Hybrid Optimization and TCAD Simulation of Hole Transport and Passivation Layer In Narrow‐Bandgap Perovskite Solar Cells

Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treat...

Full description

Saved in:
Bibliographic Details
Published inSolar RRL Vol. 9; no. 10
Main Authors Huang, Tzu‐Yu, Li, Chien‐Chen, Lai, Yu‐Hsuan, Gao, Xin‐Kai, Huang, Yu‐Chuan, Yang, Chung‐Chi, Wu, Tien‐Lin, Tan, Chih‐Shan
Format Journal Article
LanguageEnglish
Published 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treatment—to develop a hybrid approach. Contact angle measurements confirmed improved hydrophilicity, while atomic force microscopy and scanning electron microscopy showed smoother films with fewer defects. X‐ray diffraction revealed enhanced grain size and crystallinity, supporting the benefits of hybrid optimization, particularly when PEAI was applied before UVO treatment. Technology computer‐aided design (TCAD) simulations further validated that the hybrid optimization not only enhanced processing conditions but also boosted the device's overall power conversion efficiency (PCE) by improving band alignment. The results are supported with numerous simulated data, including potential profile, hole density, and recombination rate, hence unveiling the mechanism underlying the enhancement of PCE. This work presents a promising approach for advancing narrow‐bandgap perovskite solar cells, using both experimental and simulated methods to show the impact of passivation, offering higher efficiency and reduced experimental costs. This study investigates the compatibility of poly[ (2,4,6‐trimethylphenyl)diphenylamine] with narrow‐bandgap perovskite solar cells using a hybrid optimization approach combining phenethylammonium iodide passivation and UV‐Ozone treatment. The results show significant improvements in film quality, energy band alignment, and overall device performance. TCAD simulations confirm that the hybrid method enhances efficiency beyond standard single optimization techniques.
AbstractList Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treatment—to develop a hybrid approach. Contact angle measurements confirmed improved hydrophilicity, while atomic force microscopy and scanning electron microscopy showed smoother films with fewer defects. X‐ray diffraction revealed enhanced grain size and crystallinity, supporting the benefits of hybrid optimization, particularly when PEAI was applied before UVO treatment. Technology computer‐aided design (TCAD) simulations further validated that the hybrid optimization not only enhanced processing conditions but also boosted the device's overall power conversion efficiency (PCE) by improving band alignment. The results are supported with numerous simulated data, including potential profile, hole density, and recombination rate, hence unveiling the mechanism underlying the enhancement of PCE. This work presents a promising approach for advancing narrow‐bandgap perovskite solar cells, using both experimental and simulated methods to show the impact of passivation, offering higher efficiency and reduced experimental costs. This study investigates the compatibility of poly[ (2,4,6‐trimethylphenyl)diphenylamine] with narrow‐bandgap perovskite solar cells using a hybrid optimization approach combining phenethylammonium iodide passivation and UV‐Ozone treatment. The results show significant improvements in film quality, energy band alignment, and overall device performance. TCAD simulations confirm that the hybrid method enhances efficiency beyond standard single optimization techniques.
Author Li, Chien‐Chen
Lai, Yu‐Hsuan
Gao, Xin‐Kai
Huang, Yu‐Chuan
Tan, Chih‐Shan
Yang, Chung‐Chi
Huang, Tzu‐Yu
Wu, Tien‐Lin
Author_xml – sequence: 1
  givenname: Tzu‐Yu
  surname: Huang
  fullname: Huang, Tzu‐Yu
  organization: Yang‐Ming Chiao Tung University
– sequence: 2
  givenname: Chien‐Chen
  surname: Li
  fullname: Li, Chien‐Chen
  organization: Yang‐Ming Chiao Tung University
– sequence: 3
  givenname: Yu‐Hsuan
  surname: Lai
  fullname: Lai, Yu‐Hsuan
  organization: Yang‐Ming Chiao Tung University
– sequence: 4
  givenname: Xin‐Kai
  surname: Gao
  fullname: Gao, Xin‐Kai
  organization: Yang‐Ming Chiao Tung University
– sequence: 5
  givenname: Yu‐Chuan
  surname: Huang
  fullname: Huang, Yu‐Chuan
  organization: Yang‐Ming Chiao Tung University
– sequence: 6
  givenname: Chung‐Chi
  surname: Yang
  fullname: Yang, Chung‐Chi
  organization: Yang‐Ming Chiao Tung University
– sequence: 7
  givenname: Tien‐Lin
  surname: Wu
  fullname: Wu, Tien‐Lin
  organization: National Tsing Hua University
– sequence: 8
  givenname: Chih‐Shan
  orcidid: 0000-0001-9043-3237
  surname: Tan
  fullname: Tan, Chih‐Shan
  email: cstan@nycu.edu.tw
  organization: Yang‐Ming Chiao Tung University
BookMark eNpNkN1KwzAUgIMoOOduvc4LdCZpkjaXs_5sUNxwE7wraZtKNGtKUje6Kx_BZ_RJ7JwMb84f3zkcvgtwWttaAXCF0RgjRK69NW5MEGEI4RifgAEJeRRgEb-c_qvPwcj7N9QvUBrFHA_AbtrlTpdw3rR6rXey1baGsi7hKpncwqVef5jDzFZwao2CKydr31jX_lIL6b3eHIhUdsrBWQ0fpXN2-_35ddMjr7KBC-Xsxr_rVsGlNdLBRBnjL8FZJY1Xo788BM_3d6tkGqTzh1kySYOC9C8GrI-Kk5KWvKhYTgUXikmGMRUoDBGjKCoEiSgPywrnRU7yqCx4mAuKGFIxCYdAHO5utVFd1ji9lq7LMMr25rK9uexoLlvO06djF_4AvbVoMw
ContentType Journal Article
Copyright 2025 The Author(s). Solar RRL published by Wiley-VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Solar RRL published by Wiley-VCH GmbH
DBID 24P
DOI 10.1002/solr.202500181
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2367-198X
EndPage n/a
ExternalDocumentID SOLR202500181
Genre article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: NSTC 113‐2636‐E‐A49‐001
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABJNI
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADMLS
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
ID FETCH-LOGICAL-c2861-5286e62d4d6cf5b4969e5a5114903305407c927463df1bcb2b7dc63b94050e823
IEDL.DBID 24P
ISSN 2367-198X
IngestDate Thu May 22 09:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2861-5286e62d4d6cf5b4969e5a5114903305407c927463df1bcb2b7dc63b94050e823
ORCID 0000-0001-9043-3237
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202500181
PageCount 10
ParticipantIDs wiley_primary_10_1002_solr_202500181_SOLR202500181
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Solar RRL
PublicationYear 2025
References 2017; 5
2022; 450
2019; 9
2023; 13
2021; 5
2019; 71
2023; 35
2019; 4
2019; 3
2021; 4
2013; 1
2023; 6
2023; 7
2023; 287
2023; 127
2022; 69
2020; 265
2024; 56
2016; 15
2022; 100
2018; 6
2018; 8
2020; 5
2020; 4
2018; 2
2023
2020; 152
2024; 8
2021
2022; 6
2022; 14
2016; 138
2024; 3
2016; 28
2012; 5
References_xml – volume: 28
  start-page: 9333
  year: 2016
  publication-title: Advanced Materials
– volume: 5
  start-page: 1215
  year: 2020
  publication-title: ACS Energy Letters
– volume: 287
  start-page: 116146
  year: 2023
  publication-title: Materials Science and Engineering B
– volume: 152
  start-page: 64705
  year: 2020
  publication-title: Journal of Chemical Physics
– year: 2021
– volume: 13
  start-page: 1185
  year: 2023
  publication-title: RSC Advances
– volume: 127
  start-page: 16110
  year: 2023
  publication-title: Journal of Physical Chemistry C
– volume: 265
  start-page: 116428
  year: 2020
  publication-title: Synthetic Metals
– volume: 6
  start-page: 16583
  year: 2018
  publication-title: Journal of Materials Chemistry A
– volume: 4
  start-page: 2616
  year: 2021
  publication-title: ACS Applied Energy Materials
– volume: 1
  start-page: 9907
  year: 2013
  publication-title: Journal of Materials Chemistry A
– volume: 450
  start-page: 138037
  year: 2022
  publication-title: Chemical Engineering Journal
– volume: 71
  start-page: 106
  year: 2019
  publication-title: Organic Electronics
– volume: 6
  start-page: 2200234
  year: 2022
  publication-title: Solar RRL
– volume: 8
  start-page: 100095
  year: 2024
  publication-title: Materials Today Electronics
– volume: 6
  start-page: 2199
  year: 2023
  publication-title: ACS Applied Energy Materials
– volume: 4
  start-page: 2000305
  year: 2020
  publication-title: Solar RRL
– volume: 2
  start-page: 1800146
  year: 2018
  publication-title: Solar RRL
– volume: 7
  start-page: 2300581
  year: 2023
  publication-title: Solar RRL
– volume: 8
  start-page: 1801668
  year: 2018
  publication-title: Advanced Energy Materials
– volume: 9
  start-page: 1901519
  year: 2019
  publication-title: Advanced Energy Materials
– volume: 138
  start-page: 12360
  year: 2016
  publication-title: Journal of the American Chemical Society
– volume: 100
  start-page: 106378
  year: 2022
  publication-title: Organic Electronics
– start-page: 1236
  year: 2021
  end-page: 1239
– volume: 7
  start-page: 2200889
  year: 2023
  publication-title: Solar RRL
– volume: 6
  start-page: 6250
  year: 2018
  publication-title: Journal of Materials Chemistry C
– volume: 14
  start-page: 3284
  year: 2022
  publication-title: ACS Applied Materials & Interfaces
– volume: 5
  start-page: 2000793
  year: 2021
  publication-title: Solar RRL
– volume: 4
  start-page: 1784
  year: 2019
  publication-title: ACS Energy Letters
– volume: 56
  start-page: 1
  year: 2024
  publication-title: Optical and Quantum Electronics
– volume: 69
  start-page: 5012
  year: 2022
  publication-title: IEEE Transactions on Electron Devices
– volume: 3
  start-page: 552
  year: 2024
  publication-title: Energy Advances
– volume: 35
  start-page: 2206387
  year: 2023
  publication-title: Advanced Materials
– volume: 15
  start-page: 1110
  year: 2016
  publication-title: Journal of Computational Electronics
– year: 2023
  article-title: Study on Effect of Different HTL and ETL Materials on the Perovskite Solar Cell Performance with TCAD Simulator
  publication-title: Materials Today: Proceedings
– volume: 6
  start-page: 2200647
  year: 2022
  publication-title: Solar RRL
– volume: 2
  start-page: 1870217
  year: 2018
  publication-title: Solar RRL
– volume: 3
  start-page: 1800256
  year: 2019
  publication-title: Solar RRL
– volume: 5
  start-page: 8819
  year: 2017
  publication-title: Journal of Materials Chemistry C
– volume: 5
  start-page: 9662
  year: 2012
  publication-title: Energy & Environmental Science
SSID ssj0002447861
Score 2.290061
Snippet Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by...
SourceID wiley
SourceType Publisher
SubjectTerms band alignment
HTL optimization
narrow‐bandgap perovskite
perovskite solar cells
surface treatment
TCAD simulation
Title Hybrid Optimization and TCAD Simulation of Hole Transport and Passivation Layer In Narrow‐Bandgap Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202500181
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPvHNHLyGtptkkxy1WKLUttgWegv7ightUtoq6Mmf4G_0lzi7ibG9ekvCJpAZZuf7hp1vCLlmPhWR5KGjuOSO50qKIZU2HSUR24aKSdc2hT12WTzyHsb-eKWLv9CHqApuJjLsfm0CnItF_U80FF1j9DwxhRvNqU2yZfprzaE-6vWrKgsmryC0oqlGqcxBhj3-VW5s0Pr6J9bhqc0v7T2yWwJDuCk8uU82dHZAdlbkAg_JR_xu-qugh2E-LfsngWcKhmhPGLxMy1FckKcQ5xMNlXK5XdVHnFzOMoMOR6gN9xl0rQjj9-fXLS555jPo63n-tjA1XRgY2gstPZksjsiofTdsxU45O8GRFH8Y-WXINKPKQ3OnvvAiFmmfI7ryoobrGpwWyAgZKXNV2hRSUBEoyVwRIYBr6JC6x6SW5Zk-IaCQ8ih8priSHtUcKS1nQgZNjfBCUnpKqLVbMiv0MZJCCZkmxrxJZd5k0Os8VXdn_3npnGyb6-K84QWpLeev-hIxwVJcWbf_AAzZsPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIYtKAfggFjFjg9co7aO4yRHqKhSSBfRVuot8laE1CZVW5DgxCPwjDwJYycNcOUYy4mUcSb-Z-T5BqFr5hERSh44ikvuUFcScKlx3VEStG2gmHRtUVi7w6IhvR95q9OEphYm50OUCTfjGfZ_bRzcJKSrP9RQWBsD9IQ93ECn1tEGZcQ3TQwI7ZVpFti9_MBSUw2qzIEQe7RCN9ZI9e8j_upTu8E0d9FOoQzxTb6Ue2hNp_to-xcv8AC9R2-mwAp3wc-nRQEl5qnCAzAo7j9Pi15cOBvjKJtoXKLL7aweCOWimRmOOWht3Epxx1IYvz4-b2HKE5_hnp5nrwuT1MV9E_fihp5MFodo2LwbNCKnaJ7gSAIvDAFmwDQjioK9x56gIQu1x0Fe0bDmukao-TKEkJS5alwXUhDhK8lcEYKCq-mAuEeokmapPkZYQcyjYExxJSnRHGJazoT06xr0hSTkBBFrt2SWAzKSHIVMEmPepDRv0u_Gj-XV6X9uukKb0aAdJ3Gr83CGtsx4fvjwHFWW8xd9AQJhKS7tJ_ANsM-0XA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJkYPxmd8uwevDbBtt-1RUVIUoRFIuDX7KjGBlgCa6Mmf4G_0lzi7rRWuHrvZNulsp_N9szvfIHRNXcIDwXxLMsEsxxYEXCqpW1IAtvUlFbYpCnvq0HDgPAzd4VIVf64PUSbctGeY_7V28KlMqn-iobA0Ws8TQrjWnFpHG3rHTx_qIk5UZlkgeHm-EU3VSmUWMOzhr3JjjVRXH7EKT018ae6inQIY4pt8JffQmkr30faSXOAB-gjfdX0V7oKbT4r6ScxSiftgT9x7mRStuHCW4DAbK1wql5tZEeDkopcZbjOA2riV4o4RYfz-_LqFKSM2xZGaZW9zndPFPU17cUONx_NDNGje9xuhVfROsASBFwZ-6VNFiXTA3InLnYAGymWArpygZtsap3kiAEZKbZnUueCEe1JQmwcA4GrKJ_YRqqRZqo4RlkB5JIxJJoVDFANKyygXXl0BvBCEnCBi7BZPc32MOFdCJrE2b1yaN-5128_l1el_brpCm9FdM263Oo9naEsP50cPz1FlMXtVFwAPFvzSfAE_4v6zjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Optimization+and+TCAD+Simulation+of+Hole+Transport+and+Passivation+Layer+In+Narrow%E2%80%90Bandgap+Perovskite+Solar+Cells&rft.jtitle=Solar+RRL&rft.au=Huang%2C+Tzu%E2%80%90Yu&rft.au=Li%2C+Chien%E2%80%90Chen&rft.au=Lai%2C+Yu%E2%80%90Hsuan&rft.au=Gao%2C+Xin%E2%80%90Kai&rft.date=2025-05-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=9&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202500181&rft.externalDBID=10.1002%252Fsolr.202500181&rft.externalDocID=SOLR202500181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon