MLNet: multichannel feature fusion lozenge network for land segmentation
The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolu...
Saved in:
Published in | Journal of applied remote sensing Vol. 16; no. 1; p. 016513 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3195 1931-3195 |
DOI | 10.1117/1.JRS.16.016513 |
Cover
Loading…
Abstract | The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolutional neural networks are widely used in many image semantic segmentation tasks, but existing models often use simple accumulation of various convolutional layers or the direct stacking of interfeature reuse of up- and downsampling, the network very heavy. To improve the accuracy of land cover segmentation, we propose a multichannel feature fusion lozenge network. The multichannel feature fusion lozenge network (MLNet) is a three-sided network composed of three branches: one branch uses different levels of feature indexes to sample to maintain the integrity of high-frequency information; one branch focuses on contextual information and strengthens the compatibility of information within and between classes; and the last branch uses feature integration to filter redundant information based on multiresolution segmentation to extract key features. Compared with FCN, UNet, PSP, and other serial single road computing models, the MLNet, which performs feature fusion after three-way parallelism structure, can significantly improve the accuracy with only small increase in complexity. Experimental results show that the average accuracy of 85.30% is obtained on the land cover data set, which is much higher than that of 82.98% of FCN, 81.87% of UNet, 77.52% of SegNet, and 83.09% of EspNet, which proves the effectiveness of the model. |
---|---|
AbstractList | The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and higher, and the span of time and space is getting larger and larger, therefore segmenting target objects enconter great difficulties. Convolutional neural networks are widely used in many image semantic segmentation tasks, but existing models often use simple accumulation of various convolutional layers or the direct stacking of interfeature reuse of up- and downsampling, the network very heavy. To improve the accuracy of land cover segmentation, we propose a multichannel feature fusion lozenge network. The multichannel feature fusion lozenge network (MLNet) is a three-sided network composed of three branches: one branch uses different levels of feature indexes to sample to maintain the integrity of high-frequency information; one branch focuses on contextual information and strengthens the compatibility of information within and between classes; and the last branch uses feature integration to filter redundant information based on multiresolution segmentation to extract key features. Compared with FCN, UNet, PSP, and other serial single road computing models, the MLNet, which performs feature fusion after three-way parallelism structure, can significantly improve the accuracy with only small increase in complexity. Experimental results show that the average accuracy of 85.30% is obtained on the land cover data set, which is much higher than that of 82.98% of FCN, 81.87% of UNet, 77.52% of SegNet, and 83.09% of EspNet, which proves the effectiveness of the model. |
Author | Weng, Liguo Xia, Min Lin, Haifeng Gao, Jiahong |
Author_xml | – sequence: 1 givenname: Jiahong surname: Gao fullname: Gao, Jiahong email: 2730013753@qq.com organization: Nanjing University of Information Science and Technology, B-DAT, Nanjing, China – sequence: 2 givenname: Liguo orcidid: 0000-0003-3734-3114 surname: Weng fullname: Weng, Liguo email: 002311@nuist.edu.cn organization: Nanjing University of Information Science and Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing, China – sequence: 3 givenname: Min orcidid: 0000-0003-4681-9129 surname: Xia fullname: Xia, Min email: xiamin@nuist.edu.cn organization: Nanjing University of Information Science and Technology, B-DAT, Nanjing, China – sequence: 4 givenname: Haifeng surname: Lin fullname: Lin, Haifeng email: haifeng.lin@njfu.edu.cn organization: Nanjing Forestry University, College of Information Science and Technology, Nanjing, China |
BookMark | eNp9kMtOwzAURC0EEm1hzdYfQFLfOH6EHaqAggpIPNaW69olJXUq2xGCrycoLBASrO5dzBnNzBjt-9ZbhE6A5AAgppDfPDzmwHMCnAHdQyOoKGQUKrb_4z9E4xg3hDAqpRih-e3izqYzvO2aVJsX7b1tsLM6dcFi18W69bhpP6xfW-xtemvDK3ZtwI32Kxztemt90qlXHaEDp5toj7_vBD1fXjzN5tni_up6dr7ITCFZygxdaVIRSbRwxppKF30yzmW50qLU0i2J5rwCVgpKmaRV30UsoQBdFkYYR-gEscHXhDbGYJ0y9ZAgBV03Coj6mkOB6udQwNUwR89Nf3G7UG91eP-HOB2IuKut2rRd8H2xP-WffIFxuQ |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_111048 crossref_primary_10_1109_JSTARS_2022_3224081 crossref_primary_10_3390_rs15041055 crossref_primary_10_1016_j_engappai_2023_106324 crossref_primary_10_1016_j_jag_2023_103206 crossref_primary_10_3390_app13095649 crossref_primary_10_3390_rs15061664 crossref_primary_10_1109_JSTARS_2022_3181303 crossref_primary_10_1080_01431161_2022_2073795 crossref_primary_10_3390_rs15174186 crossref_primary_10_1080_01431161_2023_2190471 crossref_primary_10_1109_JSTARS_2023_3347595 crossref_primary_10_3390_su15064695 crossref_primary_10_3390_rs14205209 crossref_primary_10_3390_rs15164005 crossref_primary_10_3390_rs15112880 crossref_primary_10_3390_rs16203818 crossref_primary_10_3390_jmse11050949 crossref_primary_10_3390_rs15061536 crossref_primary_10_3390_su15043034 crossref_primary_10_3390_machines11060653 crossref_primary_10_1016_j_engappai_2023_106196 crossref_primary_10_1007_s13042_023_01864_z crossref_primary_10_3390_app13031493 crossref_primary_10_3390_rs14236156 crossref_primary_10_3390_rs15092237 crossref_primary_10_3390_rs16122222 crossref_primary_10_3390_rs15153896 crossref_primary_10_1109_TGRS_2023_3276703 crossref_primary_10_3390_app12125784 crossref_primary_10_3390_app13053287 crossref_primary_10_1109_TGRS_2023_3325324 crossref_primary_10_1080_01431161_2024_2411069 crossref_primary_10_3390_app13052998 crossref_primary_10_1109_TGRS_2023_3283435 crossref_primary_10_3390_ijgi11070390 crossref_primary_10_1109_JSTARS_2023_3295729 crossref_primary_10_3390_s24113405 crossref_primary_10_1016_j_engappai_2024_108960 crossref_primary_10_3390_s23062922 crossref_primary_10_1007_s00521_024_09477_5 crossref_primary_10_1109_JSTARS_2023_3314847 crossref_primary_10_3390_rs15112810 crossref_primary_10_3390_s22145259 crossref_primary_10_1109_JSTARS_2023_3238720 crossref_primary_10_3390_ijgi12060247 |
ContentType | Journal Article |
Copyright | 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) |
Copyright_xml | – notice: 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JRS.16.016513 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1931-3195 |
EndPage | 016513 |
ExternalDocumentID | 10_1117_1_JRS_16_016513 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42075130 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R 29J 5GY ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ M4X O9- RNS SPBNH UT2 0R~ AAYXX ABJNI ACGFO ADMLS AKROS CITATION HZ~ |
ID | FETCH-LOGICAL-c285t-c3da09080a7fcec9a21936684da74a8fb0a66915473358391657b121a42c7cf03 |
ISSN | 1931-3195 |
IngestDate | Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 04:10:00 EDT 2025 Sun Apr 03 14:13:54 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | lozenge net extract key features three-sided network land cover multiresolution segmentation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-c3da09080a7fcec9a21936684da74a8fb0a66915473358391657b121a42c7cf03 |
ORCID | 0000-0003-3734-3114 0000-0003-4681-9129 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1117_1_JRS_16_016513 crossref_primary_10_1117_1_JRS_16_016513 spie_journals_10_1117_1_JRS_16_016513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied remote sensing |
PublicationTitleAlternate | J. Appl. Remote Sens |
PublicationYear | 2022 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
SSID | ssj0053887 |
Score | 2.4579544 |
Snippet | The use of remote sensing images for land cover analysis has broad prospects. At present, the resolution of aerial remote sensing images is getting higher and... |
SourceID | crossref spie |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 016513 |
Title | MLNet: multichannel feature fusion lozenge network for land segmentation |
URI | http://www.dx.doi.org/10.1117/1.JRS.16.016513 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wAvaHyJwUB-AAmpSqidxE54m_gqUzsktom-RY572SJ1SUXbl_0z_KucYyfNRisNXqLoek6b3C--8_V3Z0Le5EqHgFOjp_ks9MKcxV4mAuHNIJTZUIssFqY4eXIiRufh8TSa9nq_O6yl9Srz9fXWupL_sSrK0K6mSvYfLNteFAV4jvbFI1oYj3ey8WR8AnVqr6YFmhreEuaDHOpmnYN8bTJhg3l1bZirg9ISvmte4bxOl8PFlas8KnfEqMrFqL8ALQo4olw2rs5wdpT926ZQl9VG-hPs9DEuLtZVI5xaTu6k2DCAbPOCkSpycINd8oHzW8mHhllq6HqX1aryvi9sBv5b3f62vYm2uWInAYmRI0MPYLfY9GGLrJmfxV84tJOtqcSyhazOdW8EWxxD3VrAP_5x6jPhd4fe6LZt10QyZSlqpkykVvMe2eO4DuF9snf0aTI-bZw9uot6D8b2h7vuUXiJ97e-7Ebg018uCugEMmf75KGzLj2ycHpEelA-Jve_gutd_oSMalh9oF1QUQcqakFFHaioAxVFUFEDKtoF1VNy_uXz2ceR5zbcwDc1jlaeDmZqmOAaQslcg04UurNAiDicKRmqOM-GSoiEme2qgyg2JduRzBhnKuRa6nwYPCP9sirhOaEBfsC04hJX6Bj_cBUGkGSonoOMEiEPiN88jVS7bvRmU5R5usMCB-RdO2BhG7HsVn1rHm_q3tTlLr0Xd9R7SR5ssH9I-ohseIWh6Cp77eDwB00ahd0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLNet%3A+multichannel+feature+fusion+lozenge+network+for+land+segmentation&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Gao%2C+Jiahong&rft.au=Weng%2C+Liguo&rft.au=Xia%2C+Min&rft.au=Lin%2C+Haifeng&rft.date=2022-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=16&rft.issue=1&rft.spage=016513&rft.epage=016513&rft_id=info:doi/10.1117%2F1.JRS.16.016513&rft.externalDocID=10_1117_1_JRS_16_016513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |