Reaction-diffusion dynamics of the weakly dissipative Fermi gas

We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, em...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 27; no. 8; pp. 84602 - 84628
Main Authors Lehr, Hannah, Lesanovsky, Igor, Perfetto, Gabriele
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2 A → ∅ and three 3 A → ∅ body annihilation, as well as for coagulation A + A → A , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A → A + A and the decay processes A → ∅ and 2 A → ∅ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics.
AbstractList We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body $2A\to \emptyset$ and three $3A\to \emptyset$ body annihilation, as well as for coagulation $A+A\to A$ , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching $A\to A+A$ and the decay processes $A\to \emptyset$ and $2A\to \emptyset$ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics.
We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2A→∅ and three 3A→∅ body annihilation, as well as for coagulation A+A→A, the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A→A+A and the decay processes A→∅ and 2A→∅. We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics.
We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian describes coherent motion of the particles, while dissipation accounts for irreversible reactions. For lattice one-dimensional fermionic systems, emergent critical behavior has been found in the dynamics in the reaction-limited regime of weak dissipation. Here, we address the question whether such features are present also in a gas in continuum space. We do this in the weakly dissipative regime by applying the time-dependent generalized Gibbs ensemble method. We show that for two body 2 A → ∅ and three 3 A → ∅ body annihilation, as well as for coagulation A + A → A , the density features an asymptotic algebraic decay in time akin to the lattice problem. In all the cases, we find that upon increasing the temperature of the initial state the density decay accelerates, but the asymptotic algebraic decay exponents are not affected. We eventually consider the competition between branching A → A + A and the decay processes A → ∅ and 2 A → ∅ . We find a second-order absorbing-state phase transition in the mean-field directed percolation universality class. This analysis shows that emergent behavior observed in lattice quantum reaction-diffusion systems is present also in continuum space, where it may be probed using ultra-cold atomic physics.
Author Perfetto, Gabriele
Lehr, Hannah
Lesanovsky, Igor
Author_xml – sequence: 1
  givenname: Hannah
  orcidid: 0009-0005-7907-951X
  surname: Lehr
  fullname: Lehr, Hannah
  organization: Universität Tübingen Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tübingen, Germany
– sequence: 2
  givenname: Igor
  orcidid: 0000-0001-9660-9467
  surname: Lesanovsky
  fullname: Lesanovsky, Igor
  organization: The University of Nottingham School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, Nottingham NG7 2RD, United Kingdom
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-4568-2311
  surname: Perfetto
  fullname: Perfetto, Gabriele
  organization: Universität Tübingen Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tübingen, Germany
BookMark eNp1UE1Lw0AUXKSCbfXuMeDV2P1MtieRYlUoCKLn5WU_6tY2W3dTpf_exEj14mmGYWbeY0ZoUIfaInRO8BXBUk4IK8qcFgxPwFhX4iM0PEiDP_wEjVJaYUyIpHSIrp8s6MaHOjfeuV1qWWb2NWy8TllwWfNqs08Lb-t9ZnxKfguN_7DZ3MaNz5aQTtGxg3WyZz84Ri_z2-fZfb54vHuY3SxyTWWBc1YBFNpWmoLDVlLJLKaSmKkmAhPNnBaUcKYFnmoqCC0rAlMhJJfSEQMlG6OHvtcEWKlt9BuIexXAq28hxKWC2Hi9tspMueYcQ-FKzk1VVVwaLKlo0QpCuq6Lvmsbw_vOpkatwi7W7fuKUVYUhRBcti7cu3QMKUXrDlcJVt3kqttUdZuqfvI2ctlHfNj-dv5r_wJkFYJx
CODEN NJOPFM
Cites_doi 10.1126/science.1155309
10.1103/PhysRevLett.61.2397
10.1103/PhysRevA.103.L060201
10.1103/PhysRevE.88.012108
10.1103/PhysRevLett.92.190401
10.1103/PhysRevB.97.165138
10.1103/PhysRevLett.111.215305
10.1088/0305-4470/37/28/R01
10.1103/PhysRevLett.132.230402
10.1103/RevModPhys.51.659
10.1103/PhysRevA.110.043315
10.1103/PhysRevA.32.435
10.1088/2058-9565/aadccd
10.1103/PhysRevResearch.5.043192
10.1088/0305-4470/27/8/004
10.1103/PhysRevB.109.L220304
10.1016/0370-1573(74)90023-4
10.1088/1367-2630/11/1/013053
10.1088/0305-4470/19/6/012
10.1103/PhysRevLett.123.100604
10.1103/PhysRevLett.128.040603
10.1038/nphys1073
10.1007/BF02180138
10.21468/SciPostPhys.9.4.044
10.1063/1.445022
10.1103/PhysRevE.90.042147
10.1038/ncomms15767
10.1006/aphy.1997.5712
10.1103/PhysRevA.30.2833
10.1103/PhysRevE.91.032132
10.1088/0305-4470/17/4/004/meta
10.1103/PhysRevE.108.064104
10.1007/s003400050805
10.1007/BF01608499
10.1088/1742-5468/2016/06/064007
10.1007/978-1-4020-8765-3
10.1021/j100234a023
10.1088/1751-8113/46/48/485002
10.1063/1.522979
10.1103/PhysRevLett.95.190406
10.1080/00018730050198152
10.1103/PhysRevLett.125.100403
10.1103/PhysRevB.97.024302
10.1088/1367-2630/ab43b0
10.21468/SciPostPhysLectNotes.18
10.1103/PhysRevLett.130.063001
10.1088/0305-4470/29/13/016/meta
10.1103/PhysRevLett.101.233002
10.1103/PhysRevLett.60.871
10.1103/PhysRevB.106.094315
10.1103/PhysRevA.83.013611
10.21468/SciPostPhys.8.4.060
10.1103/PhysRevX.9.021027
10.1103/PhysRevLett.52.955
10.1088/0305-4470/28/22/010/meta
10.1103/PhysRevLett.55.1707
10.21468/SciPostPhys.12.1.044
10.1103/PhysRevB.106.075115
10.1103/PhysRevA.109.023311
10.1103/PhysRevA.79.060702
10.1103/PhysRevA.96.023429
10.1103/PhysRevResearch.3.013238
10.1088/1742-5468/2016/06/064002
10.1088/0305-4470/38/17/R01/meta
10.1038/nature12483
10.1103/PhysRevA.107.013303
10.1103/PhysRevLett.112.070404
10.1103/PhysRevE.50.50
10.1038/nphys2106
10.1088/1367-2630/ad397a/meta
10.1103/PhysRevLett.130.210402
10.1103/PhysRevA.110.033321
10.1103/PhysRevLett.116.245701
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1088/1367-2630/adef70
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_d94c440a6f744dbbb48d0825b48e5117
10_1088_1367_2630_adef70
njpadef70
GrantInformation_xml – fundername: Bundesministerium für Forschung und Bildung
  grantid: 13N17065
– fundername: EPSRC
  grantid: EP/V031201/1
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 449905436; 465199066; 499180199
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID 123
1JI
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
M~E
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
W28
XPP
XSB
ZMT
AAYXX
CITATION
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c2860-3baa6cebc2af0e8283e0281d9c1501c3fc52143c509c25127b1a9558488f1da73
IEDL.DBID O3W
ISSN 1367-2630
IngestDate Wed Aug 27 01:23:09 EDT 2025
Sat Aug 23 14:33:45 EDT 2025
Wed Aug 06 19:14:13 EDT 2025
Wed Aug 06 19:27:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2860-3baa6cebc2af0e8283e0281d9c1501c3fc52143c509c25127b1a9558488f1da73
Notes NJP-118690.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-7907-951X
0000-0002-4568-2311
0000-0001-9660-9467
OpenAccessLink https://iopscience.iop.org/article/10.1088/1367-2630/adef70
PQID 3236665548
PQPubID 4491272
PageCount 27
ParticipantIDs crossref_primary_10_1088_1367_2630_adef70
proquest_journals_3236665548
doaj_primary_oai_doaj_org_article_d94c440a6f744dbbb48d0825b48e5117
iop_journals_10_1088_1367_2630_adef70
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gerbino (njpadef70bib69) 2024; 109
Henkel (njpadef70bib77) 1995; 28
Kinoshita (njpadef70bib26) 2005; 95
Täuber (njpadef70bib9) 2005; 38
Despres (njpadef70bib74) 2025
Tauber (njpadef70bib8) 2002
Zhu (njpadef70bib33) 2014; 112
Rossini (njpadef70bib63) 2021; 103
Ulčakar (njpadef70bib55) 2024
Rosso (njpadef70bib68) 2022; 12
Maki (njpadef70bib71) 2024; 110
Mallayya (njpadef70bib51) 2019; 9
Ulčakar (njpadef70bib54) 2024; 132
Kang (njpadef70bib19) 1984; 52
Ali (njpadef70bib59) 2024
Kang (njpadef70bib20) 1985; 32
Gillman (njpadef70bib42) 2020; 125
Bramson (njpadef70bib84) 1988; 61
Wilson (njpadef70bib2) 1974; 12
Cardy (njpadef70bib18) 1996
Kogut (njpadef70bib1) 1979; 51
Henkel (njpadef70bib7) 2008; vol 1
Perfetto (njpadef70bib66) 2023; 108
Bouchoule (njpadef70bib61) 2020; 9
Gerbino (njpadef70bib70) 2024
Olver (njpadef70bib75)
Huang (njpadef70bib67) 2023; 5
Henkel (njpadef70bib78) 1997; 259
Henkel (njpadef70bib22) 2004; 37
Burrows (njpadef70bib29) 2017; 96
Lumia (njpadef70bib60) 2024
Zechmann (njpadef70bib82) 2022; 106
Sponselee (njpadef70bib34) 2018; 4
Marché (njpadef70bib76) 2024; 110
Gorini (njpadef70bib43) 1976; 17
Essler (njpadef70bib57) 2016; 2016
Rowlands (njpadef70bib62) 2024; 26
Spouge (njpadef70bib13) 1988; 60
García-Ripoll (njpadef70bib72) 2009; 11
Lindblad (njpadef70bib44) 1976; 48
Lee (njpadef70bib17) 1994; 27
Diehl (njpadef70bib35) 2008; 4
Diehl (njpadef70bib36) 2011; 7
Täuber (njpadef70bib10) 2014
Fürst (njpadef70bib81) 2013; 88
Lange (njpadef70bib52) 2017; 8
Bouchoule (njpadef70bib30) 2020; 8
Tomadin (njpadef70bib37) 2011; 83
Jo (njpadef70bib48) 2021; 3
Kang (njpadef70bib21) 1984; 30
Söding (njpadef70bib24) 1999; 69
van Horssen (njpadef70bib45) 2015; 91
Gillman (njpadef70bib47) 2019; 21
Yamaguchi (njpadef70bib27) 2008; 101
Carollo (njpadef70bib49) 2022; 128
Carollo (njpadef70bib46) 2019; 123
Krebs (njpadef70bib79) 1995; 78
Toussaint (njpadef70bib11) 1983; 78
Doyon (njpadef70bib73) 2020
Rácz (njpadef70bib12) 1985; 55
Syassen (njpadef70bib23) 2008; 320
Peliti (njpadef70bib16) 1986; 19
Honda (njpadef70bib31) 2023; 130
Cardy (njpadef70bib3) 1996; vol 5
Carollo (njpadef70bib38) 2022; 106
Hinrichsen (njpadef70bib6) 2000; 49
Perfetto (njpadef70bib65) 2023; 130
Privman (njpadef70bib5) 1997
Riggio (njpadef70bib58) 2024; 109
Yan (njpadef70bib32) 2013; 501
Fürst (njpadef70bib80) 2013; 46
Tolra (njpadef70bib25) 2004; 92
Huang (njpadef70bib4) 2008
Privman (njpadef70bib15) 1994; 50
Traverso (njpadef70bib28) 2009; 79
Lange (njpadef70bib50) 2018; 97
Marcuzzi (njpadef70bib41) 2016; 116
Rosso (njpadef70bib64) 2023; 107
Torney (njpadef70bib14) 1983; 87
Howard (njpadef70bib85) 1996; 29
Lesanovsky (njpadef70bib39) 2013; 111
Lenarčič (njpadef70bib53) 2018; 97
Olmos (njpadef70bib40) 2014; 90
Meakin (njpadef70bib83) 1984; 17
Vidmar (njpadef70bib56) 2016; 2016
References_xml – volume: 320
  start-page: 1329
  year: 2008
  ident: njpadef70bib23
  publication-title: Science
  doi: 10.1126/science.1155309
– year: 2008
  ident: njpadef70bib4
– volume: 61
  start-page: 2397
  year: 1988
  ident: njpadef70bib84
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2397
– volume: 103
  year: 2021
  ident: njpadef70bib63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.L060201
– year: 1996
  ident: njpadef70bib18
– volume: 88
  year: 2013
  ident: njpadef70bib81
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.012108
– volume: 92
  year: 2004
  ident: njpadef70bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.190401
– volume: 97
  year: 2018
  ident: njpadef70bib50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.165138
– volume: 111
  year: 2013
  ident: njpadef70bib39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.215305
– volume: 37
  start-page: R117
  year: 2004
  ident: njpadef70bib22
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/28/R01
– volume: 132
  year: 2024
  ident: njpadef70bib54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.230402
– volume: 51
  start-page: 659
  year: 1979
  ident: njpadef70bib1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.51.659
– year: 2024
  ident: njpadef70bib70
– volume: 110
  year: 2024
  ident: njpadef70bib71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.110.043315
– volume: 32
  start-page: 435
  year: 1985
  ident: njpadef70bib20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.32.435
– year: 2024
  ident: njpadef70bib59
– volume: 4
  year: 2018
  ident: njpadef70bib34
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aadccd
– volume: 5
  year: 2023
  ident: njpadef70bib67
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.043192
– volume: 27
  start-page: 2633
  year: 1994
  ident: njpadef70bib17
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/27/8/004
– volume: 109
  year: 2024
  ident: njpadef70bib69
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.L220304
– volume: 12
  start-page: 75
  year: 1974
  ident: njpadef70bib2
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(74)90023-4
– volume: 11
  year: 2009
  ident: njpadef70bib72
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/1/013053
– volume: 19
  start-page: L365
  year: 1986
  ident: njpadef70bib16
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/19/6/012
– volume: 123
  year: 2019
  ident: njpadef70bib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.100604
– volume: 128
  year: 2022
  ident: njpadef70bib49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.040603
– year: 2025
  ident: njpadef70bib74
– volume: 4
  start-page: 878
  year: 2008
  ident: njpadef70bib35
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1073
– volume: 78
  start-page: 1429
  year: 1995
  ident: njpadef70bib79
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF02180138
– volume: 9
  start-page: 44
  year: 2020
  ident: njpadef70bib61
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.9.4.044
– volume: 78
  start-page: 2642
  year: 1983
  ident: njpadef70bib11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445022
– volume: 90
  year: 2014
  ident: njpadef70bib40
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.042147
– volume: 8
  start-page: 1
  year: 2017
  ident: njpadef70bib52
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15767
– ident: njpadef70bib75
– volume: 259
  start-page: 163
  year: 1997
  ident: njpadef70bib78
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.1997.5712
– volume: 30
  start-page: 2833
  year: 1984
  ident: njpadef70bib21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.30.2833
– volume: 91
  year: 2015
  ident: njpadef70bib45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.032132
– volume: 17
  start-page: L173
  year: 1984
  ident: njpadef70bib83
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/17/4/004/meta
– volume: 108
  year: 2023
  ident: njpadef70bib66
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.108.064104
– volume: 69
  start-page: 257
  year: 1999
  ident: njpadef70bib24
  publication-title: Appl. Phys. B
  doi: 10.1007/s003400050805
– volume: 48
  start-page: 119
  year: 1976
  ident: njpadef70bib44
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01608499
– volume: 2016
  year: 2016
  ident: njpadef70bib56
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2016/06/064007
– year: 1997
  ident: njpadef70bib5
– volume: vol 1
  year: 2008
  ident: njpadef70bib7
  doi: 10.1007/978-1-4020-8765-3
– volume: 87
  start-page: 1941
  year: 1983
  ident: njpadef70bib14
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100234a023
– volume: 46
  year: 2013
  ident: njpadef70bib80
  publication-title: J. Phys. A: Math.
  doi: 10.1088/1751-8113/46/48/485002
– year: 2014
  ident: njpadef70bib10
– volume: 17
  start-page: 821
  year: 1976
  ident: njpadef70bib43
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522979
– volume: 95
  year: 2005
  ident: njpadef70bib26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.190406
– volume: 49
  start-page: 815
  year: 2000
  ident: njpadef70bib6
  publication-title: Adv. Phys.
  doi: 10.1080/00018730050198152
– volume: 125
  year: 2020
  ident: njpadef70bib42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.100403
– volume: 97
  year: 2018
  ident: njpadef70bib53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.024302
– volume: 21
  year: 2019
  ident: njpadef70bib47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab43b0
– start-page: 18
  year: 2020
  ident: njpadef70bib73
  publication-title: SciPost Phys. Lect. Notes
  doi: 10.21468/SciPostPhysLectNotes.18
– volume: 130
  year: 2023
  ident: njpadef70bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.063001
– volume: 29
  start-page: 3437
  year: 1996
  ident: njpadef70bib85
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/29/13/016/meta
– volume: 101
  year: 2008
  ident: njpadef70bib27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.233002
– volume: 60
  start-page: 871
  year: 1988
  ident: njpadef70bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.871
– volume: 106
  year: 2022
  ident: njpadef70bib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.094315
– volume: 83
  year: 2011
  ident: njpadef70bib37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.013611
– volume: 8
  start-page: 60
  year: 2020
  ident: njpadef70bib30
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.4.060
– volume: 9
  year: 2019
  ident: njpadef70bib51
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.021027
– volume: 52
  start-page: 955
  year: 1984
  ident: njpadef70bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.955
– volume: 28
  start-page: 6335
  year: 1995
  ident: njpadef70bib77
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/28/22/010/meta
– volume: 55
  start-page: 1707
  year: 1985
  ident: njpadef70bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.1707
– volume: 12
  start-page: 44
  year: 2022
  ident: njpadef70bib68
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.044
– volume: 106
  year: 2022
  ident: njpadef70bib82
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.075115
– year: 2024
  ident: njpadef70bib55
– volume: 109
  year: 2024
  ident: njpadef70bib58
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.109.023311
– volume: 79
  year: 2009
  ident: njpadef70bib28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.060702
– volume: vol 5
  year: 1996
  ident: njpadef70bib3
– volume: 96
  year: 2017
  ident: njpadef70bib29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.023429
– year: 2002
  ident: njpadef70bib8
– volume: 3
  year: 2021
  ident: njpadef70bib48
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013238
– volume: 2016
  year: 2016
  ident: njpadef70bib57
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2016/06/064002
– volume: 38
  start-page: R79
  year: 2005
  ident: njpadef70bib9
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/38/17/R01/meta
– volume: 501
  start-page: 521
  year: 2013
  ident: njpadef70bib32
  publication-title: Nature
  doi: 10.1038/nature12483
– volume: 107
  year: 2023
  ident: njpadef70bib64
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.013303
– volume: 112
  year: 2014
  ident: njpadef70bib33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.070404
– volume: 50
  start-page: 50
  year: 1994
  ident: njpadef70bib15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.50.50
– volume: 7
  start-page: 971
  year: 2011
  ident: njpadef70bib36
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2106
– volume: 26
  year: 2024
  ident: njpadef70bib62
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ad397a/meta
– volume: 130
  year: 2023
  ident: njpadef70bib65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.210402
– volume: 110
  year: 2024
  ident: njpadef70bib76
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.110.033321
– volume: 116
  year: 2016
  ident: njpadef70bib41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.245701
– year: 2024
  ident: njpadef70bib60
SSID ssj0011822
Score 2.4615111
Snippet We study the one-dimensional Fermi gas subject to dissipative reactions. The dynamics is governed by the quantum master equation, where the Hamiltonian...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 84602
SubjectTerms Asymptotic properties
Atomic physics
Coagulation
Decay
Density
Dissipation
Fermi gas
Fermi gases
Hamiltonian functions
nonequilibrium critical dynamics
nonequilibrium many-body dissipative systems
Percolation
Phase transitions
quantum reaction-diffusion systems
Time dependence
time-dependent generalized Gibbs ensemble
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRP3F1lRz04KFsm6RpehIVl0XQg7iwt5DmQ0TZXeyu4r93Ju2qIOjFU6EEGt4kmTedyRtCjl1uHNBqmfAyC4lAEUxVCJPAwVeETDqmUrzgfHMrhyNxPc7H31p9YU1YIw_cANd3pbBCpEaGQghXVZVQDsMaeHogC_EeOfi8ZTDV5g-ANbM2KQnbqI-6ZAmTPO0b5wM2Jv7mhKJWP7iWx-nsx4Ecvcxgg6y39JCeN9PaJCt-skVWY5mmrbfJ2Z1vLiIk2NhkgX-6qGt6ytd0GiiwOfrmzdPzO8VEeyyXfvV0gBUv9MHUO2Q0uLq_HCZtC4TEMiXhhKyMkdZXlpmQeoiOuAdCkLnSApHLLA8W3K_gFty-RaZSVJkpcyAVSoXMmYLvks5kOvF7hEoXIFjhwouQC1egTE8ueUiZY6awPu-S0yUmetYoXeiYoVZKI34a8dMNfl1ygaB9jkON6vgCLKdby-m_LNclJwC5bvdM_cvHekujfA3mjEPgBVxI7f_HXA7IGsPGvrGyr0c685eFPwS2Ma-O4sL6AIJizXU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF7UIngRn1hf7EEPHkKT3c1mexIVSxEsUix4C5t9iChNbVrFf-9MslVB6CmQLARmZ2e-eex8hJzZVFuA1TLi3cRHAodgqkzoCAxf5hNpmYrxgvP9QPZH4u4pfQoJtyq0VS5sYm2obWkwR97hjAPSBuenLifvEbJGYXU1UGiskhaYYAXBV-v6dvAw_KkjAHpmoTgJx6mD88kiJnnc0dZ5JCj-44zqmf3gYl7KyT_DXHub3hbZDDCRXjX7uk1W3HiHrNftmqbaJZdD11xIiJDgZI4ZL2obbvmKlp4CqqOfTr--fVEsuNdt0x-O9rDzhT7rao-MerePN_0oUCFEhikJlrLQWhpXGKZ97CBK4g6AQWK7BgBdYrg34IYFN-D-DSKWrEh0NwVwoZRPrM74Plkbl2N3QKi0HoIWLpzwqbAZjutJJfcxs0xnxqVtcrGQST5pJl7kdaVaqRzll6P88kZ-bXKNQvtZh7Oq6xfl9DkPqp_brjBCxFr6TAhbFIVQFgNTeDqAe1mbnIPI83B2qiU_O15syu_iX7U4XP75iGwwpO6te_eOydpsOncngCdmxWlQmm_7B8au
  priority: 102
  providerName: ProQuest
Title Reaction-diffusion dynamics of the weakly dissipative Fermi gas
URI https://iopscience.iop.org/article/10.1088/1367-2630/adef70
https://www.proquest.com/docview/3236665548
https://doaj.org/article/d94c440a6f744dbbb48d0825b48e5117
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EIngRn1gfZQ968BCb7G52N3gQKy1VsC3Forew2YcHpRXjA_-9s5tYEUW8JCFssmE2mfkmM_MNQgcmVQZgNY9olriIeRJMKZiKQPEJl3BDZOwLnK8GvD9hl7fp7QI6mdfCzB5r1X8MhxVRcCXCOiFOtj3JWEQ4jdvKWCfAX29QyaX3vIb0Zh5CAOBM6rjkb1d9s0OBrh-sC0z5QycHQ9NbRSs1QsRn1fOsoQU7XUdLIVNTlxvodGyrWoTI9zZ58T-7sKnaypd45jAAOvxm1f3DO_ax9pAx_Wpxzye94DtVbqJJr3t93o_qLgiRJpKDkiyU4toWmigXW3CQqAVMkJhMA5ZLNHUaLDCjGiy_9mBFFInKUsAVUrrEKEG30OJ0NrXbCHPjwF-hzDKXMiM8U0_KqYuJIUpomzbR0adM8seK7CIPQWopcy-_3Msvr-TXRB0vtPk4T1MdTsCS5fWS5SZjmrFYcScYM0VRMGm8Twp7C0hPNNEhiDyvP5vyj8n2PhflazAlFHwvgENy55-32UXLxLfvDfl7e2jx-enF7gOmeC5aqNHpDkbjVvDJYXsxHLXC-_QBa9PHaw
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVW5VH2KbYH6UA49RJvYjuM9VAgKq6XAqkIgcXMdP1BVtNkSKOJP9Td2Jg-oVIkbp0iJlUjjsb9vMuP5AD763Hqk1SoR4ywmkppg6kLaBDe-ImbKc53SAeejmZqeyq9n-dkS_OnPwlBZZb8nNhu1rxz9Ix8JLpBpI_jprcWvhFSjKLvaS2i0bnEQbm8wZKs_7-_i_G5yPtk7-TJNOlWBxHGtcNMprVUulI7bmAYMOERAjM382CE3ypyIDhFNCodI6gj8izKz4xxxWuuYeVsIfO8TWJYCQ5kBLO_szb4d3-UtkK3zLhmKy3dE_dASrkQ6sj5EEkT-B_wajQCEtB_V4j8gaNBt8gKed7SUbbd-9BKWwvwVPG3KQ139GraOQ3sAIiFBlWv6w8Z8q2VfsyoyZJHsJtifF7eMEvxNmfbvwCZUacPObf0GTh_FSG9hMK_mYRWY8hGDJCGDjLn0BbUHypWIKffcFi7kQ_jU28Qs2g4bpsmMa23IfobsZ1r7DWGHjHY3jnpjNzeqy3PTLTXjx9JJmVoVCyl9WZZSewqE8RqQXhZD2ESTm26t1g98bK2flPvB92747uHHH-DZ9OTo0Bzuzw7ewwon2eCmbnANBleX12EducxVudE5EIPvj-2zfwG_uAJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYBOKCWEVZfYADh9DEdmz3hNgq1oIQFdwsxwsHUFvRAuLvGTtpEQIhTokiZ9GbZOY5M36D0LbNtQVazRPayHzCggimFEwn4PiEz7glMg0LnK9a_LTNzh_yh6rPaVwL0-1Vrn8Pdkuh4BLCqiBO1oPIWEI4TevaOi_Ses_6cTSZU85D74Zrej9KIwB5JlVu8rczv8WiKNkPEQZu-8Mvx2DTnEOzFUvEB-UzzaMx11lAU7Fa0_QX0f6tK9cjJKG_yWv44YVt2Vq-j7seA6nD704_PX_gkG-PVdNvDjdD4Qt-1P0l1G6e3B2dJlUnhMQQycFRFlpz4wpDtE8dTJKoA16Q2YYBPpcZ6g1EYUYNRH8TCIsoMt3IgVtI6TOrBV1GE51ux60gzK2HOQtljvmcWRHUenJOfUos0cK4vIZ2h5ioXil4oWKiWkoV8FMBP1XiV0OHAbTRuCBVHQ-A2VRlNmUbzDCWau4FY7YoCiZtmJfC1gHbEzW0A5Cr6tPp_3Gz9aFRvgZTAlbnQInk6j8vs4Wmb46b6vKsdbGGZkjo5hvL-dbRxODl1W0AxRgUm_E1-gQyr8fC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction-diffusion+dynamics+of+the+weakly+dissipative+Fermi+gas&rft.jtitle=New+journal+of+physics&rft.au=Lehr%2C+Hannah&rft.au=Lesanovsky%2C+Igor&rft.au=Perfetto%2C+Gabriele&rft.date=2025-08-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=27&rft.issue=8&rft_id=info:doi/10.1088%2F1367-2630%2Fadef70&rft.externalDocID=njpadef70
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon