin+J.&rft.au=Hernandez-Ramirez%2C+Guillermo&rft.au=Congreves%2C+Kate+A.&rft.au=Clough%2C+Tim&rft.date=2024-02-01&rft.issn=0038-0717&rft.volume=189&rft.spage=109254&rft_id=info:doi/10.1016%2Fj.soilbio.2023.109254&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2023_109254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon