Hybrid Optimization and TCAD Simulation of Hole Transport and Passivation Layer In Narrow‐Bandgap Perovskite Solar Cells
Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treat...
Saved in:
Published in | Solar RRL Vol. 9; no. 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treatment—to develop a hybrid approach. Contact angle measurements confirmed improved hydrophilicity, while atomic force microscopy and scanning electron microscopy showed smoother films with fewer defects. X‐ray diffraction revealed enhanced grain size and crystallinity, supporting the benefits of hybrid optimization, particularly when PEAI was applied before UVO treatment. Technology computer‐aided design (TCAD) simulations further validated that the hybrid optimization not only enhanced processing conditions but also boosted the device's overall power conversion efficiency (PCE) by improving band alignment. The results are supported with numerous simulated data, including potential profile, hole density, and recombination rate, hence unveiling the mechanism underlying the enhancement of PCE. This work presents a promising approach for advancing narrow‐bandgap perovskite solar cells, using both experimental and simulated methods to show the impact of passivation, offering higher efficiency and reduced experimental costs.
This study investigates the compatibility of poly[ (2,4,6‐trimethylphenyl)diphenylamine] with narrow‐bandgap perovskite solar cells using a hybrid optimization approach combining phenethylammonium iodide passivation and UV‐Ozone treatment. The results show significant improvements in film quality, energy band alignment, and overall device performance. TCAD simulations confirm that the hybrid method enhances efficiency beyond standard single optimization techniques. |
---|---|
AbstractList | Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by PTAA's hydrophobic nature. We combined two optimization techniques—phenethylammonium iodide (PEAI) passivation and UV‐Ozone (UVO) treatment—to develop a hybrid approach. Contact angle measurements confirmed improved hydrophilicity, while atomic force microscopy and scanning electron microscopy showed smoother films with fewer defects. X‐ray diffraction revealed enhanced grain size and crystallinity, supporting the benefits of hybrid optimization, particularly when PEAI was applied before UVO treatment. Technology computer‐aided design (TCAD) simulations further validated that the hybrid optimization not only enhanced processing conditions but also boosted the device's overall power conversion efficiency (PCE) by improving band alignment. The results are supported with numerous simulated data, including potential profile, hole density, and recombination rate, hence unveiling the mechanism underlying the enhancement of PCE. This work presents a promising approach for advancing narrow‐bandgap perovskite solar cells, using both experimental and simulated methods to show the impact of passivation, offering higher efficiency and reduced experimental costs.
This study investigates the compatibility of poly[ (2,4,6‐trimethylphenyl)diphenylamine] with narrow‐bandgap perovskite solar cells using a hybrid optimization approach combining phenethylammonium iodide passivation and UV‐Ozone treatment. The results show significant improvements in film quality, energy band alignment, and overall device performance. TCAD simulations confirm that the hybrid method enhances efficiency beyond standard single optimization techniques. |
Author | Li, Chien‐Chen Lai, Yu‐Hsuan Gao, Xin‐Kai Huang, Yu‐Chuan Tan, Chih‐Shan Yang, Chung‐Chi Huang, Tzu‐Yu Wu, Tien‐Lin |
Author_xml | – sequence: 1 givenname: Tzu‐Yu surname: Huang fullname: Huang, Tzu‐Yu organization: Yang‐Ming Chiao Tung University – sequence: 2 givenname: Chien‐Chen surname: Li fullname: Li, Chien‐Chen organization: Yang‐Ming Chiao Tung University – sequence: 3 givenname: Yu‐Hsuan surname: Lai fullname: Lai, Yu‐Hsuan organization: Yang‐Ming Chiao Tung University – sequence: 4 givenname: Xin‐Kai surname: Gao fullname: Gao, Xin‐Kai organization: Yang‐Ming Chiao Tung University – sequence: 5 givenname: Yu‐Chuan surname: Huang fullname: Huang, Yu‐Chuan organization: Yang‐Ming Chiao Tung University – sequence: 6 givenname: Chung‐Chi surname: Yang fullname: Yang, Chung‐Chi organization: Yang‐Ming Chiao Tung University – sequence: 7 givenname: Tien‐Lin surname: Wu fullname: Wu, Tien‐Lin organization: National Tsing Hua University – sequence: 8 givenname: Chih‐Shan orcidid: 0000-0001-9043-3237 surname: Tan fullname: Tan, Chih‐Shan email: cstan@nycu.edu.tw organization: Yang‐Ming Chiao Tung University |
BookMark | eNpNkN1KwzAUgIMoOOduvc4LdCZpkjaXs_5sUNxwE7wraZtKNGtKUje6Kx_BZ_RJ7JwMb84f3zkcvgtwWttaAXCF0RgjRK69NW5MEGEI4RifgAEJeRRgEb-c_qvPwcj7N9QvUBrFHA_AbtrlTpdw3rR6rXey1baGsi7hKpncwqVef5jDzFZwao2CKydr31jX_lIL6b3eHIhUdsrBWQ0fpXN2-_35ddMjr7KBC-Xsxr_rVsGlNdLBRBnjL8FZJY1Xo788BM_3d6tkGqTzh1kySYOC9C8GrI-Kk5KWvKhYTgUXikmGMRUoDBGjKCoEiSgPywrnRU7yqCx4mAuKGFIxCYdAHO5utVFd1ji9lq7LMMr25rK9uexoLlvO06djF_4AvbVoMw |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Solar RRL published by Wiley-VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Solar RRL published by Wiley-VCH GmbH |
DBID | 24P |
DOI | 10.1002/solr.202500181 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2367-198X |
EndPage | n/a |
ExternalDocumentID | SOLR202500181 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: NSTC 113‐2636‐E‐A49‐001 |
GroupedDBID | 0R~ 1OC 24P 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABJNI ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADMLS ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW |
ID | FETCH-LOGICAL-c2861-5286e62d4d6cf5b4969e5a5114903305407c927463df1bcb2b7dc63b94050e823 |
IEDL.DBID | 24P |
ISSN | 2367-198X |
IngestDate | Thu May 22 09:26:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2861-5286e62d4d6cf5b4969e5a5114903305407c927463df1bcb2b7dc63b94050e823 |
ORCID | 0000-0001-9043-3237 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202500181 |
PageCount | 10 |
ParticipantIDs | wiley_primary_10_1002_solr_202500181_SOLR202500181 |
PublicationCentury | 2000 |
PublicationDate | May 2025 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Solar RRL |
PublicationYear | 2025 |
References | 2017; 5 2022; 450 2019; 9 2023; 13 2021; 5 2019; 71 2023; 35 2019; 4 2019; 3 2021; 4 2013; 1 2023; 6 2023; 7 2023; 287 2023; 127 2022; 69 2020; 265 2024; 56 2016; 15 2022; 100 2018; 6 2018; 8 2020; 5 2020; 4 2018; 2 2023 2020; 152 2024; 8 2021 2022; 6 2022; 14 2016; 138 2024; 3 2016; 28 2012; 5 |
References_xml | – volume: 28 start-page: 9333 year: 2016 publication-title: Advanced Materials – volume: 5 start-page: 1215 year: 2020 publication-title: ACS Energy Letters – volume: 287 start-page: 116146 year: 2023 publication-title: Materials Science and Engineering B – volume: 152 start-page: 64705 year: 2020 publication-title: Journal of Chemical Physics – year: 2021 – volume: 13 start-page: 1185 year: 2023 publication-title: RSC Advances – volume: 127 start-page: 16110 year: 2023 publication-title: Journal of Physical Chemistry C – volume: 265 start-page: 116428 year: 2020 publication-title: Synthetic Metals – volume: 6 start-page: 16583 year: 2018 publication-title: Journal of Materials Chemistry A – volume: 4 start-page: 2616 year: 2021 publication-title: ACS Applied Energy Materials – volume: 1 start-page: 9907 year: 2013 publication-title: Journal of Materials Chemistry A – volume: 450 start-page: 138037 year: 2022 publication-title: Chemical Engineering Journal – volume: 71 start-page: 106 year: 2019 publication-title: Organic Electronics – volume: 6 start-page: 2200234 year: 2022 publication-title: Solar RRL – volume: 8 start-page: 100095 year: 2024 publication-title: Materials Today Electronics – volume: 6 start-page: 2199 year: 2023 publication-title: ACS Applied Energy Materials – volume: 4 start-page: 2000305 year: 2020 publication-title: Solar RRL – volume: 2 start-page: 1800146 year: 2018 publication-title: Solar RRL – volume: 7 start-page: 2300581 year: 2023 publication-title: Solar RRL – volume: 8 start-page: 1801668 year: 2018 publication-title: Advanced Energy Materials – volume: 9 start-page: 1901519 year: 2019 publication-title: Advanced Energy Materials – volume: 138 start-page: 12360 year: 2016 publication-title: Journal of the American Chemical Society – volume: 100 start-page: 106378 year: 2022 publication-title: Organic Electronics – start-page: 1236 year: 2021 end-page: 1239 – volume: 7 start-page: 2200889 year: 2023 publication-title: Solar RRL – volume: 6 start-page: 6250 year: 2018 publication-title: Journal of Materials Chemistry C – volume: 14 start-page: 3284 year: 2022 publication-title: ACS Applied Materials & Interfaces – volume: 5 start-page: 2000793 year: 2021 publication-title: Solar RRL – volume: 4 start-page: 1784 year: 2019 publication-title: ACS Energy Letters – volume: 56 start-page: 1 year: 2024 publication-title: Optical and Quantum Electronics – volume: 69 start-page: 5012 year: 2022 publication-title: IEEE Transactions on Electron Devices – volume: 3 start-page: 552 year: 2024 publication-title: Energy Advances – volume: 35 start-page: 2206387 year: 2023 publication-title: Advanced Materials – volume: 15 start-page: 1110 year: 2016 publication-title: Journal of Computational Electronics – year: 2023 article-title: Study on Effect of Different HTL and ETL Materials on the Perovskite Solar Cell Performance with TCAD Simulator publication-title: Materials Today: Proceedings – volume: 6 start-page: 2200647 year: 2022 publication-title: Solar RRL – volume: 2 start-page: 1870217 year: 2018 publication-title: Solar RRL – volume: 3 start-page: 1800256 year: 2019 publication-title: Solar RRL – volume: 5 start-page: 8819 year: 2017 publication-title: Journal of Materials Chemistry C – volume: 5 start-page: 9662 year: 2012 publication-title: Energy & Environmental Science |
SSID | ssj0002447861 |
Score | 2.290061 |
Snippet | Exploring the compatibility of Poly[(2,4,6‐trimethylphenyl)diphenylamine] (PTAA) with narrow‐bandgap perovskite solar cells, addressing the challenges posed by... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | band alignment HTL optimization narrow‐bandgap perovskite perovskite solar cells surface treatment TCAD simulation |
Title | Hybrid Optimization and TCAD Simulation of Hole Transport and Passivation Layer In Narrow‐Bandgap Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202500181 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPvHNHLyGtptkkxy1WKLUttgWegv7ightUtoq6Mmf4G_0lzi7ibG9ekvCJpAZZuf7hp1vCLlmPhWR5KGjuOSO50qKIZU2HSUR24aKSdc2hT12WTzyHsb-eKWLv9CHqApuJjLsfm0CnItF_U80FF1j9DwxhRvNqU2yZfprzaE-6vWrKgsmryC0oqlGqcxBhj3-VW5s0Pr6J9bhqc0v7T2yWwJDuCk8uU82dHZAdlbkAg_JR_xu-qugh2E-LfsngWcKhmhPGLxMy1FckKcQ5xMNlXK5XdVHnFzOMoMOR6gN9xl0rQjj9-fXLS555jPo63n-tjA1XRgY2gstPZksjsiofTdsxU45O8GRFH8Y-WXINKPKQ3OnvvAiFmmfI7ryoobrGpwWyAgZKXNV2hRSUBEoyVwRIYBr6JC6x6SW5Zk-IaCQ8ih8priSHtUcKS1nQgZNjfBCUnpKqLVbMiv0MZJCCZkmxrxJZd5k0Os8VXdn_3npnGyb6-K84QWpLeev-hIxwVJcWbf_AAzZsPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIYtKAfggFjFjg9co7aO4yRHqKhSSBfRVuot8laE1CZVW5DgxCPwjDwJYycNcOUYy4mUcSb-Z-T5BqFr5hERSh44ikvuUFcScKlx3VEStG2gmHRtUVi7w6IhvR95q9OEphYm50OUCTfjGfZ_bRzcJKSrP9RQWBsD9IQ93ECn1tEGZcQ3TQwI7ZVpFti9_MBSUw2qzIEQe7RCN9ZI9e8j_upTu8E0d9FOoQzxTb6Ue2hNp_to-xcv8AC9R2-mwAp3wc-nRQEl5qnCAzAo7j9Pi15cOBvjKJtoXKLL7aweCOWimRmOOWht3Epxx1IYvz4-b2HKE5_hnp5nrwuT1MV9E_fihp5MFodo2LwbNCKnaJ7gSAIvDAFmwDQjioK9x56gIQu1x0Fe0bDmukao-TKEkJS5alwXUhDhK8lcEYKCq-mAuEeokmapPkZYQcyjYExxJSnRHGJazoT06xr0hSTkBBFrt2SWAzKSHIVMEmPepDRv0u_Gj-XV6X9uukKb0aAdJ3Gr83CGtsx4fvjwHFWW8xd9AQJhKS7tJ_ANsM-0XA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJkYPxmd8uwevDbBtt-1RUVIUoRFIuDX7KjGBlgCa6Mmf4G_0lzi7rRWuHrvZNulsp_N9szvfIHRNXcIDwXxLMsEsxxYEXCqpW1IAtvUlFbYpCnvq0HDgPAzd4VIVf64PUSbctGeY_7V28KlMqn-iobA0Ws8TQrjWnFpHG3rHTx_qIk5UZlkgeHm-EU3VSmUWMOzhr3JjjVRXH7EKT018ae6inQIY4pt8JffQmkr30faSXOAB-gjfdX0V7oKbT4r6ScxSiftgT9x7mRStuHCW4DAbK1wql5tZEeDkopcZbjOA2riV4o4RYfz-_LqFKSM2xZGaZW9zndPFPU17cUONx_NDNGje9xuhVfROsASBFwZ-6VNFiXTA3InLnYAGymWArpygZtsap3kiAEZKbZnUueCEe1JQmwcA4GrKJ_YRqqRZqo4RlkB5JIxJJoVDFANKyygXXl0BvBCEnCBi7BZPc32MOFdCJrE2b1yaN-5128_l1el_brpCm9FdM263Oo9naEsP50cPz1FlMXtVFwAPFvzSfAE_4v6zjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Optimization+and+TCAD+Simulation+of+Hole+Transport+and+Passivation+Layer+In+Narrow%E2%80%90Bandgap+Perovskite+Solar+Cells&rft.jtitle=Solar+RRL&rft.au=Huang%2C+Tzu%E2%80%90Yu&rft.au=Li%2C+Chien%E2%80%90Chen&rft.au=Lai%2C+Yu%E2%80%90Hsuan&rft.au=Gao%2C+Xin%E2%80%90Kai&rft.date=2025-05-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=9&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202500181&rft.externalDBID=10.1002%252Fsolr.202500181&rft.externalDocID=SOLR202500181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon |