MLNet: multichannel feature fusion lozenge network for land segmentation

The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolu...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 16; no. 1; p. 016513
Main Authors Gao, Jiahong, Weng, Liguo, Xia, Min, Lin, Haifeng
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2022
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.16.016513

Cover

Loading…
Abstract The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolutional neural networks are widely used in many image semantic segmentation tasks, but existing models often use simple accumulation of various convolutional layers or the direct stacking of interfeature reuse of up- and downsampling, the network very heavy. To improve the accuracy of land cover segmentation, we propose a multichannel feature fusion lozenge network. The multichannel feature fusion lozenge network (MLNet) is a three-sided network composed of three branches: one branch uses different levels of feature indexes to sample to maintain the integrity of high-frequency information; one branch focuses on contextual information and strengthens the compatibility of information within and between classes; and the last branch uses feature integration to filter redundant information based on multiresolution segmentation to extract key features. Compared with FCN, UNet, PSP, and other serial single road computing models, the MLNet, which performs feature fusion after three-way parallelism structure, can significantly improve the accuracy with only small increase in complexity. Experimental results show that the average accuracy of 85.30% is obtained on the land cover data set, which is much higher than that of 82.98% of FCN, 81.87% of UNet, 77.52% of SegNet, and 83.09% of EspNet, which proves the effectiveness of the model.
AbstractList The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolutional neural networks are widely used in many image semantic segmentation tasks, but existing models often use simple accumulation of various convolutional layers or the direct stacking of interfeature reuse of up- and downsampling, the network very heavy. To improve the accuracy of land cover segmentation, we propose a multichannel feature fusion lozenge network. The multichannel feature fusion lozenge network (MLNet) is a three-sided network composed of three branches: one branch uses different levels of feature indexes to sample to maintain the integrity of high-frequency information; one branch focuses on contextual information and strengthens the compatibility of information within and between classes; and the last branch uses feature integration to filter redundant information based on multiresolution segmentation to extract key features. Compared with FCN, UNet, PSP, and other serial single road computing models, the MLNet, which performs feature fusion after three-way parallelism structure, can significantly improve the accuracy with only small increase in complexity. Experimental results show that the average accuracy of 85.30% is obtained on the land cover data set, which is much higher than that of 82.98% of FCN, 81.87% of UNet, 77.52% of SegNet, and 83.09% of EspNet, which proves the effectiveness of the model.
Author Weng, Liguo
Xia, Min
Lin, Haifeng
Gao, Jiahong
Author_xml – sequence: 1
  givenname: Jiahong
  surname: Gao
  fullname: Gao, Jiahong
  email: 2730013753@qq.com
  organization: Nanjing University of Information Science and Technology, B-DAT, Nanjing, China
– sequence: 2
  givenname: Liguo
  orcidid: 0000-0003-3734-3114
  surname: Weng
  fullname: Weng, Liguo
  email: 002311@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing, China
– sequence: 3
  givenname: Min
  orcidid: 0000-0003-4681-9129
  surname: Xia
  fullname: Xia, Min
  email: xiamin@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology, B-DAT, Nanjing, China
– sequence: 4
  givenname: Haifeng
  surname: Lin
  fullname: Lin, Haifeng
  email: haifeng.lin@njfu.edu.cn
  organization: Nanjing Forestry University, College of Information Science and Technology, Nanjing, China
BookMark eNp9kMtOwzAURC0EEm1hzdYfQFLfOH6EHaqAggpIPNaW69olJXUq2xGCrycoLBASrO5dzBnNzBjt-9ZbhE6A5AAgppDfPDzmwHMCnAHdQyOoKGQUKrb_4z9E4xg3hDAqpRih-e3izqYzvO2aVJsX7b1tsLM6dcFi18W69bhpP6xfW-xtemvDK3ZtwI32Kxztemt90qlXHaEDp5toj7_vBD1fXjzN5tni_up6dr7ITCFZygxdaVIRSbRwxppKF30yzmW50qLU0i2J5rwCVgpKmaRV30UsoQBdFkYYR-gEscHXhDbGYJ0y9ZAgBV03Coj6mkOB6udQwNUwR89Nf3G7UG91eP-HOB2IuKut2rRd8H2xP-WffIFxuQ
CitedBy_id crossref_primary_10_1016_j_patcog_2024_111048
crossref_primary_10_1109_JSTARS_2022_3224081
crossref_primary_10_3390_rs15041055
crossref_primary_10_1016_j_engappai_2023_106324
crossref_primary_10_1016_j_jag_2023_103206
crossref_primary_10_3390_app13095649
crossref_primary_10_3390_rs15061664
crossref_primary_10_1109_JSTARS_2022_3181303
crossref_primary_10_1080_01431161_2022_2073795
crossref_primary_10_3390_rs15174186
crossref_primary_10_1080_01431161_2023_2190471
crossref_primary_10_1109_JSTARS_2023_3347595
crossref_primary_10_3390_su15064695
crossref_primary_10_3390_rs14205209
crossref_primary_10_3390_rs15164005
crossref_primary_10_3390_rs15112880
crossref_primary_10_3390_rs16203818
crossref_primary_10_3390_jmse11050949
crossref_primary_10_3390_rs15061536
crossref_primary_10_3390_su15043034
crossref_primary_10_3390_machines11060653
crossref_primary_10_1016_j_engappai_2023_106196
crossref_primary_10_1007_s13042_023_01864_z
crossref_primary_10_3390_app13031493
crossref_primary_10_3390_rs14236156
crossref_primary_10_3390_rs15092237
crossref_primary_10_3390_rs16122222
crossref_primary_10_3390_rs15153896
crossref_primary_10_1109_TGRS_2023_3276703
crossref_primary_10_3390_app12125784
crossref_primary_10_3390_app13053287
crossref_primary_10_1109_TGRS_2023_3325324
crossref_primary_10_1080_01431161_2024_2411069
crossref_primary_10_3390_app13052998
crossref_primary_10_1109_TGRS_2023_3283435
crossref_primary_10_3390_ijgi11070390
crossref_primary_10_1109_JSTARS_2023_3295729
crossref_primary_10_3390_s24113405
crossref_primary_10_1016_j_engappai_2024_108960
crossref_primary_10_3390_s23062922
crossref_primary_10_1007_s00521_024_09477_5
crossref_primary_10_1109_JSTARS_2023_3314847
crossref_primary_10_3390_rs15112810
crossref_primary_10_3390_s22145259
crossref_primary_10_1109_JSTARS_2023_3238720
crossref_primary_10_3390_ijgi12060247
ContentType Journal Article
Copyright 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.16.016513
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 016513
ExternalDocumentID 10_1117_1_JRS_16_016513
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42075130
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R
29J
5GY
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ
M4X
O9-
RNS
SPBNH
UT2
0R~
AAYXX
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
ID FETCH-LOGICAL-c285t-c3da09080a7fcec9a21936684da74a8fb0a66915473358391657b121a42c7cf03
ISSN 1931-3195
IngestDate Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 04:10:00 EDT 2025
Sun Apr 03 14:13:54 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lozenge net
extract key features
three-sided network
land cover
multiresolution segmentation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-c3da09080a7fcec9a21936684da74a8fb0a66915473358391657b121a42c7cf03
ORCID 0000-0003-3734-3114
0000-0003-4681-9129
PageCount 1
ParticipantIDs crossref_citationtrail_10_1117_1_JRS_16_016513
crossref_primary_10_1117_1_JRS_16_016513
spie_journals_10_1117_1_JRS_16_016513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2022
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
SSID ssj0053887
Score 2.4579544
Snippet The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 016513
Title MLNet: multichannel feature fusion lozenge network for land segmentation
URI http://www.dx.doi.org/10.1117/1.JRS.16.016513
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wAvaHyJwUB-AAmpSqidxE54m_gqUzsktom-RY572SJ1SUXbl_0z_KucYyfNRisNXqLoek6b3C--8_V3Z0Le5EqHgFOjp_ks9MKcxV4mAuHNIJTZUIssFqY4eXIiRufh8TSa9nq_O6yl9Srz9fXWupL_sSrK0K6mSvYfLNteFAV4jvbFI1oYj3ey8WR8AnVqr6YFmhreEuaDHOpmnYN8bTJhg3l1bZirg9ISvmte4bxOl8PFlas8KnfEqMrFqL8ALQo4olw2rs5wdpT926ZQl9VG-hPs9DEuLtZVI5xaTu6k2DCAbPOCkSpycINd8oHzW8mHhllq6HqX1aryvi9sBv5b3f62vYm2uWInAYmRI0MPYLfY9GGLrJmfxV84tJOtqcSyhazOdW8EWxxD3VrAP_5x6jPhd4fe6LZt10QyZSlqpkykVvMe2eO4DuF9snf0aTI-bZw9uot6D8b2h7vuUXiJ97e-7Ebg018uCugEMmf75KGzLj2ycHpEelA-Jve_gutd_oSMalh9oF1QUQcqakFFHaioAxVFUFEDKtoF1VNy_uXz2ceR5zbcwDc1jlaeDmZqmOAaQslcg04UurNAiDicKRmqOM-GSoiEme2qgyg2JduRzBhnKuRa6nwYPCP9sirhOaEBfsC04hJX6Bj_cBUGkGSonoOMEiEPiN88jVS7bvRmU5R5usMCB-RdO2BhG7HsVn1rHm_q3tTlLr0Xd9R7SR5ssH9I-ohseIWh6Cp77eDwB00ahd0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLNet%3A+multichannel+feature+fusion+lozenge+network+for+land+segmentation&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Gao%2C+Jiahong&rft.au=Weng%2C+Liguo&rft.au=Xia%2C+Min&rft.au=Lin%2C+Haifeng&rft.date=2022-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=16&rft.issue=1&rft.spage=016513&rft.epage=016513&rft_id=info:doi/10.1117%2F1.JRS.16.016513&rft.externalDocID=10_1117_1_JRS_16_016513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon