Review on sensors for electric fields near power transmission systems
Abstract Due to the necessary transition to renewable energy, the transport of electricity over long distances will become increasingly important, since the sites of sustainable electricity generation, such as wind or solar power parks, and the place of consumption can be very far apart. Currently,...
Saved in:
Published in | Measurement science & technology Vol. 35; no. 5; p. 52001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Due to the necessary transition to renewable energy, the transport of electricity over long distances will become increasingly important, since the sites of sustainable electricity generation, such as wind or solar power parks, and the place of consumption can be very far apart. Currently, electricity is mainly transported via overhead AC lines. However, studies have shown that for long distances, transport via DC offers decisive advantages. To make optimal use of the existing route infrastructure, simultaneous AC and DC, or hybrid transmission, should be employed. The resulting electric field strengths must not exceed legally prescribed thresholds to avoid potentially harmful effects on humans and the environment. However, accurate quantification of the resulting electric fields is a major challenge in this context, as they can be easily distorted (e.g. by the measurement equipment itself). Nonetheless knowledge of the undisturbed field strengths from DC up to several multiples of the fundamental frequency of the power-grid (up to 1 kHz) is required to ensure compliance with the thresholds. Both AC and DC electric fields can result in the generation of corona ions in the vicinity of the line. In the case of pure AC fields, the corona ions generated typically recombine in the immediate vicinity of the line and, therefore, have no influence on the field measurement further away. Unfortunately, this assumption does not hold for DC fields and hybrid fields, where corona ions can be transported far away from the line (e.g. by wind), and potentially interact with the measurement equipment yielding incorrect measurement results. This review will provide a comprehensive overview of the current state-of-the-art technologies and methods which have been developed to address the problems of measuring the electric field near hybrid power lines. |
---|---|
AbstractList | Abstract
Due to the necessary transition to renewable energy, the transport of electricity over long distances will become increasingly important, since the sites of sustainable electricity generation, such as wind or solar power parks, and the place of consumption can be very far apart. Currently, electricity is mainly transported via overhead AC lines. However, studies have shown that for long distances, transport via DC offers decisive advantages. To make optimal use of the existing route infrastructure, simultaneous AC and DC, or hybrid transmission, should be employed. The resulting electric field strengths must not exceed legally prescribed thresholds to avoid potentially harmful effects on humans and the environment. However, accurate quantification of the resulting electric fields is a major challenge in this context, as they can be easily distorted (e.g. by the measurement equipment itself). Nonetheless knowledge of the undisturbed field strengths from DC up to several multiples of the fundamental frequency of the power-grid (up to 1 kHz) is required to ensure compliance with the thresholds. Both AC and DC electric fields can result in the generation of corona ions in the vicinity of the line. In the case of pure AC fields, the corona ions generated typically recombine in the immediate vicinity of the line and, therefore, have no influence on the field measurement further away. Unfortunately, this assumption does not hold for DC fields and hybrid fields, where corona ions can be transported far away from the line (e.g. by wind), and potentially interact with the measurement equipment yielding incorrect measurement results. This review will provide a comprehensive overview of the current state-of-the-art technologies and methods which have been developed to address the problems of measuring the electric field near hybrid power lines. |
Author | Schmid, G Kainz, A Hortschitz, W Beigelbeck, R Keplinger, F |
Author_xml | – sequence: 1 givenname: W orcidid: 0000-0003-2950-642X surname: Hortschitz fullname: Hortschitz, W – sequence: 2 givenname: A surname: Kainz fullname: Kainz, A – sequence: 3 givenname: R surname: Beigelbeck fullname: Beigelbeck, R – sequence: 4 givenname: G orcidid: 0000-0002-3435-6844 surname: Schmid fullname: Schmid, G – sequence: 5 givenname: F surname: Keplinger fullname: Keplinger, F |
BookMark | eNo9kFFLwzAUhYNMcJu--5g_UHeTNG36KGPqYCCIPpckvYFI24zc4ti_d2Xi04ED53C-s2KLMY3I2KOAJwHGbISqRFFpEBvbyVLZG7b8txZsCY2uC5BK3bEV0TcA1NA0S7b7wJ-IJ55GTjhSysRDyhx79FOOnoeIfUd8RJv5MZ0w8ynbkYZIFOfMmSYc6J7dBtsTPvzpmn297D63b8Xh_XW_fT4UXho9Fdgpr41QwmGosLlsUN4ra4Kunfa1wqoRpbmMF4ChU5WXzsnaeSODhNJJtWZw7fU5EWUM7THHweZzK6Cdb2hn5nZmbq83qF-Vg1N4 |
CitedBy_id | crossref_primary_10_3390_s24051359 crossref_primary_10_1016_j_elstat_2024_103936 |
Cites_doi | 10.1016/j.sna.2013.04.016 10.1109/TPWRD.1987.4308131 10.1109/TDEI.2018.007187 10.5194/acp-22-7959-2022 10.5194/acp-20-3181-2020 10.1109/CEEM.2009.5304039 10.1039/D2SC05231H 10.1109/JLT.2014.2319152 10.3390/en16083415 10.3390/proceedings1040350 10.1143/JJAP.47.7533 10.1016/S0304-3886(01)00048-1 10.1109/JMEMS.2003.818066 10.1109/ACCESS.2023.3306237 10.1364/JOSAB.19.002704 10.1016/j.elstat.2015.09.001 10.1016/j.eiar.2018.04.010 10.1016/j.jpgr.2019.106087 10.1016/j.epsr.2020.106840 10.1117/12.880823 10.1007/s00340-019-7326-5 10.1109/SIPDA47030.2019.8951742 10.1109/SAS.2010.5439402 10.1109/TPS.2013.2257874 10.1063/1.3152792 10.1109/JSEN.2023.3260216 10.1109/19.918167 10.3390/mi13040619 10.1016/j.sna.2006.02.044 10.1364/AO.36.004505 10.1029/2002GL014878 10.1029/2020EA001309 10.1063/1.1139037 10.1016/j.elstat.2020.103489 10.5194/egusphere-egu2020-8562 10.1109/JSEN.2013.2295004 10.1109/JSEN.2021.3107511 10.1049/joe.2018.8400 10.1109/TEI.1987.298916 10.1109/19.997825 10.1007/s10854-017-7805-6 10.1049/iet-gtd.2012.0407 10.1088/0960-1317/25/9/095008 10.1016/j.sna.2023.114611 10.1364/AO.46.006636 10.1109/28.62405 10.1109/TPAS.1978.354590 10.1109/TIE.2017.2719618 10.1364/OE.19.017212 10.1049/iet-gtd.2019.1413 10.3390/s19132860 10.1109/TPWRD.2011.2172003 10.1016/j.measurement.2006.06.003 10.1007/s00484-020-01960-7 10.1109/TED.2023.3287815 10.1088/1361-6501/aae4c8 10.1016/j.jastp.2019.01.003 10.1109/LAWP.2020.2994263 10.1109/TPWRD.2008.2007009 10.1002/wea.97 10.1109/57.484105 10.1364/AO.39.004985 10.3390/s120811406 10.1103/PhysRevLett.122.244801 10.1117/12.930740 10.2172/580576 10.1109/3.737612 10.1088/1757-899X/677/5/052112 10.1049/ij-epa.1979.0019 10.1088/1361-6463/abcf73 10.1364/AO.395797 10.1063/1.331568 10.1007/s00359-017-1176-6 10.1109/TPWRD.2013.2250315 10.1109/50.769306 10.1029/JD092iD10p12013 10.1038/s41598-021-89851-8 10.1038/s41928-017-0009-5 10.1038/srep15802 10.1029/JZ062i004p00617 10.1039/C9QM00508K 10.1109/TIM.2022.3225047 10.1007/s13320-014-0189-9 10.1109/TIM.2011.2130010 10.1109/ICHVE.2012.6357031 10.1016/j.eng.2022.06.017 10.1109/JLT.2021.3139375 10.1029/2022GL099827 10.1175/JTECH2039.1 10.1002/2017GL073128 10.1109/JSEN.2008.2010367 10.1109/LPT.2014.2355209 10.1364/JOSAB.19.002692 10.1016/j.sna.2005.02.018 10.1063/1.5143767 10.1029/2002GL015765 10.1109/JSEN.2023.3264973 10.17775/CSEEJPES.2015.00032 10.1117/12.937498 10.1109/JSEN.2021.3070130 10.1063/1.5045614 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/ad243a |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_ad243a |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c285t-ed3c58131bef6e90073cc3a8f57b5c73e6914843a10efd36c2bb27bc82f204b23 |
ISSN | 0957-0233 |
IngestDate | Fri Aug 23 03:25:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-ed3c58131bef6e90073cc3a8f57b5c73e6914843a10efd36c2bb27bc82f204b23 |
ORCID | 0000-0003-2950-642X 0000-0002-3435-6844 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6501/ad243a/pdf |
ParticipantIDs | crossref_primary_10_1088_1361_6501_ad243a |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2024 |
References | General Systems Subcommittee (mstad243abib83) 1978; PAS-97 Hunting (mstad243abib8) 2021; 65 Zeng (mstad243abib116) 2012; 12 Riehl (mstad243abib66) 2003; 12 Giles Harrison (mstad243abib56) 2020; 107 Grasdijk (mstad243abib108) 2019; 125 Kondo (mstad243abib140) 2017; vol 1 Okubo (mstad243abib143) 2010 Gaborit (mstad243abib145) 2015 Mission Instruments Co. (mstad243abib64) 2020 Han (mstad243abib18) 2023; 24 Huang (mstad243abib29) 2015; 25 Fort (mstad243abib63) 2010 Baxter (mstad243abib79) 1997 Kobayashi (mstad243abib91) 2012 Hill (mstad243abib47) 1999 Kainz (mstad243abib25) 2018; 113 Zhang (mstad243abib128) 2023; 362 Liu (mstad243abib161) 2019; 677 European Commission (mstad243abib5) 2013 (mstad243abib80) 2023 Kobayashi (mstad243abib92) 2013; 198 Xu (mstad243abib138) 2020; 4 Dallaire (mstad243abib163) 1987; 2 Johnston (mstad243abib50) 1986; 57 Campbell Scientific Inc (mstad243abib52) 2018 Kluever (mstad243abib15) 2015 Zeng (mstad243abib137) 2022; 13 Bateman (mstad243abib36) 2007; 24 Fort (mstad243abib46) 2011; 60 Cui (mstad243abib61) 2018; 65 Ma (mstad243abib123) 2021; 190 Xinyu (mstad243abib164) 2020; 54 Kaminow (mstad243abib130) 2013 Mazzola (mstad243abib98) 1995; vol 1 Cecelja (mstad243abib113) 2007; 40 Antunes de Sá (mstad243abib55) 2020; 7 Kumada (mstad243abib109) 2013; 28 Zhang (mstad243abib119) 2014; 26 Cecelja (mstad243abib111) 2001; 50 mstad243abib147 Biasotto (mstad243abib13) 2018; 71 Liu (mstad243abib38) 2023; 72 Sato (mstad243abib131) 2014 Volat (mstad243abib133) 2013 Garzarella (mstad243abib150) 2007; 46 Anisimov (mstad243abib42) 2002; 29 Giles Harrison (mstad243abib11) 2022; 49 Kainz (mstad243abib17) 2019; 122 Cheng (mstad243abib99) 2005 Yang (mstad243abib151) 2020; 91 Nicoll (mstad243abib41) 2019; 184 Montena (mstad243abib81) 2023 Bernier (mstad243abib126) 2009; 9 Gaborit (mstad243abib97) 2020; 19 Hoffman (mstad243abib129) 2015 Li (mstad243abib27) 2022; 13 Roncin (mstad243abib31) 2004 Clarke (mstad243abib7) 2017; 203 Wackernagel (mstad243abib121) 2023; 11 Wang (mstad243abib75) 2021 Toney (mstad243abib117) 2014; 14 Cecelja (mstad243abib112) 2002; 51 Liu (mstad243abib77) 2021; 21 Zhang (mstad243abib120) 2014; 32 Chen (mstad243abib22) 2013 Hidaka (mstad243abib160) 1982; 53 Jinmeng (mstad243abib45) 2023; 23 Rose (mstad243abib102) 1999; 17 Jonassen (mstad243abib14) 2013 Chubb (mstad243abib59) 1990; 26 Hidaka (mstad243abib105) 1996; 12 Priest (mstad243abib16) 1997; 36 Rogers (mstad243abib96) 1979; 2 Kirkham (mstad243abib34) 1987 Lundberg (mstad243abib67) 2006 Peng (mstad243abib107) 2019; 19 Chu (mstad243abib73) 2023; 23 Maeno (mstad243abib101) 1987; EI–22 SRICO (mstad243abib122) Sellars (mstad243abib158) 1995 (mstad243abib152) 1990 Lasta Fritzen (mstad243abib153) 2019 Onishi (mstad243abib104) 2017; vol 1 Bennett (mstad243abib51) 2007; 62 Horenstein (mstad243abib65) 2001; 51–52 Perry (mstad243abib135) 2011; 7982 Duvillaret (mstad243abib94) 2002; 19 Garzarella (mstad243abib148) 2009; 94 (mstad243abib82) 2020 Liu (mstad243abib4) 2009; 24 Sawa Shafran (mstad243abib69) 2005 Peng (mstad243abib76) 2010 Kobayashi (mstad243abib90) 2008; 47 Gaborit (mstad243abib106) 2023 Gaborit (mstad243abib134) 2013; 41 Wang (mstad243abib162) 2020; 179 Harrison (mstad243abib43) 2002; 29 Robertson (mstad243abib149) 1985; vol 132 Zhang (mstad243abib141) 2013 Hirtl (mstad243abib2) 2018 Shahroom (mstad243abib62) 2015 Liyanage (mstad243abib33) 2017; 1 Struminsky (mstad243abib48) 2000 Zhang (mstad243abib157) 2013; 7 Hill (mstad243abib49) 1999 Mazur (mstad243abib39) 1987; 92 Ling (mstad243abib78) 2017 Kolmašová (mstad243abib1) 2022; 22 Chen (mstad243abib70) 2006; 132 Ghionea (mstad243abib74) 2013 Wen (mstad243abib10) 2021; 21 Brinkmann (mstad243abib100) 2007 Muller (mstad243abib124) 1999; 35 Jarzynski (mstad243abib114) 1987; 0718 Chmielak (mstad243abib115) 2011; 19 Roncin (mstad243abib32) 2005; 123-124 Jiang (mstad243abib37) 2009 Xiaoming (mstad243abib30) 2017 Gillette (mstad243abib125) 2014 He (mstad243abib110) 2018; 29 Kainz (mstad243abib21) 2020 Kuo (mstad243abib132) 2000; 39 Clark (mstad243abib40) 1957; 62 Geonica (mstad243abib57) Mou (mstad243abib155) 2019; 2019 Owens (mstad243abib127) 2021; 11 Denison (mstad243abib68) 2006 Toney (mstad243abib95) 2012; 8519 Denison (mstad243abib71) 2007 Liyanage (mstad243abib20) 2017 Bordovsky (mstad243abib93) 1998 Elizabeth Catherine (mstad243abib154) 2017 Zhang (mstad243abib118) 2014; 4 Kainz (mstad243abib24) 2018; 1 Dekra (mstad243abib60) 2019 Cui (mstad243abib165) 2020; 14 Zhang (mstad243abib156) 2012 Bailey (mstad243abib12) 1997 Giles Harrison (mstad243abib44) 2017; 44 Duvillaret (mstad243abib144) 2002; 19 Previstorm (mstad243abib58) 2020 Council of the European Union (mstad243abib6) 1999 mstad243abib84 mstad243abib85 Luo (mstad243abib139) 2021; 40 Yansong (mstad243abib159) 2020; 59 Isik (mstad243abib19) 2023 Kainz (mstad243abib26) 2019 Zhang (mstad243abib54) 2015; 1 Liao (mstad243abib28) 2023; 16 Chubb (mstad243abib53) 2010 mstad243abib88 Sarma Maruvada (mstad243abib3) 2012; 27 Toth (mstad243abib9) 2020; 20 mstad243abib89 mstad243abib86 mstad243abib87 Zhou (mstad243abib136) 2017; 28 Chubb (mstad243abib35) 2015; 78 Okubo (mstad243abib103) 2018; 25 Nassar (mstad243abib142) 2023 Peng (mstad243abib72) 2023; 70 Zhu (mstad243abib23) 2015; 5 Zhang (mstad243abib146) 2022; 6 |
References_xml | – volume: 198 start-page: 87 year: 2013 ident: mstad243abib92 article-title: An electrostatic field sensor operated by self-excited vibration of MEMS-based self-sensitive piezoelectric microcantilevers publication-title: Sens. Actuators A doi: 10.1016/j.sna.2013.04.016 contributor: fullname: Kobayashi – start-page: pp 142 year: 2014 ident: mstad243abib125 article-title: Optical sensor for the diagnostic of high voltage equipment contributor: fullname: Gillette – volume: 2 start-page: 477 year: 1987 ident: mstad243abib163 article-title: Corona performance of a ± 450-kV bipolar DC transmission line configuration publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.1987.4308131 contributor: fullname: Dallaire – start-page: pp 249 year: 2007 ident: mstad243abib100 contributor: fullname: Brinkmann – start-page: pp 365 year: 2013 ident: mstad243abib133 article-title: Contactless optical sensors for in situ AC and DC electric field measurement and diagnostics contributor: fullname: Volat – start-page: pp 1 year: 2023 ident: mstad243abib106 article-title: Partial discharge assessment using optical probe contributor: fullname: Gaborit – start-page: pp 527 year: 2012 ident: mstad243abib91 article-title: An electrostatic field sensor driven by self-excited vibration of sensor/actuator integrated piezoelectric micro cantilever contributor: fullname: Kobayashi – volume: 25 start-page: 1785 year: 2018 ident: mstad243abib103 article-title: HVDC electrical insulation performance in oil/pressboard composite insulation system based on kerr electro-optic field measurement and electric field analysis publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2018.007187 contributor: fullname: Okubo – year: 1998 ident: mstad243abib93 article-title: Electrooptic electric field sensor for dc and extra-low-frequency measurement contributor: fullname: Bordovsky – volume: 22 start-page: 7959 year: 2022 ident: mstad243abib1 article-title: Continental thunderstorm ground enhancement observed at an exceptionally low altitude publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-7959-2022 contributor: fullname: Kolmašová – volume: 20 start-page: 3181 year: 2020 ident: mstad243abib9 article-title: Electrostatic forces alter particle size distributions in atmospheric dust publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-3181-2020 contributor: fullname: Toth – year: 2013 ident: mstad243abib14 contributor: fullname: Jonassen – year: 2009 ident: mstad243abib37 article-title: The latest design and development of the field mill used as atmospheric electric field sensor doi: 10.1109/CEEM.2009.5304039 contributor: fullname: Jiang – volume: 13 start-page: 13393 year: 2022 ident: mstad243abib137 article-title: Electro-optic crosslinkable chromophores with ultrahigh electro-optic coefficients and long-term stability publication-title: Chem. Sci. doi: 10.1039/D2SC05231H contributor: fullname: Zeng – ident: mstad243abib89 article-title: Manual—Keyence Corporation of America, Electrostatic Sensor—SK series – year: 2013 ident: mstad243abib5 article-title: Directive 2013/35/eu on minimum health and safety requirements re-garding the exposure of workers to the risks arising from physical agents (electromagnetic fields) publication-title: Official J. Eur. Union contributor: fullname: European Commission – start-page: pp 1 year: 2023 ident: mstad243abib142 article-title: Electro-optical kerr effect in HFE-7100 contributor: fullname: Nassar – volume: 32 start-page: 3774 year: 2014 ident: mstad243abib120 article-title: Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2014.2319152 contributor: fullname: Zhang – volume: 16 start-page: 3415 year: 2023 ident: mstad243abib28 article-title: Non-intrusive voltage-inversion measurement method for overhead transmission lines based on near-end electric-field integration publication-title: Energies doi: 10.3390/en16083415 contributor: fullname: Liao – volume: 1 start-page: 350 year: 2017 ident: mstad243abib33 article-title: Torsional moving electric field sensor with modulated sensitivity and without reference ground publication-title: Proceedings doi: 10.3390/proceedings1040350 contributor: fullname: Liyanage – volume: 47 start-page: 7533 year: 2008 ident: mstad243abib90 article-title: Microelectromechanical systems-based electrostatic field sensor using Pb(Zr,Ti)O3 thin films publication-title: Japan. J. Appl. Phys. doi: 10.1143/JJAP.47.7533 contributor: fullname: Kobayashi – volume: vol 1 start-page: pp 95 year: 2017 ident: mstad243abib104 article-title: Surface potential measurement of stress grading system of high voltage rotating machine coils using pockels field sensor contributor: fullname: Onishi – year: 2020 ident: mstad243abib58 article-title: Manual—Previstorm Thunderstorm Warning System contributor: fullname: Previstorm – volume: 51–52 start-page: 515 year: 2001 ident: mstad243abib65 article-title: A micro-aperture electrostatic field mill based on MEMS technology publication-title: J. Electrost. doi: 10.1016/S0304-3886(01)00048-1 contributor: fullname: Horenstein – volume: 12 start-page: 577 year: 2003 ident: mstad243abib66 article-title: Electrostatic charge and field sensors based on micromechanical resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2003.818066 contributor: fullname: Riehl – volume: 11 start-page: 90715 year: 2023 ident: mstad243abib121 article-title: Integration of an optical electric field sensor in lithium niobate on insulator publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3306237 contributor: fullname: Wackernagel – year: 2023 ident: mstad243abib81 article-title: Field sensors contributor: fullname: Montena – volume: 19 start-page: 2704 year: 2002 ident: mstad243abib144 article-title: Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimizatino of their orientation publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.19.002704 contributor: fullname: Duvillaret – start-page: pp 522 year: 2013 ident: mstad243abib141 article-title: Experimental determination of the valid time range for kerr electro-optic measurements in transformer oil stressed by high-voltage pulses contributor: fullname: Zhang – year: 2023 ident: mstad243abib19 article-title: Analysis of an enclosure for a MEMS DC electric field sensor contributor: fullname: Isik – volume: 78 start-page: 1 year: 2015 ident: mstad243abib35 article-title: Limitations on the performance of ‘field mill’ fieldmeters with alternating electric fields publication-title: J. Electrost. doi: 10.1016/j.elstat.2015.09.001 contributor: fullname: Chubb – start-page: pp 108 year: 2000 ident: mstad243abib48 article-title: Vibrational Fluxmeters - A New Class of Electric Field Sensors contributor: fullname: Struminsky – volume: 71 start-page: 110 year: 2018 ident: mstad243abib13 article-title: Power lines and impacts on biodiversity: a systematic review publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2018.04.010 contributor: fullname: Biasotto – start-page: pp 1 year: 2013 ident: mstad243abib74 article-title: MEMS electric-field sensor with lead zirconate titanate (PZT)-actuated electrodes contributor: fullname: Ghionea – volume: 179 year: 2020 ident: mstad243abib162 article-title: Measuring AC/DC hybrid electric field using an integrated optical electric field sensor publication-title: Electr. Power Syst. Res. doi: 10.1016/j.jpgr.2019.106087 contributor: fullname: Wang – start-page: pp 1183 year: 2010 ident: mstad243abib76 article-title: Design of a SOI MEMS resonant electric field sensor for power engineering applications contributor: fullname: Peng – volume: 190 year: 2021 ident: mstad243abib123 article-title: Effects of temperature and humidity on ground total electric field under HVDC lines publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106840 contributor: fullname: Ma – volume: 7982 start-page: 230 year: 2011 ident: mstad243abib135 article-title: Electro-optic polymer electric field sensor publication-title: Proc. SPIE doi: 10.1117/12.880823 contributor: fullname: Perry – year: 2023 ident: mstad243abib80 article-title: Ppm test, prodyn free space electric field (d-dot) sensors – year: 2020 ident: mstad243abib64 article-title: Manual—EFS 1000 series electric field mill contributor: fullname: Mission Instruments Co. – volume: 125 start-page: 212 year: 2019 ident: mstad243abib108 article-title: Electro-optic sensor for static fields publication-title: Appl. Phys. B doi: 10.1007/s00340-019-7326-5 contributor: fullname: Grasdijk – year: 2019 ident: mstad243abib153 article-title: Electric field sensor calibration using horizontal parallel plates doi: 10.1109/SIPDA47030.2019.8951742 contributor: fullname: Lasta Fritzen – year: 2017 ident: mstad243abib154 article-title: Uncertainty analysis of an electric field mill calibration system contributor: fullname: Elizabeth Catherine – year: 2010 ident: mstad243abib63 article-title: Design and modeling of an optimized sensor for atmospheric electric field measurement doi: 10.1109/SAS.2010.5439402 contributor: fullname: Fort – start-page: pp 1 year: 1990 ident: mstad243abib152 article-title: Ieee guide for the measurement of DC electric-field strength and ion related quantities – volume: 41 start-page: 2851 year: 2013 ident: mstad243abib134 article-title: A nonperturbative electrooptic sensor for in situ electric discharge characterization publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2013.2257874 contributor: fullname: Gaborit – volume: 94 year: 2009 ident: mstad243abib148 article-title: Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.3152792 contributor: fullname: Garzarella – volume: 23 start-page: 9909 year: 2023 ident: mstad243abib45 article-title: Differential structure to improve performance of DC electric field sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3260216 contributor: fullname: Jinmeng – volume: 50 start-page: 465 year: 2001 ident: mstad243abib111 article-title: Lithium niobate sensor for measurement of DC electric fields publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.918167 contributor: fullname: Cecelja – ident: mstad243abib88 article-title: Manual—Panasonic Industrial Devices, Electrostatic Sensor EF-S1 SERIES – ident: mstad243abib85 article-title: Manual—Maschek, 3D H/E fieldmeter ESM 100 Produktdatenblatt – start-page: p 6 year: 2006 ident: mstad243abib67 article-title: A self-resonant MEMS-based electrostatic field sensor contributor: fullname: Lundberg – start-page: pp 901 year: 2005 ident: mstad243abib99 article-title: Electric field probing by incorporating Franz-Keldysh electroabsorption effect and optical-beam-induced-current technique contributor: fullname: Cheng – volume: 13 start-page: 619 year: 2022 ident: mstad243abib27 article-title: Design and testing of a non-contact MEMS voltage sensor based on single-crystal silicon piezoresistive effect publication-title: Micromachines doi: 10.3390/mi13040619 contributor: fullname: Li – volume: 132 start-page: 677 year: 2006 ident: mstad243abib70 article-title: Thermally driven micro-electrostatic fieldmeter publication-title: Sens. Actuators A doi: 10.1016/j.sna.2006.02.044 contributor: fullname: Chen – volume: 36 start-page: 4505 year: 1997 ident: mstad243abib16 article-title: Optical fiber sensor for electric field and electric charge using low-coherence, Fabry–Perot interferometry publication-title: Appl. Opt. doi: 10.1364/AO.36.004505 contributor: fullname: Priest – start-page: pp 585 year: 2018 ident: mstad243abib2 article-title: Expositionsbewertung in hochspannungsanlagen - numerische berechnungen der im körper induzierten elektrischen feldstärke für unterschiedliche praxisrelevante expositionsszenarien contributor: fullname: Hirtl – year: 2015 ident: mstad243abib15 contributor: fullname: Kluever – volume: 29 start-page: 5–1-5 year: 2002 ident: mstad243abib43 article-title: Twentieth century secular decrease in the atmospheric potential gradient publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL014878 contributor: fullname: Harrison – start-page: pp 1121 year: 2006 ident: mstad243abib68 article-title: A self-resonant MEMS-based electrostatic field sensor with 4V/m/Hz sensitivity contributor: fullname: Denison – volume: 7 year: 2020 ident: mstad243abib55 article-title: An array of low-cost, high-speed, autonomous electric field mills for thunderstorm research publication-title: Earth Space Sci. doi: 10.1029/2020EA001309 contributor: fullname: Antunes de Sá – volume: 57 start-page: 2746 year: 1986 ident: mstad243abib50 article-title: Eng. dc electric field meter with fiber-optic readout publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1139037 contributor: fullname: Johnston – volume: 107 year: 2020 ident: mstad243abib56 article-title: Fair weather electric field meter for atmospheric science platforms publication-title: J. Electrost. doi: 10.1016/j.elstat.2020.103489 contributor: fullname: Giles Harrison – year: 2020 ident: mstad243abib21 article-title: Microsensor for atmospheric electric fields doi: 10.5194/egusphere-egu2020-8562 contributor: fullname: Kainz – volume: 14 start-page: 1364 year: 2014 ident: mstad243abib117 article-title: Detection of energized structures with an electro-optic electric field sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2295004 contributor: fullname: Toney – volume: 21 start-page: 22536 year: 2021 ident: mstad243abib77 article-title: Enhanced sensitivity and stability of a novel resonant MEMS electric field sensor based on closed-loop feedback publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3107511 contributor: fullname: Liu – year: 1999 ident: mstad243abib49 contributor: fullname: Hill – volume: 2019 start-page: 2842 year: 2019 ident: mstad243abib155 article-title: Calibration of a sensor for an ion electric field under HVDC transmission lines publication-title: J. Eng. doi: 10.1049/joe.2018.8400 contributor: fullname: Mou – year: 2013 ident: mstad243abib130 contributor: fullname: Kaminow – volume: EI–22 start-page: 503 year: 1987 ident: mstad243abib101 article-title: Electric field measurement in liquid dielectrics using a combination of AC voltage modulation and a small retardation angle publication-title: IEEE Trans. Electr. Insul. doi: 10.1109/TEI.1987.298916 contributor: fullname: Maeno – volume: 51 start-page: 282 year: 2002 ident: mstad243abib112 article-title: Electro-optic sensor for measurement of DC fields in the presence of space charge publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.997825 contributor: fullname: Cecelja – year: 2017 ident: mstad243abib20 article-title: A Micromachined DC electric field sensor using a torsional micro mirror contributor: fullname: Liyanage – volume: 28 start-page: 18568 year: 2017 ident: mstad243abib136 article-title: Novel poly (aryl ether ketone) with electro-optic chromophore side chains for light modulators publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-017-7805-6 contributor: fullname: Zhou – volume: 6 start-page: 183 year: 2022 ident: mstad243abib146 article-title: An optical intense 2D electric field sensor using a single LiNO3 crystal publication-title: Curr. Opt. Photon. contributor: fullname: Zhang – volume: 7 start-page: 717 year: 2013 ident: mstad243abib157 article-title: Study on the field effects under reduced-scale DC/AC hybrid transmission lines publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2012.0407 contributor: fullname: Zhang – volume: 25 year: 2015 ident: mstad243abib29 article-title: A novel high-sensitivity electrostatic biased electric field sensor publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/9/095008 contributor: fullname: Huang – start-page: pp 1 year: 2007 ident: mstad243abib71 article-title: A self-resonant MEMS-based electrometer contributor: fullname: Denison – ident: mstad243abib84 article-title: Manual—Narda, ‘EFA-200/-300 EM Field Analyzer. Operating Manual – year: 2005 ident: mstad243abib69 article-title: A MEMS-based, high-resolutionelectric-field meter contributor: fullname: Sawa Shafran – volume: 362 year: 2023 ident: mstad243abib128 article-title: Design of a lithium niobate electric field sensor with improved sensitivity publication-title: Sens. Actuators A doi: 10.1016/j.sna.2023.114611 contributor: fullname: Zhang – volume: 46 start-page: 6636 year: 2007 ident: mstad243abib150 article-title: Responsivity optimization and stabilization in electro-optic field sensors publication-title: Appl. Opt. doi: 10.1364/AO.46.006636 contributor: fullname: Garzarella – volume: 26 start-page: 1178 year: 1990 ident: mstad243abib59 article-title: Two new designs of field mill type fieldmeters not requiring earthing of rotating chopper publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.62405 contributor: fullname: Chubb – volume: PAS-97 start-page: 1104 year: 1978 ident: mstad243abib83 article-title: Measurement of electric and magnetic fields from alternating current power lines publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1978.354590 contributor: fullname: General Systems Subcommittee – volume: 65 start-page: 608 year: 2018 ident: mstad243abib61 article-title: Model, design and testing of field mill sensors for measuring electric fields under high-voltage direct-current power lines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2719618 contributor: fullname: Cui – volume: 19 start-page: 17212 year: 2011 ident: mstad243abib115 article-title: Pockels effect based fully integrated, strained silicon electro-optic modulator publication-title: Opt. Express doi: 10.1364/OE.19.017212 contributor: fullname: Chmielak – volume: 14 start-page: 4173 year: 2020 ident: mstad243abib165 article-title: Ground-level DC electric field sensor for overhead HVDC/HVAC transmission lines in hybrid corridors publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2019.1413 contributor: fullname: Cui – volume: vol 1 start-page: pp 372 year: 1995 ident: mstad243abib98 article-title: Gallium-arsenide optically isolated electric field sensor for utility and pulsed power applications contributor: fullname: Mazzola – volume: 19 start-page: 2860 year: 2019 ident: mstad243abib107 article-title: Recent progress on electromagnetic field measurement based on optical sensors publication-title: Sensors doi: 10.3390/s19132860 contributor: fullname: Peng – ident: mstad243abib147 article-title: Manual - Seikoh-Giken - Isotropic Optical E-field Sensor Head – volume: 27 start-page: 401 year: 2012 ident: mstad243abib3 article-title: Electric field and ion current environment of HVdc transmission lines: comparison of calculations and measurements publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2011.2172003 contributor: fullname: Sarma Maruvada – volume: 40 start-page: 450 year: 2007 ident: mstad243abib113 article-title: Validation of electro-optic sensors for measurement of DC fields in the presence of space charge publication-title: Measurement doi: 10.1016/j.measurement.2006.06.003 contributor: fullname: Cecelja – year: 2018 ident: mstad243abib52 article-title: Manual - lw110 lightning warning system contributor: fullname: Campbell Scientific Inc – volume: vol 132 start-page: pp 195 year: 1985 ident: mstad243abib149 article-title: Measurement of DC electric fields using the electro-optic effect contributor: fullname: Robertson – volume: 65 start-page: 45 year: 2021 ident: mstad243abib8 article-title: Challenges in coupling atmospheric electricity with biological systems publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-020-01960-7 contributor: fullname: Hunting – start-page: pp 1 year: 2020 ident: mstad243abib82 article-title: IEEE standard procedures for measurement of power frequency electric and magnetic fields from AC power lines – volume: 70 start-page: 4359 year: 2023 ident: mstad243abib72 article-title: A single-chip 3-D electric field microsensor with piezoelectric excitation publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2023.3287815 contributor: fullname: Peng – volume: 29 year: 2018 ident: mstad243abib110 article-title: The working characteristics of electric field measurement based on the pockels effect for AC–DC hybrid fields publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aae4c8 contributor: fullname: He – volume: 184 start-page: 18 year: 2019 ident: mstad243abib41 article-title: A global atmospheric electricity monitoring network for climate and geophysical research publication-title: J. Atmos. Sol.-Terr. Phys. doi: 10.1016/j.jastp.2019.01.003 contributor: fullname: Nicoll – year: 2010 ident: mstad243abib53 contributor: fullname: Chubb – volume: 19 start-page: 1177 year: 2020 ident: mstad243abib97 article-title: 20 GHz antenna radiation pattern obtained from near-field mapping with electrooptic probe on a single plane publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2020.2994263 contributor: fullname: Gaborit – volume: 24 start-page: 482 year: 2009 ident: mstad243abib4 article-title: Analysis of electric field, ion flow density and corona loss of same-tower double-circuit HVDC lines using improved FEM publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2008.2007009 contributor: fullname: Liu – start-page: 9 year: 1997 ident: mstad243abib79 article-title: Capacitive sensors contributor: fullname: Baxter – volume: 62 start-page: 277 year: 2007 ident: mstad243abib51 article-title: Atmospheric electricity in different weather conditions publication-title: Weather doi: 10.1002/wea.97 contributor: fullname: Bennett – volume: 12 start-page: 17 year: 1996 ident: mstad243abib105 article-title: Progress in Japan of space charge field measurement in gaseous dielectrics using a pockels sensor publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/57.484105 contributor: fullname: Hidaka – volume: 39 start-page: 4985 year: 2000 ident: mstad243abib132 article-title: Two-dimensional electric-field vector measurement by a LiTaO3 electro-optic probe tip publication-title: Appl. Opt. doi: 10.1364/AO.39.004985 contributor: fullname: Kuo – year: 1999 ident: mstad243abib6 contributor: fullname: Council of the European Union – start-page: pp 1 year: 2013 ident: mstad243abib22 article-title: Mem electric field sensor using force deflection with capacitance interrogation contributor: fullname: Chen – volume: 12 start-page: 11406 year: 2012 ident: mstad243abib116 article-title: Development and application of integrated optical sensors for intense E-field measurement publication-title: Sensors doi: 10.3390/s120811406 contributor: fullname: Zeng – volume: 122 start-page: 6 year: 2019 ident: mstad243abib17 article-title: Noninvasive 3D field mapping of complex static electric fields publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.244801 contributor: fullname: Kainz – year: 1999 ident: mstad243abib47 contributor: fullname: Hill – ident: mstad243abib87 article-title: Manual—TREK Iinc, Trek Model 347 Electrostatic Voltmeter – volume: 8519 start-page: 11 year: 2012 ident: mstad243abib95 article-title: Advanced materials and device technology for photonic electric field sensors publication-title: Proc. SPIE doi: 10.1117/12.930740 contributor: fullname: Toney – year: 1997 ident: mstad243abib12 article-title: HVDC power transmission environmental issues review doi: 10.2172/580576 contributor: fullname: Bailey – volume: 35 start-page: 7 year: 1999 ident: mstad243abib124 article-title: An external electrooptic sampling technique based on the Fabry-Perot effect publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.737612 contributor: fullname: Muller – start-page: pp 19 year: 2014 ident: mstad243abib131 article-title: On the nature of surface discharges in silicone-gel: Prebreakdown discharges in cavities contributor: fullname: Sato – ident: mstad243abib57 article-title: Manual—Model GEO-EFM-100 electric field mill contributor: fullname: Geonica – volume: 677 year: 2019 ident: mstad243abib161 article-title: Research and design of rotary optical electric field sensor publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/677/5/052112 contributor: fullname: Liu – year: 2019 ident: mstad243abib60 article-title: Manual—JCI Electrostatic Instrumentation—The Measure of Static contributor: fullname: Dekra – start-page: pp 1468 year: 2015 ident: mstad243abib145 article-title: Packaged optical sensors for the electric field characterization in harsh environments contributor: fullname: Gaborit – start-page: pp 2114 year: 2019 ident: mstad243abib26 article-title: Improved reference-free vibration-suppressed optical MEMS electric field strength sensor contributor: fullname: Kainz – volume: 2 start-page: 120 year: 1979 ident: mstad243abib96 article-title: Optical measurement of current and voltage on power systems publication-title: IEE J. Electr. Power Appl. doi: 10.1049/ij-epa.1979.0019 contributor: fullname: Rogers – start-page: pp 1 year: 2017 ident: mstad243abib30 article-title: A sensitivity-enhanced electric field sensor with electrostatic field bias contributor: fullname: Xiaoming – year: 2015 ident: mstad243abib129 contributor: fullname: Hoffman – start-page: pp 307 year: 2017 ident: mstad243abib78 article-title: Design, fabrication and characterization of a single-chip three-dimensional electric field microsensor contributor: fullname: Ling – year: 1995 ident: mstad243abib158 article-title: Electric field mill for the simultaneous measurement of electric field strength and ion current diensity contributor: fullname: Sellars – volume: 54 year: 2020 ident: mstad243abib164 article-title: Large-dynamic-range athermal lithium niobite on insulator/TiO2 nanobeam electric field sensor publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/abcf73 contributor: fullname: Xinyu – volume: 59 start-page: 6237 year: 2020 ident: mstad243abib159 article-title: Optical DC electric field sensing based on the Pockels effect using bismuth germanate crystals publication-title: Appl. Opt. doi: 10.1364/AO.395797 contributor: fullname: Yansong – volume: 53 start-page: 5999 year: 1982 ident: mstad243abib160 article-title: A new method of electric field measurements in corona discharge using pockels device publication-title: J. Appl. Phys. doi: 10.1063/1.331568 contributor: fullname: Hidaka – volume: 203 start-page: 737 year: 2017 ident: mstad243abib7 article-title: The bee, the flower and the electric field: electric ecology and aerial electroreception publication-title: J. Comp. Physiol. A doi: 10.1007/s00359-017-1176-6 contributor: fullname: Clarke – volume: 28 start-page: 1306 year: 2013 ident: mstad243abib109 article-title: Directly high-voltage measuring system based on pockels effect publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2013.2250315 contributor: fullname: Kumada – volume: 17 start-page: 1042 year: 1999 ident: mstad243abib102 article-title: Optical fiber current sensors in high electric field environments publication-title: J. Lightwave Technol. doi: 10.1109/50.769306 contributor: fullname: Rose – start-page: pp 1 year: 2010 ident: mstad243abib143 article-title: Breakdown characteristics in oil/pressboard composite insulation system at HVDC polarity reversal contributor: fullname: Okubo – volume: 92 year: 1987 ident: mstad243abib39 article-title: Effect of E-field mill location on accuracy of electric field measurements with instrumented airplane publication-title: J. Geophys. Res. doi: 10.1029/JD092iD10p12013 contributor: fullname: Mazur – volume: 11 year: 2021 ident: mstad243abib127 article-title: Electro-optical measurement of intense electric field on a high energy pulsed power accelerator publication-title: Sci. Rep. doi: 10.1038/s41598-021-89851-8 contributor: fullname: Owens – volume: 1 start-page: 68 year: 2018 ident: mstad243abib24 article-title: Distortion-free measurement of electric field strength with a MEMS sensor publication-title: Nat. Electron. doi: 10.1038/s41928-017-0009-5 contributor: fullname: Kainz – volume: 5 year: 2015 ident: mstad243abib23 article-title: High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm publication-title: Sci. Rep. doi: 10.1038/srep15802 contributor: fullname: Zhu – volume: 62 start-page: 617 year: 1957 ident: mstad243abib40 article-title: Airborne measurement of atmospheric potential gradient publication-title: J. Geophys. Res. doi: 10.1029/JZ062i004p00617 contributor: fullname: Clark – volume: 4 start-page: 168 year: 2020 ident: mstad243abib138 article-title: Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00508K contributor: fullname: Xu – volume: 72 start-page: 1 year: 2023 ident: mstad243abib38 article-title: A sensor for 3-D component measurement of synthetic electric field vector in HVDC transmission lines using unidirectional motion publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3225047 contributor: fullname: Liu – volume: 4 start-page: 215 year: 2014 ident: mstad243abib118 article-title: Integrated optical waveguide sensor for lighting impulse electric field measurement publication-title: Photonic Sens. doi: 10.1007/s13320-014-0189-9 contributor: fullname: Zhang – start-page: pp 423 year: 2021 ident: mstad243abib75 article-title: A novel high sensitive mode-localization MEMS electric field sensor based on closed-loop feedback contributor: fullname: Wang – volume: 60 start-page: 2778 year: 2011 ident: mstad243abib46 article-title: Design, modeling and test of a system for atmospheric electric field measurement publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2130010 contributor: fullname: Fort – year: 2012 ident: mstad243abib156 article-title: Calibration of field-mill instrument for measuring DC electric field doi: 10.1109/ICHVE.2012.6357031 contributor: fullname: Zhang – ident: mstad243abib122 article-title: Manual—Photonic Electric Field Sensor System Model 200-04 contributor: fullname: SRICO – volume: 24 start-page: 184 year: 2023 ident: mstad243abib18 article-title: Micro-cantilever electric field sensor driven by electrostatic force publication-title: Engineering doi: 10.1016/j.eng.2022.06.017 contributor: fullname: Han – volume: 40 start-page: 2577 year: 2021 ident: mstad243abib139 article-title: Miniature micro-ring resonator sensor with electro-optic polymer cladding for wide-band electric field measurement publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3139375 contributor: fullname: Luo – volume: 49 year: 2022 ident: mstad243abib11 article-title: Ionic charge emission into fog from a remotely piloted aircraft publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL099827 contributor: fullname: Giles Harrison – volume: 24 start-page: 1245 year: 2007 ident: mstad243abib36 article-title: A low-noise, microprocessor-controlled, internally digitizing rotating-vane electric field mill for airborne platforms publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH2039.1 contributor: fullname: Bateman – year: 1987 ident: mstad243abib34 article-title: AC and DC Etectric Field Meters Developed for the US contributor: fullname: Kirkham – volume: vol 1 start-page: pp 255 year: 2017 ident: mstad243abib140 article-title: Measurement of AC electric field in transformer oil using kerr effect contributor: fullname: Kondo – volume: 44 start-page: 6407 year: 2017 ident: mstad243abib44 article-title: Evaluating stratiform cloud base charge remotely publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073128 contributor: fullname: Giles Harrison – start-page: pp 116 year: 2015 ident: mstad243abib62 article-title: Atmospheric electric field measurement advances in southern peninsular Malaysia contributor: fullname: Shahroom – volume: 9 start-page: 61 year: 2009 ident: mstad243abib126 article-title: Fully automated E-field measurement system using pigtailed electro-optic sensors for temperature-dependent-free measurements of microwave signals in outdoors conditions publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2008.2010367 contributor: fullname: Bernier – volume: 26 start-page: 2353 year: 2014 ident: mstad243abib119 article-title: 3D integrated optical E-field sensor for lightning electromagnetic impulse measurement publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2014.2355209 contributor: fullname: Zhang – volume: 19 start-page: 2692 year: 2002 ident: mstad243abib94 article-title: Electro-optic sensors for electric field measurements. i. theoretical comparison among different modulation techniques publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.19.002692 contributor: fullname: Duvillaret – volume: 123-124 start-page: 179 year: 2005 ident: mstad243abib32 article-title: Electric field sensor using electrostatic force deflection of a micro-spring supported membrane publication-title: Sens. Actuators A doi: 10.1016/j.sna.2005.02.018 contributor: fullname: Roncin – volume: 91 year: 2020 ident: mstad243abib151 article-title: AC/DC hybrid electric field measurement method based on Pockels effect and electric field modulation publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5143767 contributor: fullname: Yang – volume: 29 start-page: 70-1–70 year: 2002 ident: mstad243abib42 article-title: Universal spectra of electric field pulsations in the atmosphere publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL015765 contributor: fullname: Anisimov – volume: 23 start-page: 13917 year: 2023 ident: mstad243abib73 article-title: A resonant electrostatic field microsensor with self-compensation for sensitivity drift publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3264973 contributor: fullname: Chu – volume: 1 start-page: 31 year: 2015 ident: mstad243abib54 article-title: Impact factors in calibration and application of field mill for measurement of DC electric field with space charges publication-title: CSEE J. Power Energy Syst. doi: 10.17775/CSEEJPES.2015.00032 contributor: fullname: Zhang – year: 2004 ident: mstad243abib31 contributor: fullname: Roncin – volume: 0718 start-page: 48 year: 1987 ident: mstad243abib114 article-title: Fiber Optic Electric Field Sensor Technology publication-title: Proc. SPIE doi: 10.1117/12.937498 contributor: fullname: Jarzynski – volume: 21 start-page: 13405 year: 2021 ident: mstad243abib10 article-title: Toward atmospheric electricity research: a low-cost, highly sensitive and robust balloon-borne electric field sounding sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3070130 contributor: fullname: Wen – volume: 113 year: 2018 ident: mstad243abib25 article-title: Passive optomechanical electric field strength sensor with built-in vibration suppression publication-title: Appl. Phys. Lett. doi: 10.1063/1.5045614 contributor: fullname: Kainz – ident: mstad243abib86 article-title: Manual—Wavecontrol, WP400 Probe Datasheet |
SSID | ssj0007099 |
Score | 2.4849603 |
Snippet | Abstract
Due to the necessary transition to renewable energy, the transport of electricity over long distances will become increasingly important, since the... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 52001 |
Title | Review on sensors for electric fields near power transmission systems |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9NAFB_WLoIXsVVx1ZU57MFSxiYzk48eZalUoatgC72FzmSiOWwqJnvpX7_vzUzSqBWslxBCeSR9P37vzfsk5IobDl63CFluAsWkUIopHRgGPJhzlYALG2Oj8PImXqzlp020OWR0bXdJo97p_dG-kv_RKjwDvWKX7Ama7YTCA7gH_cIVNAzXf9Kxn4oPCqzhNIprc-wAb7vZptQTW51WTyo7zhq3oeFCiKoGzWKIzA9xrvvu6fIQMZy0DT-IjeaPAPwCMw2Yg9h3VXqWt7dltf81RGrKbzhIy9Ful1f6qr_flm5fdT_wwOWhzK-LICYMTL7jJ-P4U8QhA6cv7BOsm0figRT12BJHPoVHeRy4D0MKrTQ0WDmXome12kz9b8asKzG0yfU0zVBGhjIyJ-EBOefASUiGHz9_6Yx2Esz8WEb3TT6jDRKm3VtMnYSeB9NzRVZPyGN_hqDvHSCG5MxUI_LQ1vLqekSGnq9r-tYPFR8_JXOHFbqrqMcKBazQFivUYYUiVqjFCu1jhXqsPCPrD_PV9YL5FRpM8zRqmMmFjtJQhMoUsZlhXlZrsU2LKFGRToSJZ3Aeho8KA1PkItZcKZ4onfKCB1Jx8ZwMql1lXhAq8wCkFTMp-Ra8viQtCikVZmm3Mg0KcUHG7d-S_XCTUrK_KeHlCb99RR4d0PeaDJqfd-YSHMFGvbEqvAeh9FtJ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+sensors+for+electric+fields+near+power+transmission+systems&rft.jtitle=Measurement+science+%26+technology&rft.au=Hortschitz%2C+W&rft.au=Kainz%2C+A&rft.au=Beigelbeck%2C+R&rft.au=Schmid%2C+G&rft.date=2024-05-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=5&rft.spage=52001&rft_id=info:doi/10.1088%2F1361-6501%2Fad243a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad243a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |