Exhibiting Wide Families of Maximal Intermediate Propositional Logics with the Disjunction Property

We provide results allowing to state, by the simple inspection of suitable classes of posets (propositional Kripke frames), that the corresponding intermediate propositional logics are maximal among the ones which satisfy the disjunction property. Starting from these results, we directly exhibit, wi...

Full description

Saved in:
Bibliographic Details
Published inMathematical logic quarterly Vol. 42; no. 1; pp. 501 - 536
Main Authors Bertolotti, Guido, Miglioli, Pierangelo, Silvestrini, Daniela
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag Berlin GmbH 1996
WILEY‐VCH Verlag Berlin GmbH
Subjects
Online AccessGet full text
ISSN0942-5616
1521-3870
DOI10.1002/malq.19960420141

Cover

Abstract We provide results allowing to state, by the simple inspection of suitable classes of posets (propositional Kripke frames), that the corresponding intermediate propositional logics are maximal among the ones which satisfy the disjunction property. Starting from these results, we directly exhibit, without using the axiom of choice, the Kripke frames semantics of 2No maximal intermediate propositional logics with the disjunction property. This improves previous evaluations, giving rise to the same conclusion but made with an essential use of the axiom of choice, of the cardinality of the set of the maximal intermediate propositional logics with the disjunction property. Mathematics Subject Classification: 03B55, 03C90.
AbstractList We provide results allowing to state, by the simple inspection of suitable classes of posets (propositional Kripke frames), that the corresponding intermediate propositional logics are maximal among the ones which satisfy the disjunction property. Starting from these results, we directly exhibit, without using the axiom of choice, the Kripke frames semantics of 2 No maximal intermediate propositional logics with the disjunction property. This improves previous evaluations, giving rise to the same conclusion but made with an essential use of the axiom of choice, of the cardinality of the set of the maximal intermediate propositional logics with the disjunction property. Mathematics Subject Classification: 03B55, 03C90.
We provide results allowing to state, by the simple inspection of suitable classes of posets (propositional Kripke frames), that the corresponding intermediate propositional logics are maximal among the ones which satisfy the disjunction property. Starting from these results, we directly exhibit, without using the axiom of choice, the Kripke frames semantics of 2No maximal intermediate propositional logics with the disjunction property. This improves previous evaluations, giving rise to the same conclusion but made with an essential use of the axiom of choice, of the cardinality of the set of the maximal intermediate propositional logics with the disjunction property. Mathematics Subject Classification: 03B55, 03C90.
Author Silvestrini, Daniela
Miglioli, Pierangelo
Bertolotti, Guido
Author_xml – sequence: 1
  givenname: Guido
  surname: Bertolotti
  fullname: Bertolotti, Guido
  organization: Dipartimento di Scienze dell'Infomazione, Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy
– sequence: 2
  givenname: Pierangelo
  surname: Miglioli
  fullname: Miglioli, Pierangelo
  organization: Dipartimento di Scienze dell'Infomazione, Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy
– sequence: 3
  givenname: Daniela
  surname: Silvestrini
  fullname: Silvestrini, Daniela
  organization: Dipartimento di Filosofia, Università degli Studi di Milano, via Festa del Perdono 7, 20122 Milano, Italy
BookMark eNqFkEtPwkAUhScGEwHdu5w_UJxXp2XhAnmJKSqJhuVkOr2FQWhxpgb49xYxRleu7uKc7-Tma6FGURaA0DUlHUoIu9no9XuHdruSCEaooGeoSUNGAx5HpIGapCtYEEoqL1DL-xUhJKQRaSIz3C9taitbLPDcZoBHemPXFjwuczzVe1vv4klRgdtAZnUF-NmV29LXRFnUUVIurPF4Z6slrpaAB9avPgpzTL-a4KrDJTrP9drD1fdto9fR8KV_HyRP40m_lwSGxZIGRkREpnGYGW0Iz2KRCaG5ZsLksUx5RCAHw0DSjMlU0DgOIRcs5SnwWKSS8jYip13jSu8d5Grr6v_dQVGijpLUUZL6JalGbk_Izq7h8G9fTXvJ7C8fnHjrK9j_8Nq9KRnxKFTzx7GaJw_jOzaYKc4_AXfEf5s
Cites_doi 10.1016/0168-0072(94)00052-5
10.1305/ndjfl/1093883567
10.2307/2275149
10.1305/ndjfl/1093635238
10.1007/BF01277484
10.1007/BFb0066744
10.2307/2274513
10.1016/0168-0072(94)00053-6
10.1007/BF01881550
10.1007/BF00370182
ContentType Journal Article
Copyright Copyright © 1996 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 1996 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/malq.19960420141
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1521-3870
EndPage 536
ExternalDocumentID 10_1002_malq_19960420141
MALQ19960420141
ark_67375_WNG_WLJGB2DQ_3
Genre article
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AMVHM
AAYXX
CITATION
ID FETCH-LOGICAL-c2861-c4706b85dcac03d84d44a3a24cf86b370efec2e61d26b41885ef42b3be384b613
ISSN 0942-5616
IngestDate Tue Jul 01 01:39:42 EDT 2025
Wed Aug 20 07:26:42 EDT 2025
Wed Oct 30 09:51:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2861-c4706b85dcac03d84d44a3a24cf86b370efec2e61d26b41885ef42b3be384b613
Notes istex:1D0CA6C05858B72E7F3BB3A9940A6746E1B5ACA5
ArticleID:MALQ19960420141
ark:/67375/WNG-WLJGB2DQ-3
PageCount 36
ParticipantIDs crossref_primary_10_1002_malq_19960420141
wiley_primary_10_1002_malq_19960420141_MALQ19960420141
istex_primary_ark_67375_WNG_WLJGB2DQ_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1996
1996-01-00
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 1996
PublicationDecade 1990
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mathematical logic quarterly
PublicationTitleAlternate Mathematical Logic Quarterly
PublicationYear 1996
Publisher WILEY-VCH Verlag Berlin GmbH
WILEY‐VCH Verlag Berlin GmbH
Publisher_xml – name: WILEY-VCH Verlag Berlin GmbH
– name: WILEY‐VCH Verlag Berlin GmbH
References Levin, L. A., Some syntactic theorems on the calculus of finite problems of Ju. T. Medvedev. Soviet Math. Dokl. 10 (1969), 288-290.
Šhethman, V. B., Rieger-Nishimura lattices. Doklady Acad. Nauk. SSSR 241 (1978), 1288-1291 (in Russian).
Šhethman, V. B., On incomplete propositional logics. Soviet Math. Dokl. 18 (1977), 985-989.
Miglioli, P., An infinite class of maximal intermedate logics with the disjunction property. Archive Math. Logic 31 (1992), 415-432.
Medvedev, Ju. T., Finite problems. Soviet Math. Dokl. 3 (1962), 227-230.
Miglioli, P., U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti, Some results on intermediate constructive logics. Notre Dame J. Formal Logic 30 (1989), 543-562.
Chagrov, A. V., and M. V. Zacharyaschev, The disjunction property of intermediate propositional logics. Studia Logica 50 (1991), 189-216.
Kirk, R. E., A result on propositional logics having the disjunction property. Notre Dame J. Formal Logic 23 (1982), 71-74.
Ferrari, M., and P. Miglioli, A method to single out maximal propositional logics with the disjunction property I. Annals Pure Applied Logic 76 (1995), 1-46.
Ferrari, M., and P. Miglioli, Counting the maximal intermediate constructive logics. J. Symbolic Logic 58 (1993), 1365-1401.
Ferrari, M., and P. Miglioli, A method to single out maximal propositional logics with the disjunction property II. Annals Pure Applied Logic 76 (1995), 117-168.
Maksimova, L. L., On the maximal intermediate logics with the disjunction property. Studia Logica 45 (1986), 69-75.
Bellissima, F., Finite and finitely separable intermediate propositional logics. J. Symbolic Logic 53 (1988), 403-420.
Chagrov, A. V., The cardinality of the set of maximal itermediate logics with the disjunction property is of continuum. Mat. Zametki 51 (1992), 117-123 (in Russian).
1982; 23
1993; 58
1989; 30
1990
1986; 45
1962; 3
1977; 18
1991; 50
1969; 10
1995; 76
1978; 241
1984
1973
1988; 53
1992; 31
1992; 51
Chagrov A. V. (e_1_2_1_3_2) 1992; 51
Šhethman V. B. (e_1_2_1_18_2) 1978; 241
Levin L. A. (e_1_2_1_10_2) 1969; 10
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
Šhethman V. B. (e_1_2_1_17_2) 1977; 18
e_1_2_1_12_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_14_2
Medvedev Ju. T. (e_1_2_1_13_2) 1962; 3
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Ferrari, M., and P. Miglioli, Counting the maximal intermediate constructive logics. J. Symbolic Logic 58 (1993), 1365-1401.
– reference: Medvedev, Ju. T., Finite problems. Soviet Math. Dokl. 3 (1962), 227-230.
– reference: Šhethman, V. B., On incomplete propositional logics. Soviet Math. Dokl. 18 (1977), 985-989.
– reference: Ferrari, M., and P. Miglioli, A method to single out maximal propositional logics with the disjunction property II. Annals Pure Applied Logic 76 (1995), 117-168.
– reference: Ferrari, M., and P. Miglioli, A method to single out maximal propositional logics with the disjunction property I. Annals Pure Applied Logic 76 (1995), 1-46.
– reference: Šhethman, V. B., Rieger-Nishimura lattices. Doklady Acad. Nauk. SSSR 241 (1978), 1288-1291 (in Russian).
– reference: Miglioli, P., U. Moscato, M. Ornaghi, S. Quazza, and G. Usberti, Some results on intermediate constructive logics. Notre Dame J. Formal Logic 30 (1989), 543-562.
– reference: Miglioli, P., An infinite class of maximal intermedate logics with the disjunction property. Archive Math. Logic 31 (1992), 415-432.
– reference: Chagrov, A. V., The cardinality of the set of maximal itermediate logics with the disjunction property is of continuum. Mat. Zametki 51 (1992), 117-123 (in Russian).
– reference: Levin, L. A., Some syntactic theorems on the calculus of finite problems of Ju. T. Medvedev. Soviet Math. Dokl. 10 (1969), 288-290.
– reference: Bellissima, F., Finite and finitely separable intermediate propositional logics. J. Symbolic Logic 53 (1988), 403-420.
– reference: Maksimova, L. L., On the maximal intermediate logics with the disjunction property. Studia Logica 45 (1986), 69-75.
– reference: Chagrov, A. V., and M. V. Zacharyaschev, The disjunction property of intermediate propositional logics. Studia Logica 50 (1991), 189-216.
– reference: Kirk, R. E., A result on propositional logics having the disjunction property. Notre Dame J. Formal Logic 23 (1982), 71-74.
– start-page: 000
  year: 1984
  end-page: 000
– start-page: 41
  year: 1990
– year: 1984
– volume: 45
  start-page: 69
  year: 1986
  end-page: 75
  article-title: On the maximal intermediate logics with the disjunction property
  publication-title: Studia Logica
– volume: 53
  start-page: 403
  year: 1988
  end-page: 420
  article-title: Finite and finitely separable intermediate propositional logics
  publication-title: J. Symbolic Logic
– volume: 18
  start-page: 985
  year: 1977
  end-page: 989
  article-title: On incomplete propositional logics
  publication-title: Soviet Math. Dokl.
– volume: 3
  start-page: 227
  year: 1962
  end-page: 230
  article-title: Finite problems
  publication-title: Soviet Math. Dokl.
– volume: 76
  start-page: 1
  year: 1995
  end-page: 46
  article-title: A method to single out maximal propositional logics with the disjunction property I
  publication-title: Annals Pure Applied Logic
– volume: 10
  start-page: 288
  year: 1969
  end-page: 290
  article-title: Some syntactic theorems on the calculus of finite problems of Ju
  publication-title: T. Medvedev. Soviet Math. Dokl.
– volume: 23
  start-page: 71
  year: 1982
  end-page: 74
  article-title: A result on propositional logics having the disjunction property
  publication-title: Notre Dame J. Formal Logic
– volume: 30
  start-page: 543
  year: 1989
  end-page: 562
  article-title: Some results on intermediate constructive logics
  publication-title: Notre Dame J. Formal Logic
– volume: 51
  start-page: 117
  year: 1992
  end-page: 123
  article-title: The cardinality of the set of maximal itermediate logics with the disjunction property is of continuum
  publication-title: Mat. Zametki
– volume: 76
  start-page: 117
  year: 1995
  end-page: 168
  article-title: A method to single out maximal propositional logics with the disjunction property II
  publication-title: Annals Pure Applied Logic
– start-page: 324
  year: 1973
  end-page: 391
– volume: 58
  start-page: 1365
  year: 1993
  end-page: 1401
  article-title: Counting the maximal intermediate constructive logics
  publication-title: J. Symbolic Logic
– volume: 241
  start-page: 1288
  year: 1978
  end-page: 1291
  article-title: Rieger‐Nishimura lattices
  publication-title: Doklady Acad. Nauk. SSSR
– volume: 50
  start-page: 189
  year: 1991
  end-page: 216
  article-title: The disjunction property of intermediate propositional logics
  publication-title: Studia Logica
– volume: 31
  start-page: 415
  year: 1992
  end-page: 432
  article-title: An infinite class of maximal intermedate logics with the disjunction property
  publication-title: Archive Math. Logic
– ident: e_1_2_1_7_2
  doi: 10.1016/0168-0072(94)00052-5
– ident: e_1_2_1_9_2
  doi: 10.1305/ndjfl/1093883567
– ident: e_1_2_1_11_2
– volume: 51
  start-page: 117
  year: 1992
  ident: e_1_2_1_3_2
  article-title: The cardinality of the set of maximal itermediate logics with the disjunction property is of continuum
  publication-title: Mat. Zametki
– ident: e_1_2_1_5_2
  doi: 10.2307/2275149
– ident: e_1_2_1_15_2
  doi: 10.1305/ndjfl/1093635238
– volume: 18
  start-page: 985
  year: 1977
  ident: e_1_2_1_17_2
  article-title: On incomplete propositional logics
  publication-title: Soviet Math. Dokl.
– volume: 10
  start-page: 288
  year: 1969
  ident: e_1_2_1_10_2
  article-title: Some syntactic theorems on the calculus of finite problems of Ju
  publication-title: T. Medvedev. Soviet Math. Dokl.
– ident: e_1_2_1_14_2
  doi: 10.1007/BF01277484
– ident: e_1_2_1_8_2
– ident: e_1_2_1_19_2
– ident: e_1_2_1_16_2
  doi: 10.1007/BFb0066744
– ident: e_1_2_1_2_2
  doi: 10.2307/2274513
– ident: e_1_2_1_6_2
  doi: 10.1016/0168-0072(94)00053-6
– volume: 3
  start-page: 227
  year: 1962
  ident: e_1_2_1_13_2
  article-title: Finite problems
  publication-title: Soviet Math. Dokl.
– ident: e_1_2_1_12_2
  doi: 10.1007/BF01881550
– ident: e_1_2_1_4_2
  doi: 10.1007/BF00370182
– volume: 241
  start-page: 1288
  year: 1978
  ident: e_1_2_1_18_2
  article-title: Rieger‐Nishimura lattices
  publication-title: Doklady Acad. Nauk. SSSR
SSID ssj0005170
Score 1.3955106
Snippet We provide results allowing to state, by the simple inspection of suitable classes of posets (propositional Kripke frames), that the corresponding intermediate...
SourceID crossref
wiley
istex
SourceType Index Database
Publisher
StartPage 501
SubjectTerms Constructive logic
Intermediate logic
Irreductible frame
Kripke frame semantics
Kripke model
Maximal constructive logic
Maximal nonstandard constructive logic
Nonstandard constructive logic
Nonstandard intermediate logic
Regular Kripke model
Weak canonical model
Title Exhibiting Wide Families of Maximal Intermediate Propositional Logics with the Disjunction Property
URI https://api.istex.fr/ark:/67375/WNG-WLJGB2DQ-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.19960420141
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F5AIHxFMECtoDQkKVwV6v184xadpEVVNR0ZLeLO_DlSFNaJtIFT-K38iMd2M7LYjCxUoce-PMfJmZnf1mlpC3XMeK5dp4YP2Vx0USeFJLCOR0zw-ZkbEoUwOTQzE-4fun0Wmr9bPBWlot5Qf147d1Jf-jVTgHesUq2X_QbDUonIDXoF84gobheCcd7-Lu1kVJXJ4W2thdLArjeC3XxXnZSAONb7khh8GygDVLCxPYaPZceRvGn8Pi6iu4uRIReCW23W0Gr5OqxSvcXNpMrMnc5IQO4Cawp0vLEhitCr2odFqczYqFLcf-BN4Yyxpm1aefixl2_MAFpbr0PauTEshjro1euTnWl53xts1HbruuXaNzOW4mHzlMgUXgmmA708sC7PTrN20zZ7cwaA1t5FIg1mdHtonKLXdg28uCsC-wKlOAgUJea-361sv9NzxixVPMLr8h8S2O0unhKJ0e7I8GbHiUhvdIh8VxELVJpz8YDvZqUlFQbk9Y_T63MA7P8fHmU2wEQh38T19vTpDKCOf4EXnopia0b3H2mLTM_Al5UCv96ilRNeIoIo6uEUcXOXWIo03E0Q3EUYs4ioijMCxtII6uEfeMnOztHu-MPbdNh6dYIgJP8dgXMom0ypQf6oRrzrMwY1zliZBh7JvcKGZEoJmQPEiSyOScyVCaMOESwsnnpD1fzM0LQnuxSuASiPllyI2IZNTTMjHM172YZUneJe_XMku_224sqe27zVKUb9qQb5e8K4VaXfgnZXaJKKX-1xHTSf_gqPH-5V2_4RW5b8n-mLnbIu3l5cq8hlh2Kd84AP0C3FKh4Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exhibiting+Wide+Families+of+Maximal+Intermediate+Propositional+Logics+with+the+Disjunction+Property&rft.jtitle=Mathematical+logic+quarterly&rft.au=Bertolotti%2C+Guido&rft.au=Miglioli%2C+Pierangelo&rft.au=Silvestrini%2C+Daniela&rft.date=1996&rft.pub=WILEY-VCH+Verlag+Berlin+GmbH&rft.issn=0942-5616&rft.eissn=1521-3870&rft.volume=42&rft.issue=1&rft.spage=501&rft.epage=536&rft_id=info:doi/10.1002%2Fmalq.19960420141&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WLJGB2DQ_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-5616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-5616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-5616&client=summon