Soil organic nitrogen priming to nitrous oxide: A synthesis
The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mine...
Saved in:
Published in | Soil biology & biochemistry Vol. 189; p. 109254 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mineralization, but fewer publications have focused on how the PE affects the soil N cycle and nitrous oxide (N₂O) production from soil organic N mineralization (SOM-N), despite the potency of N₂O as a greenhouse gas and ability to destroy stratospheric ozone. This review summarizes our current understanding of how the PE can alter the rates of SOM-N mineralization and subsequently amplify, diminish, or maintain N₂O production in and release from soils, henceforth referred to as N₂O priming. Additionally, the concept of process priming, the differential augmentation of N₂O-producing processes (e.g. priming of nitrification) is introduced. Diverse results across studies suggest that the mechanisms of N₂O priming cannot be fully explained by a single hypothesis, and it is currently unclear how significant the contribution of N₂O priming to net N₂O emissions is, but a preliminary estimate suggests that N₂O emissions resulting from priming mechanisms can range from -39 – 76% following C and N amendments compared to a control. To disentangle the complexity of N₂O priming, an expansion of current research efforts is required. The promotion of open data sharing and publication of full datasets will facilitate the development and validation of models that can accurately simulate the complexity of soil N dynamics and account for the feedback effects of climate change on N₂O priming, which is a key research gap. This is particularly the case in under-studied areas such as permafrost-affected soils of arctic, subarctic, and alpine regions, and vulnerable tropical regions, where climate warming may amplify N₂O priming. |
---|---|
AbstractList | The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the addition of carbon (C) and/or nitrogen (N) to the soil. Literature has generally framed the PE in terms of CO₂ evolved from soil organic carbon mineralization, but fewer publications have focused on how the PE affects the soil N cycle and nitrous oxide (N₂O) production from soil organic N mineralization (SOM-N), despite the potency of N₂O as a greenhouse gas and ability to destroy stratospheric ozone. This review summarizes our current understanding of how the PE can alter the rates of SOM-N mineralization and subsequently amplify, diminish, or maintain N₂O production in and release from soils, henceforth referred to as N₂O priming. Additionally, the concept of process priming, the differential augmentation of N₂O-producing processes (e.g. priming of nitrification) is introduced. Diverse results across studies suggest that the mechanisms of N₂O priming cannot be fully explained by a single hypothesis, and it is currently unclear how significant the contribution of N₂O priming to net N₂O emissions is, but a preliminary estimate suggests that N₂O emissions resulting from priming mechanisms can range from -39 – 76% following C and N amendments compared to a control. To disentangle the complexity of N₂O priming, an expansion of current research efforts is required. The promotion of open data sharing and publication of full datasets will facilitate the development and validation of models that can accurately simulate the complexity of soil N dynamics and account for the feedback effects of climate change on N₂O priming, which is a key research gap. This is particularly the case in under-studied areas such as permafrost-affected soils of arctic, subarctic, and alpine regions, and vulnerable tropical regions, where climate warming may amplify N₂O priming. |
ArticleNumber | 109254 |
Author | Voigt, Carolina Clough, Tim Ruser, Reiner Harris, Eliza Congreves, Kate A. Daly, Erin J. Hernandez-Ramirez, Guillermo |
Author_xml | – sequence: 1 givenname: Erin J. orcidid: 0000-0001-7061-9405 surname: Daly fullname: Daly, Erin J. – sequence: 2 givenname: Guillermo surname: Hernandez-Ramirez fullname: Hernandez-Ramirez, Guillermo – sequence: 3 givenname: Kate A. surname: Congreves fullname: Congreves, Kate A. – sequence: 4 givenname: Tim surname: Clough fullname: Clough, Tim – sequence: 5 givenname: Carolina surname: Voigt fullname: Voigt, Carolina – sequence: 6 givenname: Eliza surname: Harris fullname: Harris, Eliza – sequence: 7 givenname: Reiner surname: Ruser fullname: Ruser, Reiner |
BookMark | eNqFkD1PwzAQhj0UiRb4CUgZWVLOdhw7dKoqvqRKDMBs2Y5TXKV2sV2J_ntSpRML00mv3ud098zQxAdvEbrFMMeA6_vtPAXXaxfmBAgdsoawaoKmAFSUwDG_RLOUtgBAGKZTtHgf6kWIG-WdKbzLMWysL_bR7ZzfFDmM2SEV4ce19qFYFuno85dNLl2ji071yd6c5xX6fHr8WL2U67fn19VyXRoi6lziihDBdKdMVwHjTLfQ1VoIDRSLBrDWBINpOVECVw1XQnRWtC0FbQwnWNErdDfu3cfwfbApy51Lxva98na4TFLMaA2CNnyosrFqYkgp2k6ePlHxKDHIkyC5lWdB8iRIjoIGbvGHMy6r7ILPUbn-H_oXucBzVg |
CitedBy_id | crossref_primary_10_3390_su16104120 crossref_primary_10_1038_s43247_024_01680_5 crossref_primary_10_1111_sum_13136 crossref_primary_10_1016_j_fcr_2024_109406 crossref_primary_10_1016_j_geoderma_2025_117195 crossref_primary_10_1016_j_agee_2024_109031 crossref_primary_10_1016_j_scitotenv_2024_176342 crossref_primary_10_3390_agronomy15010115 crossref_primary_10_1016_j_csag_2024_100010 |
Cites_doi | 10.1111/j.1574-6941.2010.00856.x 10.1016/j.copbio.2016.01.014 10.1016/j.scitotenv.2018.03.116 10.1111/j.1365-2486.2005.00973.x 10.1016/j.soilbio.2007.07.016 10.1016/j.soilbio.2018.05.024 10.1016/j.soilbio.2014.02.007 10.1016/j.soilbio.2010.04.005 10.1007/s00374-008-0334-y 10.1002/jpln.201700312 10.1016/j.soilbio.2018.04.003 10.1111/1365-2435.14038 10.1016/j.soilbio.2015.02.019 10.1016/j.soilbio.2005.06.025 10.2136/sssaj1988.03615995005200050021x 10.1111/gcb.13648 10.1007/s10533-021-00880-x 10.2307/1938918 10.1016/j.still.2006.08.006 10.1111/1758-2229.12816 10.3389/fsufs.2020.614349 10.1007/s10705-010-9346-8 10.1007/s11104-021-05241-z 10.1016/j.soilbio.2014.06.016 10.1111/j.1365-2486.2012.02779.x 10.1038/s41598-021-96559-2 10.1111/gcb.13069 10.1038/s41598-020-70612-y 10.1093/femsec/fiab025 10.1016/j.soilbio.2019.107617 10.1111/j.1462-2920.2008.01701.x 10.1038/s41467-022-32001-z 10.1023/A:1004789407065 10.1002/jeq2.20119 10.1038/s41467-019-11472-7 10.1016/S0038-0717(00)00084-5 10.2136/sssaj2016.08.0269 10.1016/j.apsoil.2018.03.001 10.1007/s00374-020-01435-2 10.1073/pnas.1322434111 10.1111/j.1365-2389.1996.tb01386.x 10.1038/ncomms4694 10.1016/j.scitotenv.2020.142884 10.1111/gcb.12493 10.3763/ghgmm.2010.0007 10.1098/rstb.2013.0122 10.1126/sciadv.abb7118 10.1038/s41467-019-13119-z 10.1016/j.soilbio.2018.05.006 10.5194/soil-5-265-2019 10.1029/95JD02270 10.1016/j.soilbio.2020.107720 10.3390/microorganisms9050983 10.1016/j.geoderma.2019.113979 10.1038/s41467-020-16757-w 10.1088/1748-9326/10/3/034008 10.1016/j.fmre.2021.12.016 10.1016/j.soilbio.2015.01.021 10.1016/j.agee.2011.06.022 10.1007/s11104-021-04872-6 10.1111/gcb.14847 10.1016/j.soilbio.2021.108166 10.1016/j.soilbio.2022.108565 10.1111/j.1365-2389.1991.tb00413.x 10.1097/00010694-192610000-00001 10.1016/S0038-0717(98)00050-9 10.1111/gcb.13296 10.1111/gcb.16345 10.1038/srep09697 10.1007/s11104-016-2958-2 10.1016/j.soilbio.2019.03.027 10.1016/j.soilbio.2023.108961 10.1016/j.agee.2021.107802 10.1038/ngeo2907 10.1016/j.soilbio.2020.107942 10.1002/eap.1745 10.1111/j.1365-2486.2011.02442.x 10.1073/pnas.1702902114 10.1038/s41467-018-08240-4 10.1016/j.soilbio.2017.10.040 10.1071/CP10360 10.1080/00288233.2015.1031405 10.1111/1365-2435.14050 10.1016/j.soilbio.2015.06.001 10.1002/ppp.1958 10.1016/j.scitotenv.2020.139669 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# 10.1080/00103624.2018.1431271 10.1016/j.scitotenv.2021.145645 10.1016/j.geoderma.2019.114122 10.1016/j.soilbio.2019.04.003 10.1038/s41598-020-72696-y 10.1016/j.apsoil.2021.104033 10.1016/j.mimet.2007.08.011 10.1002/saj2.20419 10.1016/j.tplants.2022.01.010 10.1111/nph.12440 10.1002/jpln.200421393 10.1016/j.scitotenv.2022.155510 10.1128/AEM.02993-09 10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C 10.1038/srep19865 10.1111/j.1365-2486.2012.02663.x 10.1038/ngeo434 10.1038/nclimate2580 10.1021/ac9904563 10.1016/j.soilbio.2014.04.033 10.1016/j.soilbio.2017.10.013 10.3390/agronomy11040770 10.3390/atmos9040128 10.1007/s10584-011-0122-9 10.1016/j.soilbio.2016.10.002 10.1016/j.apsoil.2019.103401 10.1016/j.soilbio.2015.12.004 10.1139/cjss-2020-0102 10.1016/S0038-0717(97)00094-1 10.2136/sssaj2013.06.0221 10.1016/j.scitotenv.2022.158274 10.1111/gcb.12475 10.1038/s41467-021-27386-2 10.1038/s43017-020-0063-9 10.1016/j.soilbio.2014.01.013 10.1111/gcbb.12730 10.1016/j.agee.2021.107577 10.2136/sssaj2017.03.0093 10.1016/j.soilbio.2019.107573 10.1111/j.1365-2389.1985.tb00348.x 10.1016/j.soilbio.2018.01.003 10.3923/ja.2002.54.59 10.1016/j.soilbio.2010.04.003 10.2134/jeq2013.05.0192 10.1016/j.ecolmodel.2015.10.030 10.3389/fmicb.2012.00407 10.1111/gcb.13563 10.2136/sssaj1992.03615995005600030020x 10.1126/science.1176985 10.1111/gcbb.12462 10.1016/j.cosust.2011.07.002 10.1007/978-3-642-10637-8_23 10.5194/bg-15-703-2018 10.1038/s43247-022-00498-3 10.1016/S0038-0717(02)00169-4 10.1016/S0038-0717(02)00251-1 10.1016/S0038-0717(03)00123-8 10.1016/j.cbpa.2018.09.003 10.1016/j.agee.2017.01.012 10.1016/j.soilbio.2016.11.015 10.2136/sssaj2008.0183 10.1371/journal.pone.0108144 10.1038/s41558-022-01455-w 10.1046/j.1365-2486.1997.00100.x 10.1016/j.soilbio.2005.05.005 10.1016/j.apsoil.2013.10.002 10.1016/j.ejsobi.2018.04.001 10.1128/mbio.03293-21 10.1111/gcb.16750 10.1016/j.soilbio.2018.01.034 10.1016/j.soilbio.2005.08.006 10.2136/sssaj2007.0353 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2023.109254 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
ExternalDocumentID | 10_1016_j_soilbio_2023_109254 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CITATION CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSH SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM 7S9 L.6 |
ID | FETCH-LOGICAL-c286t-142285bfacf40575bd0f6b88b0318901bb210cd72a81497a88fe8dd30bcc721a3 |
ISSN | 0038-0717 |
IngestDate | Wed Jul 02 04:33:13 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Tue Jul 01 00:54:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-142285bfacf40575bd0f6b88b0318901bb210cd72a81497a88fe8dd30bcc721a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7061-9405 |
PQID | 3153608397 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153608397 crossref_primary_10_1016_j_soilbio_2023_109254 crossref_citationtrail_10_1016_j_soilbio_2023_109254 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2024 |
References | Hütsch (10.1016/j.soilbio.2023.109254_bib60) 2002; 165 Konapala (10.1016/j.soilbio.2023.109254_bib70) 2020; 11 Ramm (10.1016/j.soilbio.2023.109254_bib125) 2021 Biskaborn (10.1016/j.soilbio.2023.109254_bib16) 2019; 10 Mehnaz (10.1016/j.soilbio.2023.109254_bib103) 2019; 134 Perveen (10.1016/j.soilbio.2023.109254_bib120) 2019; 134 Sanchez-Martin (10.1016/j.soilbio.2023.109254_bib138) 2008; 40 Flessa (10.1016/j.soilbio.2023.109254_bib43) 1995; 100 Abbott (10.1016/j.soilbio.2023.109254_bib2) 2015; 21 Liu (10.1016/j.soilbio.2023.109254_bib93) 2020; 56 Mooshammer (10.1016/j.soilbio.2023.109254_bib107) 2014; 5 Roman‐Perez (10.1016/j.soilbio.2023.109254_bib133) 2021; 50 Gan (10.1016/j.soilbio.2023.109254_bib47) 2011; 62 Zou (10.1016/j.soilbio.2023.109254_bib173) 2014; 77 Berardi (10.1016/j.soilbio.2023.109254_bib14) 2020; 12 Davidson (10.1016/j.soilbio.2023.109254_bib35) 1991 Qiao (10.1016/j.soilbio.2023.109254_bib124) 2016; 6 Tang (10.1016/j.soilbio.2023.109254_bib150) 2020; 10 Kuzyakov (10.1016/j.soilbio.2023.109254_bib76) 2000; 32 Easterling (10.1016/j.soilbio.2023.109254_bib39) 2017 Fierer (10.1016/j.soilbio.2023.109254_bib41) 2003; 35 Batjes (10.1016/j.soilbio.2023.109254_bib12) 1996; 47 Chen (10.1016/j.soilbio.2023.109254_bib25) 2022; 471 Möller (10.1016/j.soilbio.2023.109254_bib105) 2010; 87 Katulanda (10.1016/j.soilbio.2023.109254_bib64) 2018; 129 Lazcano (10.1016/j.soilbio.2023.109254_bib80) 2021; 9 Putz (10.1016/j.soilbio.2023.109254_bib123) 2018; 123 Blagodatskaya (10.1016/j.soilbio.2023.109254_bib18) 2008; 45 Ingold (10.1016/j.soilbio.2023.109254_bib175) 2018; 49 Zhu (10.1016/j.soilbio.2023.109254_bib171) 2014; 76 Vanden Heuvel (10.1016/j.soilbio.2023.109254_bib158) 1988; 52 Henderson (10.1016/j.soilbio.2023.109254_bib57) 2010; 76 Kemmitt (10.1016/j.soilbio.2023.109254_bib66) 2006; 38 Mganga (10.1016/j.soilbio.2023.109254_bib104) 2018; 87 Baral (10.1016/j.soilbio.2023.109254_bib10) 2017; 239 Hernandez-Ramirez (10.1016/j.soilbio.2023.109254_bib58) 2009; 73 Giles (10.1016/j.soilbio.2023.109254_bib48) 2012; 3 Voigt (10.1016/j.soilbio.2023.109254_bib160) 2017; 114 Ravishankara (10.1016/j.soilbio.2023.109254_bib127) 2009; 326 Thilakarathna (10.1016/j.soilbio.2023.109254_bib151) 2021; 155 Köster (10.1016/j.soilbio.2023.109254_bib71) 2015; 84 Arcand (10.1016/j.soilbio.2023.109254_bib6) 2020; 147 Wen (10.1016/j.soilbio.2023.109254_bib165) 2022; 2 Beermann (10.1016/j.soilbio.2023.109254_bib13) 2017; 28 Buckthought (10.1016/j.soilbio.2023.109254_bib19) 2015; 58 Guardia (10.1016/j.soilbio.2023.109254_bib50) 2018; 116 Risk (10.1016/j.soilbio.2023.109254_bib129) 2014; 78 Russow (10.1016/j.soilbio.2023.109254_bib177) 1996; 32 Chen (10.1016/j.soilbio.2023.109254_bib23) 2014; 20 Lucas (10.1016/j.soilbio.2023.109254_bib97) 2014; 75 Samad (10.1016/j.soilbio.2023.109254_bib137) 2016; 6 Chen (10.1016/j.soilbio.2023.109254_bib24) 2019; 10 Cheng (10.1016/j.soilbio.2023.109254_bib26) 2014; 201 Molstad (10.1016/j.soilbio.2023.109254_bib106) 2007; 71 Takeda (10.1016/j.soilbio.2023.109254_bib149) 2022 Cui (10.1016/j.soilbio.2023.109254_bib31) 2020; 142 Davidson (10.1016/j.soilbio.2023.109254_bib36) 1991; 42 He (10.1016/j.soilbio.2023.109254_bib55) 2016; 321 Lapsansky (10.1016/j.soilbio.2023.109254_bib79) 2016; 38 He (10.1016/j.soilbio.2023.109254_bib56) 2023 Lin (10.1016/j.soilbio.2023.109254_bib90) 2017; 81 Rantanen (10.1016/j.soilbio.2023.109254_bib126) 2022; 3 Repo (10.1016/j.soilbio.2023.109254_bib128) 2009; 2 van der Bom (10.1016/j.soilbio.2023.109254_bib156) 2018; 122 Kuzyakov (10.1016/j.soilbio.2023.109254_bib75) 2006; 38 Giltrap (10.1016/j.soilbio.2023.109254_bib49) 2020; 49 Kumar (10.1016/j.soilbio.2023.109254_bib72) 2016; 409 Xu (10.1016/j.soilbio.2023.109254_bib166) 2021; 764 Wagner-Riddle (10.1016/j.soilbio.2023.109254_bib162) 2008; 72 Németh (10.1016/j.soilbio.2023.109254_bib112) 2014; 73 Banerjee (10.1016/j.soilbio.2023.109254_bib9) 2016; 95 Liu (10.1016/j.soilbio.2023.109254_bib92) 2020; 140 Ostrom (10.1016/j.soilbio.2023.109254_bib117) 2012 Blagodatskaya (10.1016/j.soilbio.2023.109254_bib17) 1998; 30 Blagodatsky (10.1016/j.soilbio.2023.109254_bib179) 2010; 42 Marushchak (10.1016/j.soilbio.2023.109254_bib100) 2011; 17 Chivenge (10.1016/j.soilbio.2023.109254_bib27) 2007; 94 Lin (10.1016/j.soilbio.2023.109254_bib87) 2020; 738 Bader (10.1016/j.soilbio.2023.109254_bib8) 2018; 15 Congreves (10.1016/j.soilbio.2023.109254_bib30) 2019; 5 Shcherbak (10.1016/j.soilbio.2023.109254_bib142) 2014; 111 Bernard (10.1016/j.soilbio.2023.109254_bib15) 2022; 36 Fontaine (10.1016/j.soilbio.2023.109254_bib44) 2003; 35 Hallett (10.1016/j.soilbio.2023.109254_bib52) 2022 Aaltonen (10.1016/j.soilbio.2023.109254_bib1) 2022; 86 Lloyd (10.1016/j.soilbio.2023.109254_bib95) 2016; 103 Keuper (10.1016/j.soilbio.2023.109254_bib67) 2012; 18 Tian (10.1016/j.soilbio.2023.109254_bib154) 2020; 12 Voigt (10.1016/j.soilbio.2023.109254_bib159) 2017; 23 Nottingham (10.1016/j.soilbio.2023.109254_bib114) 2022; 36 Marushchak (10.1016/j.soilbio.2023.109254_bib101) 2021; 12 Roman-Perez (10.1016/j.soilbio.2023.109254_bib132) 2021; 320 Liu (10.1016/j.soilbio.2023.109254_bib91) 2010; 72 Syakila (10.1016/j.soilbio.2023.109254_bib148) 2011; 1 van Kessel (10.1016/j.soilbio.2023.109254_bib157) 2013; 19 Li (10.1016/j.soilbio.2023.109254_bib84) 2020; 26 Liu (10.1016/j.soilbio.2023.109254_bib94) 2020; 362 Curtin (10.1016/j.soilbio.2023.109254_bib32) 1998; 30 Harris (10.1016/j.soilbio.2023.109254_bib54) 2022; 13 Mullen (10.1016/j.soilbio.2023.109254_bib109) 2011 Klemedtsson (10.1016/j.soilbio.2023.109254_bib69) 2005; 11 Smith (10.1016/j.soilbio.2023.109254_bib143) 1997; 3 Leip (10.1016/j.soilbio.2023.109254_bib82) 2011; 3 Liang (10.1016/j.soilbio.2023.109254_bib86) 2015; 10 Stein (10.1016/j.soilbio.2023.109254_bib146) 2019; 49 Löhnis (10.1016/j.soilbio.2023.109254_bib96) 1926; 22 Nicol (10.1016/j.soilbio.2023.109254_bib113) 2008; 10 Sprunger (10.1016/j.soilbio.2023.109254_bib144) 2019; 137 Butterbach-Bahl (10.1016/j.soilbio.2023.109254_bib20) 2013; 368 Kuzyakov (10.1016/j.soilbio.2023.109254_bib73) 2002; 165 Nadelhoffer (10.1016/j.soilbio.2023.109254_bib111) 1991; 72 Xu (10.1016/j.soilbio.2023.109254_bib167) 2023; 178 Adler (10.1016/j.soilbio.2023.109254_bib4) 2018; 10 Morley (10.1016/j.soilbio.2023.109254_bib108) 2014; 9 Abraha (10.1016/j.soilbio.2023.109254_bib3) 2018; 28 Orlowsky (10.1016/j.soilbio.2023.109254_bib116) 2012; 110 Enggrob (10.1016/j.soilbio.2023.109254_bib40) 2020; 10 Congreves (10.1016/j.soilbio.2023.109254_bib29) 2018; 117 Denk (10.1016/j.soilbio.2023.109254_bib38) 2017; 105 Lacroix (10.1016/j.soilbio.2023.109254_bib77) 2022 Olaya-Abril (10.1016/j.soilbio.2023.109254_bib115) 2021; 11 Wagner-Riddle (10.1016/j.soilbio.2023.109254_bib163) 2017; 10 Jiang (10.1016/j.soilbio.2023.109254_bib63) 2021; 462 Leiber-Sauheitl (10.1016/j.soilbio.2023.109254_bib81) 2015; 88 Roman-Perez (10.1016/j.soilbio.2023.109254_bib131) 2021 Liao (10.1016/j.soilbio.2023.109254_bib174) 2021; 773 Ruser (10.1016/j.soilbio.2023.109254_bib136) 2009 Langarica-Fuentes (10.1016/j.soilbio.2023.109254_bib78) 2018; 120 Pfab (10.1016/j.soilbio.2023.109254_bib121) 2011 Clarholm (10.1016/j.soilbio.2023.109254_bib28) 2015; 84 Kim (10.1016/j.soilbio.2023.109254_bib68) 2022; 166 Mason-Jones (10.1016/j.soilbio.2023.109254_bib102) 2018; 124 Arah (10.1016/j.soilbio.2023.109254_bib5) 1992; 56 Webb (10.1016/j.soilbio.2023.109254_bib164) 2022; 12 Jenkinson (10.1016/j.soilbio.2023.109254_bib62) 1985; 36 Rochette (10.1016/j.soilbio.2023.109254_bib130) 2013; 42 Harris (10.1016/j.soilbio.2023.109254_bib53) 2021; 7 Thomas (10.1016/j.soilbio.2023.109254_bib153) 2017; 81 Senbayram (10.1016/j.soilbio.2023.109254_bib141) 2012; 147 Wang (10.1016/j.soilbio.2023.109254_bib178) 2021; 11 Sehy (10.1016/j.soilbio.2023.109254_bib140) 2004; 167 Bastida (10.1016/j.soilbio.2023.109254_bib11) 2019; 10 Forster (10.1016/j.soilbio.2023.109254_bib45) 2021 Gabbarini (10.1016/j.soilbio.2023.109254_bib46) 2021; 97 (10.1016/j.soilbio.2023.109254_bib61) 2021 Toyoda (10.1016/j.soilbio.2023.109254_bib155) 1999; 71 Zheng (10.1016/j.soilbio.2023.109254_bib169) 2022 Li (10.1016/j.soilbio.2023.109254_bib83) 2018; 119 Chen (10.1016/j.soilbio.2023.109254_bib22) 2020; 358 Maeda (10.1016/j.soilbio.2023.109254_bib98) 2015; 5 Rousk (10.1016/j.soilbio.2023.109254_bib134) 2016; 22 Daly (10.1016/j.soilbio.2023.109254_bib34) 2022; 326 Holtan-Hartwig (10.1016/j.soilbio.2023.109254_bib59) 2002; 34 Li (10.1016/j.soilbio.2023.109254_bib85) 2022; 851 Paterson (10.1016/j.soilbio.2023.109254_bib176) 1999; 216 Müller (10.1016/j.soilbio.2023.109254_bib110) 2014; 72 Perveen (10.1016/j.soilbio.2023.109254_bib119) 2014; 20 Schleusner (10.1016/j.soilbio.2023.109254_bib139) 2018; 181 Thilakarathna (10.1016/j.soilbio.2023.109254_bib152) 2020; 50 Daly (10.1016/j.soilbio.2023.109254_bib33) 2020; 149 Flesch (10.1016/j.soilbio.2023.109254_bib42) 2018; 9 Voigt (10.1016/j.soilbio.2023.109254_bib161) 2020; 1 Azam (10.1016/j.soilbio.2023.109254_bib7) 2002; 1 Häfner (10.1016/j.soilbio.2023.109254_bib51) 2021; 4 Zhou (10.1016/j.soilbio.2023.109254_bib170) 2017; 23 Keiluweit (10.1016/j.soilbio.2023.109254_bib65) 2015; 5 Lin (10.1016/j.soilbio.2023.109254_bib88) 2021; 101 Ruser (10.1016/j.soilbio.2023.109254_bib135) 2006; 38 De Notaris (10.1016/j.soilbio.2023.109254_bib37) 2022; 835 Magdoff (10.1016/j.soilbio.2023.109254_bib99) 2004 Zhu (10.1016/j.soilbio.2023.109254_bib172) 2021; 167 Suleiman (10.1016/j.soilbio.2023.109254_bib147) 2018; 631 Lin (10.1016/j.soilbio.2023.109254_bib89) 2022; 157 Kuzyakov (10.1016/j.soilbio.2023.109254_bib74) 2010; 42 |
References_xml | – volume: 72 start-page: 407 issue: 3 year: 2010 ident: 10.1016/j.soilbio.2023.109254_bib91 article-title: Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2010.00856.x – volume: 32 start-page: 289 issue: 2–3 year: 1996 ident: 10.1016/j.soilbio.2023.109254_bib177 article-title: Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. Isotopes in Environmental and publication-title: Health studies – volume: 38 start-page: 137 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib79 article-title: Soil memory as a potential mechanism for encouraging sustainable plant health and productivity publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2016.01.014 – volume: 631 start-page: 1089 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib147 article-title: Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.03.116 – volume: 11 start-page: 1142 issue: 7 year: 2005 ident: 10.1016/j.soilbio.2023.109254_bib69 article-title: Soil CN ratio as a scalar parameter to predict nitrous oxide emissions publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2005.00973.x – start-page: 923 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib45 article-title: The earth's energy budget, climate feedbacks, and climate sensitivity – volume: 40 start-page: 142 issue: 1 year: 2008 ident: 10.1016/j.soilbio.2023.109254_bib138 article-title: The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.07.016 – volume: 124 start-page: 38 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib102 article-title: Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.05.024 – volume: 73 start-page: 1 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib112 article-title: Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.02.007 – volume: 42 start-page: 1275 issue: 8 year: 2010 ident: 10.1016/j.soilbio.2023.109254_bib179 article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.04.005 – volume: 45 start-page: 115 year: 2008 ident: 10.1016/j.soilbio.2023.109254_bib18 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-008-0334-y – volume: 181 start-page: 621 issue: 4 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib139 article-title: Primed N2O emission from native soil nitrogen: a 15N‐tracing laboratory experiment publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.201700312 – volume: 122 start-page: 91 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib156 article-title: Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.04.003 – volume: 36 start-page: 1355 issue: 6 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib15 article-title: Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation publication-title: Functional Ecology doi: 10.1111/1365-2435.14038 – volume: 84 start-page: 168 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib28 article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter–the unbutton model publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.02.019 – volume: 38 start-page: 747 issue: 4 year: 2006 ident: 10.1016/j.soilbio.2023.109254_bib75 article-title: Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2005.06.025 – volume: 52 start-page: 1322 issue: 5 year: 1988 ident: 10.1016/j.soilbio.2023.109254_bib158 article-title: Evaluation of nitrogen‐15 tracer techniques for direct measurement of denitrification in soil: II. Simulation studies publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1988.03615995005200050021x – volume: 23 start-page: 4068 issue: 10 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib170 article-title: Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta‐analysis publication-title: Global Change Biology doi: 10.1111/gcb.13648 – volume: 157 start-page: 379 issue: 3 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib89 article-title: Increased soil-derived N2O production following a simulated fall-freeze–thaw cycle: effects of fall urea addition, soil moisture, and history of manure applications publication-title: Biogeochemistry doi: 10.1007/s10533-021-00880-x – volume: 72 start-page: 242 issue: 1 year: 1991 ident: 10.1016/j.soilbio.2023.109254_bib111 article-title: Effects of temperature and substrate quality on element mineralization in six arctic soils publication-title: Ecology doi: 10.2307/1938918 – volume: 94 start-page: 328 issue: 2 year: 2007 ident: 10.1016/j.soilbio.2023.109254_bib27 article-title: Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils publication-title: Soil and Tillage Research doi: 10.1016/j.still.2006.08.006 – start-page: 1 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib131 article-title: Nitrous oxide production and nitrogen transformations in a soil amended with biosolids publication-title: Canadian Journal of Soil Science – volume: 12 start-page: 160 issue: 2 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib154 article-title: The role of rhizodeposits in shaping rhizomicrobiome publication-title: Environmental Microbiology Reports doi: 10.1111/1758-2229.12816 – volume: 4 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib51 article-title: Field application of organic fertilizers triggers N2O emissions from the soil N pool as indicated by 15N-labeled digestates publication-title: Frontiers in Sustainable Food Systems doi: 10.3389/fsufs.2020.614349 – volume: 87 start-page: 395 issue: 3 year: 2010 ident: 10.1016/j.soilbio.2023.109254_bib105 article-title: Effects of organic wastes digestion for biogas production on mineral nutrient availability of biogas effluents publication-title: Nutrient Cycling in Agroecosystems doi: 10.1007/s10705-010-9346-8 – volume: 471 start-page: 559 issue: 1 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib25 article-title: Soil properties and substrate quality determine the priming of soil organic carbon during vegetation succession publication-title: Plant and Soil doi: 10.1007/s11104-021-05241-z – volume: 77 start-page: 276 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib173 article-title: Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (Camellia sinensis) in Shizuoka, central Japan publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.06.016 – volume: 19 start-page: 33 issue: 1 year: 2013 ident: 10.1016/j.soilbio.2023.109254_bib157 article-title: Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐analysis publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2012.02779.x – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib115 article-title: Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222 publication-title: Scientific Reports doi: 10.1038/s41598-021-96559-2 – volume: 21 start-page: 4570 issue: 12 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib2 article-title: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra publication-title: Global Change Biology doi: 10.1111/gcb.13069 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib150 article-title: Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of southern China publication-title: Scientific Reports doi: 10.1038/s41598-020-70612-y – volume: 97 issue: 4 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib46 article-title: Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils publication-title: FEMS Microbiology Ecology doi: 10.1093/femsec/fiab025 – volume: 140 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib92 article-title: The soil priming effect: consistent across ecosystems, elusive mechanisms publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107617 – volume: 10 start-page: 2966 issue: 11 year: 2008 ident: 10.1016/j.soilbio.2023.109254_bib113 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2008.01701.x – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib54 article-title: Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor publication-title: Nature Communications doi: 10.1038/s41467-022-32001-z – volume: 216 start-page: 155 year: 1999 ident: 10.1016/j.soilbio.2023.109254_bib176 article-title: Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation publication-title: Plant and Soil doi: 10.1023/A:1004789407065 – volume: 49 start-page: 1168 issue: 5 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib49 article-title: Global Research Alliance N2O chamber methodology guidelines: summary of modeling approaches publication-title: Journal of Environmental Quality doi: 10.1002/jeq2.20119 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib11 article-title: Global ecological predictors of the soil priming effect publication-title: Nature Communications doi: 10.1038/s41467-019-11472-7 – volume: 32 start-page: 1485 issue: 11–12 year: 2000 ident: 10.1016/j.soilbio.2023.109254_bib76 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(00)00084-5 – volume: 81 start-page: 189 issue: 1 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib153 article-title: Non‐legume cover crops can increase non‐growing season nitrous oxide emissions publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2016.08.0269 – volume: 129 start-page: 13 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib64 article-title: Land use legacy regulates microbial community composition in transplanted Chernozems publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2018.03.001 – volume: 56 start-page: 583 issue: 5 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib93 article-title: Legacy effects of 8-year nitrogen inputs on bacterial assemblage in wheat rhizosphere publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-020-01435-2 – volume: 111 start-page: 9199 issue: 25 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib142 article-title: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1322434111 – volume: 47 start-page: 151 issue: 2 year: 1996 ident: 10.1016/j.soilbio.2023.109254_bib12 article-title: Total carbon and nitrogen in the soils of the world publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.1996.tb01386.x – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib107 article-title: Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling publication-title: Nature Communications doi: 10.1038/ncomms4694 – volume: 764 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib166 article-title: Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: an in situ 15N tracing study publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2020.142884 – volume: 20 start-page: 1174 issue: 4 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib119 article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model publication-title: Global Change Biology doi: 10.1111/gcb.12493 – volume: 1 start-page: 17 issue: 1 year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib148 article-title: The global nitrous oxide budget revisited publication-title: Greenhouse Gas Measurement and Management doi: 10.3763/ghgmm.2010.0007 – volume: 368 issue: 1621 year: 2013 ident: 10.1016/j.soilbio.2023.109254_bib20 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2013.0122 – volume: 7 issue: 6 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib53 article-title: Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting publication-title: Science Advances doi: 10.1126/sciadv.abb7118 – year: 2004 ident: 10.1016/j.soilbio.2023.109254_bib99 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib24 article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale publication-title: Nature Communications doi: 10.1038/s41467-019-13119-z – volume: 123 start-page: 97 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib123 article-title: Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.05.006 – volume: 5 start-page: 265 issue: 2 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib30 article-title: A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways publication-title: Soils doi: 10.5194/soil-5-265-2019 – volume: 100 start-page: 23115 issue: D11 year: 1995 ident: 10.1016/j.soilbio.2023.109254_bib43 article-title: Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1029/95JD02270 – volume: 142 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib31 article-title: Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2020.107720 – volume: 9 start-page: 983 issue: 5 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib80 article-title: Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review publication-title: Microorganisms doi: 10.3390/microorganisms9050983 – start-page: 207 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib39 article-title: Precipitation change in the United States – volume: 358 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib22 article-title: Land-use legacy effects shape microbial contribution to N2O production in three tropical forests publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113979 – start-page: 1 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib149 article-title: Interaction between soil and fertiliser nitrogen drives plant nitrogen uptake and nitrous oxide (N2O) emissions in tropical sugarcane systems publication-title: Plant and Soil – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib70 article-title: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation publication-title: Nature Communications doi: 10.1038/s41467-020-16757-w – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib86 article-title: Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability publication-title: Environmental Research Letters doi: 10.1088/1748-9326/10/3/034008 – volume: 2 start-page: 697 issue: 5 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib165 article-title: Root exudate chemistry affects soil carbon mobilization via microbial community reassembly publication-title: Fundamental Research doi: 10.1016/j.fmre.2021.12.016 – volume: 84 start-page: 65 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib71 article-title: Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification–An N2O isotopomer case study publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.01.021 – volume: 147 start-page: 4 year: 2012 ident: 10.1016/j.soilbio.2023.109254_bib141 article-title: N2O emission and the N2O/(N2O+ N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2011.06.022 – volume: 462 start-page: 489 issue: 1 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib63 article-title: Effects of nitrogen fertilization on the rhizosphere priming publication-title: Plant and Soil doi: 10.1007/s11104-021-04872-6 – volume: 26 start-page: 931 issue: 2 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib84 article-title: Terrestrial N2O emissions and related functional genes under climate change: a global meta‐analysis publication-title: Global Change Biology doi: 10.1111/gcb.14847 – volume: 155 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib151 article-title: Primings of soil organic matter and denitrification mediate the effects of moisture on nitrous oxide production publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108166 – volume: 166 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib68 article-title: Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2022.108565 – volume: 42 start-page: 335 issue: 3 year: 1991 ident: 10.1016/j.soilbio.2023.109254_bib36 article-title: Measuring gross nitrogen mineralization, and nitrification by 15 N isotopic pool dilution in intact soil cores publication-title: Journal of Soil Science doi: 10.1111/j.1365-2389.1991.tb00413.x – year: 2009 ident: 10.1016/j.soilbio.2023.109254_bib136 article-title: N2O release of two croplands with different yield and expectations after incorporation of 15N-labeled mustard [Poster presentation] – start-page: 67 year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib109 article-title: Nutrient cycling in soils: nitrogen – volume: 22 start-page: 253 issue: 4 year: 1926 ident: 10.1016/j.soilbio.2023.109254_bib96 article-title: Nitrogen availability of green manures publication-title: Soil Science doi: 10.1097/00010694-192610000-00001 – volume: 30 start-page: 1269 issue: 10–11 year: 1998 ident: 10.1016/j.soilbio.2023.109254_bib17 article-title: Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(98)00050-9 – volume: 22 start-page: 4150 issue: 12 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib134 article-title: Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments publication-title: Global Change Biology doi: 10.1111/gcb.13296 – year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib77 article-title: Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic publication-title: Global Change Biology doi: 10.1111/gcb.16345 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib98 article-title: N2O production, a widespread trait in fungi publication-title: Scientific Reports doi: 10.1038/srep09697 – volume: 409 start-page: 87 issue: 1 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib72 article-title: Maize rhizosphere priming: field estimates using 13C natural abundance publication-title: Plant and Soil doi: 10.1007/s11104-016-2958-2 – volume: 134 start-page: 162 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib120 article-title: Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.03.027 – volume: 178 year: 2023 ident: 10.1016/j.soilbio.2023.109254_bib167 article-title: Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2023.108961 – volume: 326 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib34 article-title: Perennial grain crops reduce N2O emissions under specific site conditions publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107802 – volume: 10 start-page: 279 issue: 4 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib163 article-title: Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles publication-title: Nature Geoscience doi: 10.1038/ngeo2907 – volume: 149 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib33 article-title: Sources and priming of soil N2O and CO2 production: nitrogen and simulated exudate additions publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2020.107942 – volume: 28 start-page: 1362 issue: 5 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib3 article-title: Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems publication-title: Ecological Applications doi: 10.1002/eap.1745 – volume: 17 start-page: 2601 issue: 8 year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib100 article-title: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2011.02442.x – volume: 114 start-page: 6238 issue: 24 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib160 article-title: Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1702902114 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib16 article-title: Permafrost is warming at a global scale publication-title: Nature Communications doi: 10.1038/s41467-018-08240-4 – volume: 117 start-page: 5 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib29 article-title: Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.10.040 – volume: 62 start-page: 496 issue: 6 year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib47 article-title: C: N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops publication-title: Crop & Pasture Science doi: 10.1071/CP10360 – volume: 58 start-page: 311 issue: 3 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib19 article-title: Fertiliser and seasonal urine effects on N2O emissions from the urine-fertiliser interface of a grazed pasture publication-title: New Zealand Journal of Agricultural Research doi: 10.1080/00288233.2015.1031405 – volume: 36 start-page: 1338 issue: 6 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib114 article-title: Soil carbon and microbes in the warming tropics publication-title: Functional Ecology doi: 10.1111/1365-2435.14050 – year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib125 article-title: A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils–changing the paradigm publication-title: Environmental Research Letters – volume: 88 start-page: 282 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib81 article-title: Sheep excreta cause no positive priming of peat-derived CO2 and N2O emissions publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.06.001 – volume: 28 start-page: 605 issue: 4 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib13 article-title: Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia publication-title: Permafrost and Periglacial Processes doi: 10.1002/ppp.1958 – volume: 738 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib87 article-title: Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.139669 – year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib61 article-title: Summary for policymakers – volume: 165 start-page: 382 issue: 4 year: 2002 ident: 10.1016/j.soilbio.2023.109254_bib73 article-title: Factors affecting rhizosphere priming effects publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# – volume: 49 start-page: 537 issue: 5 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib175 article-title: NH3 volatilization, N2O emission and microbial biomass turnover from 15N-labeled manure under laboratory conditions publication-title: Communications in Soil Science and Plant Analysis doi: 10.1080/00103624.2018.1431271 – volume: 773 start-page: 145645 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib174 article-title: Effect of field-aged biochar on fertilizer N retention and N2O emissions: A field microplot experiment with 15N-labeled urea publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2021.145645 – volume: 362 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib94 article-title: C: N stoichiometry of stable and labile organic compounds determine priming patterns publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114122 – volume: 134 start-page: 175 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib103 article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.04.003 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib40 article-title: Gram-positive bacteria control the rapid anabolism of protein-sized soil organic nitrogen compounds questioning the present paradigm publication-title: Scientific Reports doi: 10.1038/s41598-020-72696-y – volume: 167 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib172 article-title: Microorganisms maintain C: N stoichiometric balance by regulating the priming effect in long-term fertilized soils publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2021.104033 – volume: 71 start-page: 202 issue: 3 year: 2007 ident: 10.1016/j.soilbio.2023.109254_bib106 article-title: Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures publication-title: Journal of Microbiological Methods doi: 10.1016/j.mimet.2007.08.011 – year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib121 – volume: 86 start-page: 1625 issue: 6 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib1 article-title: The effects of glucose addition and water table manipulation on peat quality of drained peatland forests with different management practices publication-title: Soil Science Society of America Journal doi: 10.1002/saj2.20419 – year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib52 article-title: Building soil sustainability from root–soil interface traits publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2022.01.010 – volume: 201 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib26 article-title: Synthesis and modeling perspectives of rhizosphere priming publication-title: New Phytologist doi: 10.1111/nph.12440 – volume: 167 start-page: 471 issue: 4 year: 2004 ident: 10.1016/j.soilbio.2023.109254_bib140 article-title: Adding dissolved organic carbon to simulate freeze‐thaw related N2O emissions from soil publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.200421393 – volume: 835 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib37 article-title: Potential for the adoption of measures to reduce N2O emissions from crop residues in Denmark publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2022.155510 – volume: 76 start-page: 2155 issue: 7 year: 2010 ident: 10.1016/j.soilbio.2023.109254_bib57 article-title: Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02993-09 – volume: 165 start-page: 397 issue: 4 year: 2002 ident: 10.1016/j.soilbio.2023.109254_bib60 article-title: Plant rhizodeposition—an important source for carbon turnover in soils publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib124 article-title: Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum publication-title: Scientific Reports doi: 10.1038/srep19865 – volume: 18 start-page: 1998 issue: 6 year: 2012 ident: 10.1016/j.soilbio.2023.109254_bib67 article-title: A frozen feast: thawing permafrost increases plant‐available nitrogen in subarctic peatlands publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2012.02663.x – volume: 2 start-page: 189 issue: 3 year: 2009 ident: 10.1016/j.soilbio.2023.109254_bib128 article-title: Large N2O emissions from cryoturbated peat soil in tundra publication-title: Nature Geoscience doi: 10.1038/ngeo434 – volume: 5 start-page: 588 issue: 6 year: 2015 ident: 10.1016/j.soilbio.2023.109254_bib65 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nature Climate Change doi: 10.1038/nclimate2580 – volume: 71 start-page: 4711 issue: 20 year: 1999 ident: 10.1016/j.soilbio.2023.109254_bib155 article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer publication-title: Analytical Chemistry doi: 10.1021/ac9904563 – volume: 76 start-page: 183 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib171 article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.04.033 – volume: 116 start-page: 193 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib50 article-title: Fate of 15N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.10.013 – volume: 11 start-page: 770 issue: 4 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib178 article-title: Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review publication-title: Agronomy doi: 10.3390/agronomy11040770 – volume: 9 start-page: 128 issue: 4 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib42 article-title: Micrometeorological measurements reveal large nitrous oxide losses during spring thaw in Alberta publication-title: Atmosphere doi: 10.3390/atmos9040128 – volume: 110 start-page: 669 issue: 3 year: 2012 ident: 10.1016/j.soilbio.2023.109254_bib116 article-title: Global changes in extreme events: regional and seasonal dimension publication-title: Climatic Change doi: 10.1007/s10584-011-0122-9 – volume: 103 start-page: 512 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib95 article-title: Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.10.002 – volume: 147 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib6 article-title: Elucidating microbial carbon utilization and nitrous oxide dynamics with 13C-substrates and N2O isotopomers in contrasting horticultural soils publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2019.103401 – start-page: 219 year: 1991 ident: 10.1016/j.soilbio.2023.109254_bib35 article-title: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib137 article-title: Phylogenetic and functional potential links pH and N2O emissions in pasture soils publication-title: Scientific Reports – volume: 95 start-page: 40 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib9 article-title: Legacy effects of soil moisture on microbial community structure and N2O emissions publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.12.004 – volume: 101 start-page: 290 issue: 2 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib88 article-title: Nitrogen turnover and N2O production in incubated soils after receiving field applications of liquid manure and nitrification inhibitors publication-title: Canadian Journal of Soil Science doi: 10.1139/cjss-2020-0102 – volume: 30 start-page: 57 issue: 1 year: 1998 ident: 10.1016/j.soilbio.2023.109254_bib32 article-title: Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(97)00094-1 – volume: 78 start-page: 180 issue: 1 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib129 article-title: Comparison of simultaneous soil profile N2O concentration and surface N2O flux measurements overwinter and at spring thaw in an agricultural soil publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2013.06.0221 – volume: 50 start-page: 78 issue: 1 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib152 article-title: How does management legacy, nitrogen addition, and nitrification inhibition affect soil organic matter priming and nitrous oxide production? – volume: 851 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib85 article-title: Organic matter contributions to nitrous oxide emissions following nitrate addition are not proportional to substrate-induced soil carbon priming publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2022.158274 – volume: 20 start-page: 2356 issue: 7 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib23 article-title: Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories publication-title: Global Change Biology doi: 10.1111/gcb.12475 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib101 article-title: Thawing Yedoma permafrost is a neglected nitrous oxide source publication-title: Nature Communications doi: 10.1038/s41467-021-27386-2 – volume: 1 start-page: 420 issue: 8 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib161 article-title: Nitrous oxide emissions from permafrost-affected soils publication-title: Nature Reviews Earth & Environment doi: 10.1038/s43017-020-0063-9 – volume: 72 start-page: 44 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib110 article-title: Quantification of N2O emission pathways via a 15N tracing model publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2014.01.013 – volume: 12 start-page: 774 issue: 10 year: 2020 ident: 10.1016/j.soilbio.2023.109254_bib14 article-title: 21st‐century biogeochemical modeling: challenges for Century‐based models and where do we go from here? publication-title: Global Change Biology Bioenergy doi: 10.1111/gcbb.12730 – volume: 320 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib132 article-title: Greenhouse gas emissions, nitrogen dynamics and barley productivity as impacted by biosolids applications publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107577 – volume: 81 start-page: 1595 issue: 6 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib90 article-title: Timing of manure injection and nitrification inhibitors impacts on nitrous oxide emissions and nitrogen transformations in a barley crop publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2017.03.0093 – volume: 137 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib144 article-title: Perennial grain crop roots and nitrogen management shape soil food webs and soil carbon dynamics publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107573 – volume: 50 start-page: 94 issue: No. 1 year: 2021 ident: 10.1016/j.soilbio.2023.109254_bib133 article-title: Sources and priming of nitrous oxide production across a range of moisture contents in a soil with high organic matter – volume: 36 start-page: 425 issue: 3 year: 1985 ident: 10.1016/j.soilbio.2023.109254_bib62 article-title: Interactions between fertilizer nitrogen and soil nitrogen—the so‐called ‘priming’effect publication-title: Journal of Soil Science doi: 10.1111/j.1365-2389.1985.tb00348.x – volume: 119 start-page: 41 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib83 article-title: Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.01.003 – volume: 1 start-page: 54 issue: 1 year: 2002 ident: 10.1016/j.soilbio.2023.109254_bib7 article-title: Added nitrogen interaction in the soil-plant system–a review publication-title: Pakistan Journal of Agronomy doi: 10.3923/ja.2002.54.59 – volume: 42 start-page: 1363 issue: 9 year: 2010 ident: 10.1016/j.soilbio.2023.109254_bib74 article-title: Priming effects: interactions between living and dead organic matter publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.04.003 – volume: 42 start-page: 1635 issue: 6 year: 2013 ident: 10.1016/j.soilbio.2023.109254_bib130 article-title: Ammonia volatilization and nitrogen retention: how deep to incorporate urea? publication-title: Journal of Environmental Quality doi: 10.2134/jeq2013.05.0192 – volume: 321 start-page: 46 year: 2016 ident: 10.1016/j.soilbio.2023.109254_bib55 article-title: Factors controlling nitrous oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2015.10.030 – volume: 3 start-page: 407 year: 2012 ident: 10.1016/j.soilbio.2023.109254_bib48 article-title: Soil nitrate reducing processes–drivers, mechanisms for spatial variation, and significance for nitrous oxide production publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2012.00407 – volume: 23 start-page: 3121 issue: 8 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib159 article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases–carbon dioxide, methane, and nitrous oxide publication-title: Global Change Biology doi: 10.1111/gcb.13563 – volume: 56 start-page: 795 issue: 3 year: 1992 ident: 10.1016/j.soilbio.2023.109254_bib5 article-title: New formulae for mass spectrometric analysis of nitrous oxide and dinitrogen emissions publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1992.03615995005600030020x – volume: 326 start-page: 123 issue: 5949 year: 2009 ident: 10.1016/j.soilbio.2023.109254_bib127 article-title: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century publication-title: Science doi: 10.1126/science.1176985 – volume: 10 start-page: 123 issue: 2 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib4 article-title: Legacy effects of individual crops affect N2O emissions accounting within crop rotations publication-title: Global Change Biology Bioenergy doi: 10.1111/gcbb.12462 – volume: 3 start-page: 328 issue: 5 year: 2011 ident: 10.1016/j.soilbio.2023.109254_bib82 article-title: Estimation of N2O fluxes at the regional scale: data, models, challenges publication-title: Current Opinion in Environmental Sustainability doi: 10.1016/j.cosust.2011.07.002 – start-page: 453 year: 2012 ident: 10.1016/j.soilbio.2023.109254_bib117 article-title: The isotopomers of nitrous oxide: analytical considerations and application to resolution of microbial production pathways doi: 10.1007/978-3-642-10637-8_23 – volume: 15 start-page: 703 issue: 3 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib8 article-title: Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature publication-title: Biogeosciences doi: 10.5194/bg-15-703-2018 – volume: 3 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib126 article-title: The Arctic has warmed nearly four times faster than the globe since 1979 publication-title: Communications Earth and Environment doi: 10.1038/s43247-022-00498-3 – volume: 34 start-page: 1797 issue: 11 year: 2002 ident: 10.1016/j.soilbio.2023.109254_bib59 article-title: Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00169-4 – volume: 35 start-page: 167 issue: 1 year: 2003 ident: 10.1016/j.soilbio.2023.109254_bib41 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00251-1 – volume: 35 start-page: 837 issue: 6 year: 2003 ident: 10.1016/j.soilbio.2023.109254_bib44 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(03)00123-8 – volume: 49 start-page: 9 year: 2019 ident: 10.1016/j.soilbio.2023.109254_bib146 article-title: Insights into the physiology of ammonia-oxidizing microorganisms publication-title: Current Opinion in Chemical Biology doi: 10.1016/j.cbpa.2018.09.003 – volume: 239 start-page: 188 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib10 article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2017.01.012 – volume: 105 start-page: 121 year: 2017 ident: 10.1016/j.soilbio.2023.109254_bib38 article-title: The nitrogen cycle: a review of isotope effects and isotope modeling approaches publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.11.015 – volume: 73 start-page: 1182 issue: 4 year: 2009 ident: 10.1016/j.soilbio.2023.109254_bib58 article-title: Nitrous oxide production in an eastern corn belt soil: sources and redox range publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2008.0183 – volume: 9 issue: 9 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib108 article-title: Substrate induced denitrification over or under estimates shifts in soil N2/N2O ratios publication-title: PLoS One doi: 10.1371/journal.pone.0108144 – volume: 12 start-page: 841 issue: 9 year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib164 article-title: Permafrost thaw drives surface water decline across lake-rich regions of the Arctic publication-title: Nature Climate Change doi: 10.1038/s41558-022-01455-w – volume: 3 start-page: 327 issue: 4 year: 1997 ident: 10.1016/j.soilbio.2023.109254_bib143 article-title: The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils publication-title: Global Change Biology doi: 10.1046/j.1365-2486.1997.00100.x – volume: 38 start-page: 263 issue: 2 year: 2006 ident: 10.1016/j.soilbio.2023.109254_bib135 article-title: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2005.05.005 – volume: 75 start-page: 13 year: 2014 ident: 10.1016/j.soilbio.2023.109254_bib97 article-title: Improving soil structure by promoting fungal abundance with organic soil amendments publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2013.10.002 – volume: 87 start-page: 9 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib104 article-title: Land use and fertilisation affect priming in tropical andosols publication-title: European Journal of Soil Biology doi: 10.1016/j.ejsobi.2018.04.001 – year: 2022 ident: 10.1016/j.soilbio.2023.109254_bib169 article-title: Nematode predation and competitive interactions affect microbe-mediated phosphorus dynamics publication-title: mBio doi: 10.1128/mbio.03293-21 – year: 2023 ident: 10.1016/j.soilbio.2023.109254_bib56 article-title: Priming effect stimulates carbon release from thawed permafrost publication-title: Global Change Biology doi: 10.1111/gcb.16750 – volume: 120 start-page: 70 year: 2018 ident: 10.1016/j.soilbio.2023.109254_bib78 article-title: Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.01.034 – volume: 38 start-page: 898 issue: 5 year: 2006 ident: 10.1016/j.soilbio.2023.109254_bib66 article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2005.08.006 – volume: 72 start-page: 908 issue: 4 year: 2008 ident: 10.1016/j.soilbio.2023.109254_bib162 article-title: Linking nitrous oxide flux during spring thaw to nitrate denitrification in the soil profile publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2007.0353 |
SSID | ssj0002513 |
Score | 2.4928436 |
SecondaryResourceType | review_article |
Snippet | The priming effect (PE) is the short-term increase or decrease in the rate of soil organic matter mineralization in response to a stimulus, such as the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 109254 |
SubjectTerms | biochemistry carbon dioxide climate climate change data collection greenhouse gases mineralization nitrification nitrogen nitrogen cycle nitrous oxide ozone soil soil organic carbon soil organic nitrogen stratosphere |
Title | Soil organic nitrogen priming to nitrous oxide: A synthesis |
URI | https://www.proquest.com/docview/3153608397 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BOQAHBAXUlocWiVtk42zW9ro9RRFQ9cABWqk3a1-OUqU2ih0Jeuhv78x6bSdQAeViWat4ZO98mZ2Znf2GkPfGqoLJzARWcRNwmUaB4iqCUGXCYlEIWBIc2-eX5PiMn5zH50O5rTtd0qhQX916ruR_tApjoFc8JXsHzfZCYQDuQb9wBQ3D9Z90_K1aLH1fJj2C_-aqmruSK-zUNUev0o2t61H1Y2H8IfT6Zwk-X72oN91SJ6jjY0IwwL3uWsENyey2KzWYznJ0Eg5ZVJ-JDr7KSzCgLiP9ee3OGF5W_R5HVc6RLar2JRx2NO0lzJbYKsgjZzMNwXhXuTyYVrCcGBxum9ZswziOo4y1jNG_2e02hXCBBMZL-MIQm7qHw--3ebJ_Wb_6qsKuYO0i92JyFJO3Yu6TBwwiCWxyEV4PVUDg3nle5vbth0NeH259m233ZXv1di7J6VPyxMcSdNoC4xm5Z8td8ng6X3k-FbtLHs46LT4nR6hl6uFCO7hQDxfaVNTDhTq4HNIp7cHygpx9-ng6Ow5874xAM5E0Aab2RKwKqQvnkisTFYkSQqERBx9QKYj1tUmZFBAjp1KIwgpjJpHSOmVjOXlJdsqqtHuEqsgyDn6pFXHGTcIlbqXHyNwox0wxs094NyW59sTy2N9kmf9RIfsk7B_73jKr_O2Bd9185zBzuLElSwuzkk9g2U4glsjSg7sKfUUeDWh-TXaa1dq-ATezUW8dUG4ANWl8Uw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+nitrogen+priming+to+nitrous+oxide%3A+A+synthesis&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Daly%2C+Erin+J.&rft.au=Hernandez-Ramirez%2C+Guillermo&rft.au=Congreves%2C+Kate+A.&rft.au=Clough%2C+Tim&rft.date=2024-02-01&rft.issn=0038-0717&rft.volume=189&rft.spage=109254&rft_id=info:doi/10.1016%2Fj.soilbio.2023.109254&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2023_109254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |