Reaction-diffusion dynamics of the weakly dissipative Fermi gas
We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, em...
Saved in:
Published in | New journal of physics Vol. 27; no. 8; pp. 84602 - 84628 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2 A → ∅ and three 3 A → ∅ body annihilation, as well as for coagulation A + A → A , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A → A + A and the decay processes A → ∅ and 2 A → ∅ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics. |
---|---|
AbstractList | We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body $2A\to \emptyset$ and three $3A\to \emptyset$ body annihilation, as well as for coagulation $A+A\to A$ , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching $A\to A+A$ and the decay processes $A\to \emptyset$ and $2A\to \emptyset$ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics. We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2A→∅ and three 3A→∅ body annihilation, as well as for coagulation A+A→A, the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A→A+A and the decay processes A→∅ and 2A→∅. We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics. We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2 A → ∅ and three 3 A → ∅ body annihilation, as well as for coagulation A + A → A , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A → A + A and the decay processes A → ∅ and 2 A → ∅ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics. |
Author | Perfetto, Gabriele Lehr, Hannah Lesanovsky, Igor |
Author_xml | – sequence: 1 givenname: Hannah orcidid: 0009-0005-7907-951X surname: Lehr fullname: Lehr, Hannah organization: Universität Tübingen Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tübingen, Germany – sequence: 2 givenname: Igor orcidid: 0000-0001-9660-9467 surname: Lesanovsky fullname: Lesanovsky, Igor organization: The University of Nottingham School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, Nottingham NG7 2RD, United Kingdom – sequence: 3 givenname: Gabriele orcidid: 0000-0002-4568-2311 surname: Perfetto fullname: Perfetto, Gabriele organization: Universität Tübingen Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tübingen, Germany |
BookMark | eNp1UE1Lw0AUXKSCbfXuMeDV2P1MtieRYlUoCKLn5WU_6tY2W3dTpf_exEj14mmGYWbeY0ZoUIfaInRO8BXBUk4IK8qcFgxPwFhX4iM0PEiDP_wEjVJaYUyIpHSIrp8s6MaHOjfeuV1qWWb2NWy8TllwWfNqs08Lb-t9ZnxKfguN_7DZ3MaNz5aQTtGxg3WyZz84Ri_z2-fZfb54vHuY3SxyTWWBc1YBFNpWmoLDVlLJLKaSmKkmAhPNnBaUcKYFnmoqCC0rAlMhJJfSEQMlG6OHvtcEWKlt9BuIexXAq28hxKWC2Hi9tspMueYcQ-FKzk1VVVwaLKlo0QpCuq6Lvmsbw_vOpkatwi7W7fuKUVYUhRBcti7cu3QMKUXrDlcJVt3kqttUdZuqfvI2ctlHfNj-dv5r_wJkFYJx |
CODEN | NJOPFM |
Cites_doi | 10.1126/science.1155309 10.1103/PhysRevLett.61.2397 10.1103/PhysRevA.103.L060201 10.1103/PhysRevE.88.012108 10.1103/PhysRevLett.92.190401 10.1103/PhysRevB.97.165138 10.1103/PhysRevLett.111.215305 10.1088/0305-4470/37/28/R01 10.1103/PhysRevLett.132.230402 10.1103/RevModPhys.51.659 10.1103/PhysRevA.110.043315 10.1103/PhysRevA.32.435 10.1088/2058-9565/aadccd 10.1103/PhysRevResearch.5.043192 10.1088/0305-4470/27/8/004 10.1103/PhysRevB.109.L220304 10.1016/0370-1573(74)90023-4 10.1088/1367-2630/11/1/013053 10.1088/0305-4470/19/6/012 10.1103/PhysRevLett.123.100604 10.1103/PhysRevLett.128.040603 10.1038/nphys1073 10.1007/BF02180138 10.21468/SciPostPhys.9.4.044 10.1063/1.445022 10.1103/PhysRevE.90.042147 10.1038/ncomms15767 10.1006/aphy.1997.5712 10.1103/PhysRevA.30.2833 10.1103/PhysRevE.91.032132 10.1088/0305-4470/17/4/004/meta 10.1103/PhysRevE.108.064104 10.1007/s003400050805 10.1007/BF01608499 10.1088/1742-5468/2016/06/064007 10.1007/978-1-4020-8765-3 10.1021/j100234a023 10.1088/1751-8113/46/48/485002 10.1063/1.522979 10.1103/PhysRevLett.95.190406 10.1080/00018730050198152 10.1103/PhysRevLett.125.100403 10.1103/PhysRevB.97.024302 10.1088/1367-2630/ab43b0 10.21468/SciPostPhysLectNotes.18 10.1103/PhysRevLett.130.063001 10.1088/0305-4470/29/13/016/meta 10.1103/PhysRevLett.101.233002 10.1103/PhysRevLett.60.871 10.1103/PhysRevB.106.094315 10.1103/PhysRevA.83.013611 10.21468/SciPostPhys.8.4.060 10.1103/PhysRevX.9.021027 10.1103/PhysRevLett.52.955 10.1088/0305-4470/28/22/010/meta 10.1103/PhysRevLett.55.1707 10.21468/SciPostPhys.12.1.044 10.1103/PhysRevB.106.075115 10.1103/PhysRevA.109.023311 10.1103/PhysRevA.79.060702 10.1103/PhysRevA.96.023429 10.1103/PhysRevResearch.3.013238 10.1088/1742-5468/2016/06/064002 10.1088/0305-4470/38/17/R01/meta 10.1038/nature12483 10.1103/PhysRevA.107.013303 10.1103/PhysRevLett.112.070404 10.1103/PhysRevE.50.50 10.1038/nphys2106 10.1088/1367-2630/ad397a/meta 10.1103/PhysRevLett.130.210402 10.1103/PhysRevA.110.033321 10.1103/PhysRevLett.116.245701 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft – notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1088/1367-2630/adef70 |
DatabaseName | IOP Publishing Free Content IOPscience (Open Access) CrossRef Technology Research Database ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_d94c440a6f744dbbb48d0825b48e5117 10_1088_1367_2630_adef70 njpadef70 |
GrantInformation_xml | – fundername: Bundesministerium für Forschung und Bildung grantid: 13N17065 – fundername: EPSRC grantid: EP/V031201/1 – fundername: Deutsche Forschungsgemeinschaft grantid: 449905436; 465199066; 499180199 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | 123 1JI 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KQ8 LAP M~E N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA W28 XPP XSB ZMT AAYXX CITATION 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c2860-3baa6cebc2af0e8283e0281d9c1501c3fc52143c509c25127b1a9558488f1da73 |
IEDL.DBID | O3W |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:23:09 EDT 2025 Sat Aug 23 14:33:45 EDT 2025 Wed Aug 06 19:14:13 EDT 2025 Wed Aug 06 19:27:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2860-3baa6cebc2af0e8283e0281d9c1501c3fc52143c509c25127b1a9558488f1da73 |
Notes | NJP-118690.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-7907-951X 0000-0002-4568-2311 0000-0001-9660-9467 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1367-2630/adef70 |
PQID | 3236665548 |
PQPubID | 4491272 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_1088_1367_2630_adef70 proquest_journals_3236665548 doaj_primary_oai_doaj_org_article_d94c440a6f744dbbb48d0825b48e5117 iop_journals_10_1088_1367_2630_adef70 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | New journal of physics |
PublicationTitleAbbrev | NJP |
PublicationTitleAlternate | New J. Phys |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gerbino (njpadef70bib69) 2024; 109 Henkel (njpadef70bib77) 1995; 28 Kinoshita (njpadef70bib26) 2005; 95 Täuber (njpadef70bib9) 2005; 38 Despres (njpadef70bib74) 2025 Tauber (njpadef70bib8) 2002 Zhu (njpadef70bib33) 2014; 112 Rossini (njpadef70bib63) 2021; 103 Ulčakar (njpadef70bib55) 2024 Rosso (njpadef70bib68) 2022; 12 Maki (njpadef70bib71) 2024; 110 Mallayya (njpadef70bib51) 2019; 9 Ulčakar (njpadef70bib54) 2024; 132 Kang (njpadef70bib19) 1984; 52 Ali (njpadef70bib59) 2024 Kang (njpadef70bib20) 1985; 32 Gillman (njpadef70bib42) 2020; 125 Bramson (njpadef70bib84) 1988; 61 Wilson (njpadef70bib2) 1974; 12 Cardy (njpadef70bib18) 1996 Kogut (njpadef70bib1) 1979; 51 Henkel (njpadef70bib7) 2008; vol 1 Perfetto (njpadef70bib66) 2023; 108 Bouchoule (njpadef70bib61) 2020; 9 Gerbino (njpadef70bib70) 2024 Olver (njpadef70bib75) Huang (njpadef70bib67) 2023; 5 Henkel (njpadef70bib78) 1997; 259 Henkel (njpadef70bib22) 2004; 37 Burrows (njpadef70bib29) 2017; 96 Lumia (njpadef70bib60) 2024 Zechmann (njpadef70bib82) 2022; 106 Sponselee (njpadef70bib34) 2018; 4 Marché (njpadef70bib76) 2024; 110 Gorini (njpadef70bib43) 1976; 17 Essler (njpadef70bib57) 2016; 2016 Rowlands (njpadef70bib62) 2024; 26 Spouge (njpadef70bib13) 1988; 60 García-Ripoll (njpadef70bib72) 2009; 11 Lindblad (njpadef70bib44) 1976; 48 Lee (njpadef70bib17) 1994; 27 Diehl (njpadef70bib35) 2008; 4 Diehl (njpadef70bib36) 2011; 7 Täuber (njpadef70bib10) 2014 Fürst (njpadef70bib81) 2013; 88 Lange (njpadef70bib52) 2017; 8 Bouchoule (njpadef70bib30) 2020; 8 Tomadin (njpadef70bib37) 2011; 83 Jo (njpadef70bib48) 2021; 3 Kang (njpadef70bib21) 1984; 30 Söding (njpadef70bib24) 1999; 69 van Horssen (njpadef70bib45) 2015; 91 Gillman (njpadef70bib47) 2019; 21 Yamaguchi (njpadef70bib27) 2008; 101 Carollo (njpadef70bib49) 2022; 128 Carollo (njpadef70bib46) 2019; 123 Krebs (njpadef70bib79) 1995; 78 Toussaint (njpadef70bib11) 1983; 78 Doyon (njpadef70bib73) 2020 Rácz (njpadef70bib12) 1985; 55 Syassen (njpadef70bib23) 2008; 320 Peliti (njpadef70bib16) 1986; 19 Honda (njpadef70bib31) 2023; 130 Cardy (njpadef70bib3) 1996; vol 5 Carollo (njpadef70bib38) 2022; 106 Hinrichsen (njpadef70bib6) 2000; 49 Perfetto (njpadef70bib65) 2023; 130 Privman (njpadef70bib5) 1997 Riggio (njpadef70bib58) 2024; 109 Yan (njpadef70bib32) 2013; 501 Fürst (njpadef70bib80) 2013; 46 Tolra (njpadef70bib25) 2004; 92 Huang (njpadef70bib4) 2008 Privman (njpadef70bib15) 1994; 50 Traverso (njpadef70bib28) 2009; 79 Lange (njpadef70bib50) 2018; 97 Marcuzzi (njpadef70bib41) 2016; 116 Rosso (njpadef70bib64) 2023; 107 Torney (njpadef70bib14) 1983; 87 Howard (njpadef70bib85) 1996; 29 Lesanovsky (njpadef70bib39) 2013; 111 Lenarčič (njpadef70bib53) 2018; 97 Olmos (njpadef70bib40) 2014; 90 Meakin (njpadef70bib83) 1984; 17 Vidmar (njpadef70bib56) 2016; 2016 |
References_xml | – volume: 320 start-page: 1329 year: 2008 ident: njpadef70bib23 publication-title: Science doi: 10.1126/science.1155309 – year: 2008 ident: njpadef70bib4 – volume: 61 start-page: 2397 year: 1988 ident: njpadef70bib84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2397 – volume: 103 year: 2021 ident: njpadef70bib63 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.L060201 – year: 1996 ident: njpadef70bib18 – volume: 88 year: 2013 ident: njpadef70bib81 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.012108 – volume: 92 year: 2004 ident: njpadef70bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.190401 – volume: 97 year: 2018 ident: njpadef70bib50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.165138 – volume: 111 year: 2013 ident: njpadef70bib39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.215305 – volume: 37 start-page: R117 year: 2004 ident: njpadef70bib22 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/28/R01 – volume: 132 year: 2024 ident: njpadef70bib54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.230402 – volume: 51 start-page: 659 year: 1979 ident: njpadef70bib1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.51.659 – year: 2024 ident: njpadef70bib70 – volume: 110 year: 2024 ident: njpadef70bib71 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.110.043315 – volume: 32 start-page: 435 year: 1985 ident: njpadef70bib20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.32.435 – year: 2024 ident: njpadef70bib59 – volume: 4 year: 2018 ident: njpadef70bib34 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aadccd – volume: 5 year: 2023 ident: njpadef70bib67 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.043192 – volume: 27 start-page: 2633 year: 1994 ident: njpadef70bib17 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/27/8/004 – volume: 109 year: 2024 ident: njpadef70bib69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.L220304 – volume: 12 start-page: 75 year: 1974 ident: njpadef70bib2 publication-title: Phys. Rep. doi: 10.1016/0370-1573(74)90023-4 – volume: 11 year: 2009 ident: njpadef70bib72 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/1/013053 – volume: 19 start-page: L365 year: 1986 ident: njpadef70bib16 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/19/6/012 – volume: 123 year: 2019 ident: njpadef70bib46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.100604 – volume: 128 year: 2022 ident: njpadef70bib49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.040603 – year: 2025 ident: njpadef70bib74 – volume: 4 start-page: 878 year: 2008 ident: njpadef70bib35 publication-title: Nat. Phys. doi: 10.1038/nphys1073 – volume: 78 start-page: 1429 year: 1995 ident: njpadef70bib79 publication-title: J. Stat. Phys. doi: 10.1007/BF02180138 – volume: 9 start-page: 44 year: 2020 ident: njpadef70bib61 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.9.4.044 – volume: 78 start-page: 2642 year: 1983 ident: njpadef70bib11 publication-title: J. Chem. Phys. doi: 10.1063/1.445022 – volume: 90 year: 2014 ident: njpadef70bib40 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.042147 – volume: 8 start-page: 1 year: 2017 ident: njpadef70bib52 publication-title: Nat. Commun. doi: 10.1038/ncomms15767 – ident: njpadef70bib75 – volume: 259 start-page: 163 year: 1997 ident: njpadef70bib78 publication-title: Ann. Phys. doi: 10.1006/aphy.1997.5712 – volume: 30 start-page: 2833 year: 1984 ident: njpadef70bib21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.30.2833 – volume: 91 year: 2015 ident: njpadef70bib45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.032132 – volume: 17 start-page: L173 year: 1984 ident: njpadef70bib83 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/17/4/004/meta – volume: 108 year: 2023 ident: njpadef70bib66 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.108.064104 – volume: 69 start-page: 257 year: 1999 ident: njpadef70bib24 publication-title: Appl. Phys. B doi: 10.1007/s003400050805 – volume: 48 start-page: 119 year: 1976 ident: njpadef70bib44 publication-title: Commun. Math. Phys. doi: 10.1007/BF01608499 – volume: 2016 year: 2016 ident: njpadef70bib56 publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2016/06/064007 – year: 1997 ident: njpadef70bib5 – volume: vol 1 year: 2008 ident: njpadef70bib7 doi: 10.1007/978-1-4020-8765-3 – volume: 87 start-page: 1941 year: 1983 ident: njpadef70bib14 publication-title: J. Phys. Chem. doi: 10.1021/j100234a023 – volume: 46 year: 2013 ident: njpadef70bib80 publication-title: J. Phys. A: Math. doi: 10.1088/1751-8113/46/48/485002 – year: 2014 ident: njpadef70bib10 – volume: 17 start-page: 821 year: 1976 ident: njpadef70bib43 publication-title: J. Math. Phys. doi: 10.1063/1.522979 – volume: 95 year: 2005 ident: njpadef70bib26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.190406 – volume: 49 start-page: 815 year: 2000 ident: njpadef70bib6 publication-title: Adv. Phys. doi: 10.1080/00018730050198152 – volume: 125 year: 2020 ident: njpadef70bib42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.100403 – volume: 97 year: 2018 ident: njpadef70bib53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.024302 – volume: 21 year: 2019 ident: njpadef70bib47 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab43b0 – start-page: 18 year: 2020 ident: njpadef70bib73 publication-title: SciPost Phys. Lect. Notes doi: 10.21468/SciPostPhysLectNotes.18 – volume: 130 year: 2023 ident: njpadef70bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.063001 – volume: 29 start-page: 3437 year: 1996 ident: njpadef70bib85 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/29/13/016/meta – volume: 101 year: 2008 ident: njpadef70bib27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.233002 – volume: 60 start-page: 871 year: 1988 ident: njpadef70bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.871 – volume: 106 year: 2022 ident: njpadef70bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.094315 – volume: 83 year: 2011 ident: njpadef70bib37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.013611 – volume: 8 start-page: 60 year: 2020 ident: njpadef70bib30 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.8.4.060 – volume: 9 year: 2019 ident: njpadef70bib51 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.021027 – volume: 52 start-page: 955 year: 1984 ident: njpadef70bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.955 – volume: 28 start-page: 6335 year: 1995 ident: njpadef70bib77 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/28/22/010/meta – volume: 55 start-page: 1707 year: 1985 ident: njpadef70bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1707 – volume: 12 start-page: 44 year: 2022 ident: njpadef70bib68 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.044 – volume: 106 year: 2022 ident: njpadef70bib82 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.075115 – year: 2024 ident: njpadef70bib55 – volume: 109 year: 2024 ident: njpadef70bib58 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.109.023311 – volume: 79 year: 2009 ident: njpadef70bib28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.060702 – volume: vol 5 year: 1996 ident: njpadef70bib3 – volume: 96 year: 2017 ident: njpadef70bib29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.023429 – year: 2002 ident: njpadef70bib8 – volume: 3 year: 2021 ident: njpadef70bib48 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013238 – volume: 2016 year: 2016 ident: njpadef70bib57 publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2016/06/064002 – volume: 38 start-page: R79 year: 2005 ident: njpadef70bib9 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/17/R01/meta – volume: 501 start-page: 521 year: 2013 ident: njpadef70bib32 publication-title: Nature doi: 10.1038/nature12483 – volume: 107 year: 2023 ident: njpadef70bib64 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.013303 – volume: 112 year: 2014 ident: njpadef70bib33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.070404 – volume: 50 start-page: 50 year: 1994 ident: njpadef70bib15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.50.50 – volume: 7 start-page: 971 year: 2011 ident: njpadef70bib36 publication-title: Nat. Phys. doi: 10.1038/nphys2106 – volume: 26 year: 2024 ident: njpadef70bib62 publication-title: New J. Phys. doi: 10.1088/1367-2630/ad397a/meta – volume: 130 year: 2023 ident: njpadef70bib65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.210402 – volume: 110 year: 2024 ident: njpadef70bib76 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.110.033321 – volume: 116 year: 2016 ident: njpadef70bib41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.245701 – year: 2024 ident: njpadef70bib60 |
SSID | ssj0011822 |
Score | 2.4615111 |
Snippet | We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 84602 |
SubjectTerms | Asymptotic properties Atomic physics Coagulation Decay Density Dissipation Fermi gas Fermi gases Hamiltonian functions nonequilibrium critical dynamics nonequilibrium many-body dissipative systems Percolation Phase transitions quantum reaction-diffusion systems Time dependence time-dependent generalized Gibbs ensemble |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRP3F1lRz04KFsm6RpehIVl0XQg7iwt5DmQ0TZXeyu4r93Ju2qIOjFU6EEGt4kmTedyRtCjl1uHNBqmfAyC4lAEUxVCJPAwVeETDqmUrzgfHMrhyNxPc7H31p9YU1YIw_cANd3pbBCpEaGQghXVZVQDsMaeHogC_EeOfi8ZTDV5g-ANbM2KQnbqI-6ZAmTPO0b5wM2Jv7mhKJWP7iWx-nsx4Ecvcxgg6y39JCeN9PaJCt-skVWY5mmrbfJ2Z1vLiIk2NhkgX-6qGt6ytd0GiiwOfrmzdPzO8VEeyyXfvV0gBUv9MHUO2Q0uLq_HCZtC4TEMiXhhKyMkdZXlpmQeoiOuAdCkLnSApHLLA8W3K_gFty-RaZSVJkpcyAVSoXMmYLvks5kOvF7hEoXIFjhwouQC1egTE8ueUiZY6awPu-S0yUmetYoXeiYoVZKI34a8dMNfl1ygaB9jkON6vgCLKdby-m_LNclJwC5bvdM_cvHekujfA3mjEPgBVxI7f_HXA7IGsPGvrGyr0c685eFPwS2Ma-O4sL6AIJizXU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF7UIngRn1hf7EEPHkKT3c1mexIVSxEsUix4C5t9iChNbVrFf-9MslVB6CmQLARmZ2e-eex8hJzZVFuA1TLi3cRHAodgqkzoCAxf5hNpmYrxgvP9QPZH4u4pfQoJtyq0VS5sYm2obWkwR97hjAPSBuenLifvEbJGYXU1UGiskhaYYAXBV-v6dvAw_KkjAHpmoTgJx6mD88kiJnnc0dZ5JCj-44zqmf3gYl7KyT_DXHub3hbZDDCRXjX7uk1W3HiHrNftmqbaJZdD11xIiJDgZI4ZL2obbvmKlp4CqqOfTr--fVEsuNdt0x-O9rDzhT7rao-MerePN_0oUCFEhikJlrLQWhpXGKZ97CBK4g6AQWK7BgBdYrg34IYFN-D-DSKWrEh0NwVwoZRPrM74Plkbl2N3QKi0HoIWLpzwqbAZjutJJfcxs0xnxqVtcrGQST5pJl7kdaVaqRzll6P88kZ-bXKNQvtZh7Oq6xfl9DkPqp_brjBCxFr6TAhbFIVQFgNTeDqAe1mbnIPI83B2qiU_O15syu_iX7U4XP75iGwwpO6te_eOydpsOncngCdmxWlQmm_7B8au priority: 102 providerName: ProQuest |
Title | Reaction-diffusion dynamics of the weakly dissipative Fermi gas |
URI | https://iopscience.iop.org/article/10.1088/1367-2630/adef70 https://www.proquest.com/docview/3236665548 https://doaj.org/article/d94c440a6f744dbbb48d0825b48e5117 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EIngRn1gfZQ968BCb7G52N3gQKy1VsC3Forew2YcHpRXjA_-9s5tYEUW8JCFssmE2mfkmM_MNQgcmVQZgNY9olriIeRJMKZiKQPEJl3BDZOwLnK8GvD9hl7fp7QI6mdfCzB5r1X8MhxVRcCXCOiFOtj3JWEQ4jdvKWCfAX29QyaX3vIb0Zh5CAOBM6rjkb1d9s0OBrh-sC0z5QycHQ9NbRSs1QsRn1fOsoQU7XUdLIVNTlxvodGyrWoTI9zZ58T-7sKnaypd45jAAOvxm1f3DO_ax9pAx_Wpxzye94DtVbqJJr3t93o_qLgiRJpKDkiyU4toWmigXW3CQqAVMkJhMA5ZLNHUaLDCjGiy_9mBFFInKUsAVUrrEKEG30OJ0NrXbCHPjwF-hzDKXMiM8U0_KqYuJIUpomzbR0adM8seK7CIPQWopcy-_3Msvr-TXRB0vtPk4T1MdTsCS5fWS5SZjmrFYcScYM0VRMGm8Twp7C0hPNNEhiDyvP5vyj8n2PhflazAlFHwvgENy55-32UXLxLfvDfl7e2jx-enF7gOmeC5aqNHpDkbjVvDJYXsxHLXC-_QBa9PHaw |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVW5VH2KbYH6UA49RJvYjuM9VAgKq6XAqkIgcXMdP1BVtNkSKOJP9Td2Jg-oVIkbp0iJlUjjsb9vMuP5AD763Hqk1SoR4ywmkppg6kLaBDe-ImbKc53SAeejmZqeyq9n-dkS_OnPwlBZZb8nNhu1rxz9Ix8JLpBpI_jprcWvhFSjKLvaS2i0bnEQbm8wZKs_7-_i_G5yPtk7-TJNOlWBxHGtcNMprVUulI7bmAYMOERAjM382CE3ypyIDhFNCodI6gj8izKz4xxxWuuYeVsIfO8TWJYCQ5kBLO_szb4d3-UtkK3zLhmKy3dE_dASrkQ6sj5EEkT-B_wajQCEtB_V4j8gaNBt8gKed7SUbbd-9BKWwvwVPG3KQ139GraOQ3sAIiFBlWv6w8Z8q2VfsyoyZJHsJtifF7eMEvxNmfbvwCZUacPObf0GTh_FSG9hMK_mYRWY8hGDJCGDjLn0BbUHypWIKffcFi7kQ_jU28Qs2g4bpsmMa23IfobsZ1r7DWGHjHY3jnpjNzeqy3PTLTXjx9JJmVoVCyl9WZZSewqE8RqQXhZD2ESTm26t1g98bK2flPvB92747uHHH-DZ9OTo0Bzuzw7ewwon2eCmbnANBleX12EducxVudE5EIPvj-2zfwG_uAJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYBOKCWEVZfYADh9DEdmz3hNgq1oIQFdwsxwsHUFvRAuLvGTtpEQIhTokiZ9GbZOY5M36D0LbNtQVazRPayHzCggimFEwn4PiEz7glMg0LnK9a_LTNzh_yh6rPaVwL0-1Vrn8Pdkuh4BLCqiBO1oPIWEI4TevaOi_Ses_6cTSZU85D74Zrej9KIwB5JlVu8rczv8WiKNkPEQZu-8Mvx2DTnEOzFUvEB-UzzaMx11lAU7Fa0_QX0f6tK9cjJKG_yWv44YVt2Vq-j7seA6nD704_PX_gkG-PVdNvDjdD4Qt-1P0l1G6e3B2dJlUnhMQQycFRFlpz4wpDtE8dTJKoA16Q2YYBPpcZ6g1EYUYNRH8TCIsoMt3IgVtI6TOrBV1GE51ux60gzK2HOQtljvmcWRHUenJOfUos0cK4vIZ2h5ioXil4oWKiWkoV8FMBP1XiV0OHAbTRuCBVHQ-A2VRlNmUbzDCWau4FY7YoCiZtmJfC1gHbEzW0A5Cr6tPp_3Gz9aFRvgZTAlbnQInk6j8vs4Wmb46b6vKsdbGGZkjo5hvL-dbRxODl1W0AxRgUm_E1-gQyr8fC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction-diffusion+dynamics+of+the+weakly+dissipative+Fermi+gas&rft.jtitle=New+journal+of+physics&rft.au=Lehr%2C+Hannah&rft.au=Lesanovsky%2C+Igor&rft.au=Perfetto%2C+Gabriele&rft.date=2025-08-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=27&rft.issue=8&rft_id=info:doi/10.1088%2F1367-2630%2Fadef70&rft.externalDocID=njpadef70 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |