Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors
Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of...
Saved in:
Published in | Applied physics letters Vol. 105; no. 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
15.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼105 at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices. |
---|---|
AbstractList | Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices. Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼105 at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices. |
Author | Ji, Rongbin Yu, Ruiyun Tai, Yunjian Yuan, Jun Zhao, Jianhong Zhao, Jun Xiang, Jinzhong Song, Liyuan Tang, Libin |
Author_xml | – sequence: 1 givenname: Jianhong surname: Zhao fullname: Zhao, Jianhong – sequence: 2 givenname: Libin surname: Tang fullname: Tang, Libin – sequence: 3 givenname: Jinzhong surname: Xiang fullname: Xiang, Jinzhong – sequence: 4 givenname: Rongbin surname: Ji fullname: Ji, Rongbin – sequence: 5 givenname: Jun surname: Yuan fullname: Yuan, Jun – sequence: 6 givenname: Jun surname: Zhao fullname: Zhao, Jun – sequence: 7 givenname: Ruiyun surname: Yu fullname: Yu, Ruiyun – sequence: 8 givenname: Yunjian surname: Tai fullname: Tai, Yunjian – sequence: 9 givenname: Liyuan surname: Song fullname: Song, Liyuan |
BackLink | https://www.osti.gov/biblio/22303493$$D View this record in Osti.gov |
BookMark | eNptkEtLQzEQhYNUsK0u_AcXXAm9bR5NcuNOii8QdKELVyFNpvaWNrlNUsF_b7QFQVwNM3xz5swZoJ4PHhA6J3hMsGATMp42SlDZHKE-wVLWjJCmh_oYY1YLxckJGqS0Ki2njPXR22y5DrH1ULnQgaveo-mWUNrtzvi825RxTlfVc4TORJPb4EdVFwsacwtpVBnvqm4ZcvgI62xaWznIYHOI6RQdL8w6wdmhDtHr7c3L7L5-fLp7mF0_1pY2PNeWWSPMVAJnkmOsmqlTjjtL1AJLcI4rIZqFEsAdSJjPqXSNIUAb6jijxLIhutjrhpRbnWxb7i9t8L7Y0JQyzKaK_VLF_HYHKetV2EVfjGlKqOBcSiUKNdlTNoaUIix0kfv5OkfTrjXB-jtlTfQh5bJx-Weji-3GxM9_2C-yMX4s |
CitedBy_id | crossref_primary_10_1063_5_0049183 crossref_primary_10_1039_C5RA02358K crossref_primary_10_1038_s41598_017_10534_4 crossref_primary_10_1021_acs_jpcc_5b05935 crossref_primary_10_1021_acssuschemeng_9b02193 crossref_primary_10_1016_j_jwpe_2021_102249 crossref_primary_10_1016_j_flatc_2022_100454 crossref_primary_10_1364_OME_9_000339 crossref_primary_10_3390_nano8090635 crossref_primary_10_1021_acsami_1c01879 crossref_primary_10_1039_C7NR07639H crossref_primary_10_3390_nano6110198 crossref_primary_10_1016_j_jallcom_2021_161561 crossref_primary_10_1007_s10008_016_3221_8 crossref_primary_10_1016_j_carbon_2020_11_092 crossref_primary_10_1016_j_snb_2018_03_109 crossref_primary_10_1016_j_nantod_2023_101837 crossref_primary_10_1016_j_diamond_2020_107913 crossref_primary_10_3390_cryst13060983 crossref_primary_10_1016_j_cej_2018_12_131 crossref_primary_10_1007_s11051_021_05154_z crossref_primary_10_1016_j_diamond_2022_109229 crossref_primary_10_1039_C7NJ01989K crossref_primary_10_1016_j_ccr_2023_215270 crossref_primary_10_1016_j_saa_2019_117659 crossref_primary_10_1016_j_apsusc_2021_149195 crossref_primary_10_1016_j_chemosphere_2024_143604 crossref_primary_10_1039_C7EN00179G crossref_primary_10_1002_er_5889 crossref_primary_10_1039_D3NR05842E crossref_primary_10_1021_acsami_9b03194 crossref_primary_10_1016_j_electacta_2018_11_162 crossref_primary_10_1002_aenm_201901341 crossref_primary_10_1002_cjoc_202200337 crossref_primary_10_1016_j_aca_2023_341430 crossref_primary_10_1016_j_mtchem_2018_09_007 crossref_primary_10_1016_j_jphotochem_2018_09_014 crossref_primary_10_1039_C8TB00428E crossref_primary_10_1016_j_bios_2017_03_032 crossref_primary_10_1088_2053_1591_aaf913 crossref_primary_10_1016_j_aca_2020_11_054 crossref_primary_10_1063_1_4984238 crossref_primary_10_1016_j_carbon_2023_118341 crossref_primary_10_1016_j_heliyon_2024_e34387 crossref_primary_10_1063_1_4907260 crossref_primary_10_1002_cssc_201700910 crossref_primary_10_1039_C5NR07579C crossref_primary_10_1039_D0RA04549G crossref_primary_10_1016_j_optmat_2018_06_040 crossref_primary_10_1016_S1872_5805_22_60639_5 crossref_primary_10_1149_1945_7111_aca99d crossref_primary_10_1021_acssuschemeng_7b02852 crossref_primary_10_1166_jnn_2021_19306 crossref_primary_10_1149_2162_8777_ac7dc7 crossref_primary_10_3390_nano15060459 crossref_primary_10_1039_C9TB02468A crossref_primary_10_1142_S0219581X23300092 crossref_primary_10_1016_j_jcis_2021_05_034 crossref_primary_10_1016_j_msec_2020_110651 crossref_primary_10_1016_j_mtchem_2023_101769 crossref_primary_10_1088_2752_5724_ad08cb crossref_primary_10_1021_acs_est_8b05866 crossref_primary_10_1080_1061186X_2018_1437920 |
Cites_doi | 10.1038/nmat1849 10.1039/c0jm02910f 10.1021/ja2036749 10.1039/c2jm35305a 10.1038/nature01217 10.1021/cr940472u 10.1016/j.matlet.2012.11.029 10.1021/nl2038979 10.1002/anie.200906623 10.1063/1.3533021 10.1039/c1nj20658c 10.1002/chem.201201043 10.1103/PhysRevB.79.125411 10.1021/ja01008a016 10.1039/c2ee22982j 10.1039/c2cc35559k 10.1021/nl101474d 10.1126/science.1154663 10.1002/adma.200902825 10.1103/PhysRevB.77.235411 10.1002/ppsc.201300252 10.1063/1.4776651 10.1038/nmat2378 10.1002/adma.201003819 10.1021/nl9040912 10.1021/ja050124h 10.1038/nnano.2010.132 10.1039/c0jm02922j 10.1038/nnano.2008.67 10.1126/science.1130681 10.1016/S1386-9477(02)00374-0 10.1002/ppsc.201200131 10.1016/j.apsusc.2014.02.028 10.1021/ja0722224 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4896278 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22303493 10_1063_1_4896278 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UCJ UE8 |
ID | FETCH-LOGICAL-c285t-c3ca6a47e537500984d9d5dc19f07edd59668f96e5de7ebb27d8a1e282d5321c3 |
ISSN | 0003-6951 |
IngestDate | Thu May 18 18:21:07 EDT 2023 Sun Jun 29 13:26:30 EDT 2025 Tue Jul 01 04:19:13 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-c3ca6a47e537500984d9d5dc19f07edd59668f96e5de7ebb27d8a1e282d5321c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2126557796 |
PQPubID | 2050678 |
ParticipantIDs | osti_scitechconnect_22303493 proquest_journals_2126557796 crossref_citationtrail_10_1063_1_4896278 crossref_primary_10_1063_1_4896278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-15 20140915 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023062314515949100_c13a) 2008; 320 (2023062314515949100_c26a) 1968; 90 (2023062314515949100_c1) 2012; 5 (2023062314515949100_c24) 2012; 22 (2023062314515949100_c6) 2011; 23 (2023062314515949100_c17d) 2005; 127 (2023062314515949100_c17a) 2008; 77 (2023062314515949100_c22a) 2011; 21 (2023062314515949100_c3) 2010; 49 (2023062314515949100_c13b) 2010; 10 (2023062314515949100_c15a) 2012; 18 (2023062314515949100_c11) 2013; 30 (2023062314515949100_c10b) 2013; 93 (2023062314515949100_c5a) 2002; 14 (2023062314515949100_c26b) 2000; 100 (2023062314515949100_c14b) 2012; 36 (2023062314515949100_c7) 2005 (2023062314515949100_c2) 2006; 313 (2023062314515949100_c4) 2007; 6 Sadtler (2023062314515949100_c23) 1978 (2023062314515949100_c19) 2008; 3 (2023062314515949100_c25) 2014; 31 (2023062314515949100_c16) 2013; 102 (2023062314515949100_c9) 2011; 133 (2023062314515949100_c10a) 2010; 10 (2023062314515949100_c18) 2009; 79 (2023062314515949100_c20) 2007; 129 (2023062314515949100_c21) 2010; 5 2023062314515949100_c28 (2023062314515949100_c8) 2002; 420 (2023062314515949100_c15b) 2012; 48 (2023062314515949100_c22b) 2011; 21 (2023062314515949100_c5b) 2010; 97 (2023062314515949100_c17b) 2012; 7 (2023062314515949100_c27) 2014; 301 (2023062314515949100_c14a) 2010; 22 (2023062314515949100_c17c) 2009; 8 (2023062314515949100_c12) 2012; 12 |
References_xml | – volume: 6 start-page: 183 year: 2007 ident: 2023062314515949100_c4 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 21 start-page: 3391 year: 2011 ident: 2023062314515949100_c22b publication-title: J. Mater. Chem. doi: 10.1039/c0jm02910f – volume: 133 start-page: 9960 year: 2011 ident: 2023062314515949100_c9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2036749 – volume: 22 start-page: 22378 year: 2012 ident: 2023062314515949100_c24 publication-title: J. Mater. Chem. doi: 10.1039/c2jm35305a – volume: 420 start-page: 800 year: 2002 ident: 2023062314515949100_c8 publication-title: Nature doi: 10.1038/nature01217 – volume: 100 start-page: 39 year: 2000 ident: 2023062314515949100_c26b publication-title: Chem. Rev. doi: 10.1021/cr940472u – volume: 93 start-page: 161 year: 2013 ident: 2023062314515949100_c10b publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.11.029 – volume: 12 start-page: 844 year: 2012 ident: 2023062314515949100_c12 publication-title: Nano Lett. doi: 10.1021/nl2038979 – volume: 49 start-page: 6726 year: 2010 ident: 2023062314515949100_c3 publication-title: Angew. Chem. doi: 10.1002/anie.200906623 – volume: 97 start-page: 262113 year: 2010 ident: 2023062314515949100_c5b publication-title: Appl. Phys. Lett. doi: 10.1063/1.3533021 – volume: 36 start-page: 97 year: 2012 ident: 2023062314515949100_c14b publication-title: New J. Chem. doi: 10.1039/c1nj20658c – volume: 18 start-page: 12522 year: 2012 ident: 2023062314515949100_c15a publication-title: Chemistry doi: 10.1002/chem.201201043 – volume: 79 start-page: 125411 year: 2009 ident: 2023062314515949100_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.125411 – volume: 90 start-page: 1475 year: 1968 ident: 2023062314515949100_c26a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01008a016 – volume: 5 start-page: 8869 year: 2012 ident: 2023062314515949100_c1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22982j – volume: 48 start-page: 10177 year: 2012 ident: 2023062314515949100_c15b publication-title: Chem. Commun. (Cambridge, U.K.) doi: 10.1039/c2cc35559k – volume: 10 start-page: 2679 year: 2010 ident: 2023062314515949100_c10a publication-title: Nano Lett. doi: 10.1021/nl101474d – volume: 320 start-page: 356 year: 2008 ident: 2023062314515949100_c13a publication-title: Science doi: 10.1126/science.1154663 – volume: 22 start-page: 734 year: 2010 ident: 2023062314515949100_c14a publication-title: Adv. Mater. doi: 10.1002/adma.200902825 – ident: 2023062314515949100_c28 – volume: 77 start-page: 235411 year: 2008 ident: 2023062314515949100_c17a publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.235411 – volume: 31 start-page: 415 year: 2014 ident: 2023062314515949100_c25 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201300252 – volume: 102 start-page: 021105 year: 2013 ident: 2023062314515949100_c16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4776651 – volume: 8 start-page: 235 year: 2009 ident: 2023062314515949100_c17c publication-title: Nat. Mater. doi: 10.1038/nmat2378 – volume: 23 start-page: 776 year: 2011 ident: 2023062314515949100_c6 publication-title: Adv. Mater. doi: 10.1002/adma.201003819 – volume: 10 start-page: 1623 year: 2010 ident: 2023062314515949100_c13b publication-title: Nano Lett. doi: 10.1021/nl9040912 – volume: 127 start-page: 5917 year: 2005 ident: 2023062314515949100_c17d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja050124h – volume: 5 start-page: 574 year: 2010 ident: 2023062314515949100_c21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 21 start-page: 3335 year: 2011 ident: 2023062314515949100_c22a publication-title: J. Mater. Chem. doi: 10.1039/c0jm02922j – volume: 3 start-page: 210 year: 2008 ident: 2023062314515949100_c19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.67 – volume: 313 start-page: 951 year: 2006 ident: 2023062314515949100_c2 publication-title: Science doi: 10.1126/science.1130681 – start-page: 55 volume-title: Annual Review Biomededical Engineering year: 2005 ident: 2023062314515949100_c7 – volume: 14 start-page: 115 year: 2002 ident: 2023062314515949100_c5a publication-title: Physica E doi: 10.1016/S1386-9477(02)00374-0 – volume: 7 start-page: 1239 year: 2012 ident: 2023062314515949100_c17b publication-title: ACS Nano – volume: 30 start-page: 523 year: 2013 ident: 2023062314515949100_c11 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201200131 – volume: 301 start-page: 156 year: 2014 ident: 2023062314515949100_c27 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.02.028 – volume-title: The Sadtler Handbook of Infrared Spectra year: 1978 ident: 2023062314515949100_c23 – volume: 129 start-page: 7758 year: 2007 ident: 2023062314515949100_c20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0722224 |
SSID | ssj0005233 |
Score | 2.409404 |
Snippet | Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | ANNEALING Applied physics CARBON FIBERS Chlorine CHLORINE ADDITIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Cotton CURRENTS Dark current Degreasing DETECTION Detectors DOPED MATERIALS Doping ELECTRIC POTENTIAL ELECTRICAL PROPERTIES ELECTRONS GRAPHENE LASER RADIATION Optical properties Optoelectronic devices Organic chemistry Photoelectric effect Photoelectric emission PHOTOVOLTAIC EFFECT Quantum confinement QUANTUM DOTS RED SHIFT TEMPERATURE RANGE 0273-0400 K VISIBLE RADIATION |
Title | Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors |
URI | https://www.proquest.com/docview/2126557796 https://www.osti.gov/biblio/22303493 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA66h6APoqfi6SlBfBD2erZN0rS-HadyLHdy4B6svpTml1s422W3vtxf76RJuhUXUV_KMu2W0vk6-TKZ-YLQa8MV8FQWR0okeUSZ4ZFQWkesgG9JMEFjYxP6F5-ysys6W7BF2OLed5d04lje7Owr-R-vgg38artk_8Gzw03BAL_Bv3AED8Pxr3x8uuzr5_RUtSsgjr34NMQu2ykJQ8l3MHd9xdvlWjuJb7fEvrIJ-LVVUg21m6tl27UQqLqqllOluz6VvxkT18BWXSZkM73u24AGQv51WbklHEDbsvWjIdgXtc9Hz-rmZnxi7u3ntagHfM5qV-zdfAtGn49IqC2ecB2ZQ4wlUVZ4GVntwmrMbTbUR9oQd2M2BliyM6ADg7K5hWOa212C8u2oNdQSAr-xGjvkNtpLYaqQTtDeyfuL88-jQh9Cwr6J9rmCvlRG3g73_YWVTFqIrr-NzT3hmD9A9_1MAZ84tz9Et3Szj-6N9CP30Z1L541H6EuAAu6hgAMUsIcCtlB4h0dAOMJbGBxhAAEegwAPIHiMrj5-mJ-eRX7XjEimOesiSWSVVZRrRoANxkVOVaGYkklhYq6VYjDBzU2RaaY010KkXOVVomHqrRhJE0meoEnTNvopwnbNtCqsIlIuKDdCiAoILE1TaYxJ4vwAvQlvrZReUt7ubHJd9qUNGSmT0r_gA_RquHTldFR2XXRoX30J5M8qGEtb6iW7MngYTgeXlP4r3JRAvTLGOC-yZ3_-93N0dwvXQzTp1j_0CyCUnXjpEfMTQFF37Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine+doped+graphene+quantum+dots%3A+Preparation%2C+properties%2C+and+photovoltaic+detectors&rft.jtitle=Applied+physics+letters&rft.au=Zhao%2C+Jianhong&rft.au=Xiang%2C+Jinzhong&rft.au=Tang%2C+Libin&rft.au=Ji%2C+Rongbin&rft.date=2014-09-15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=105&rft.issue=11&rft_id=info:doi/10.1063%2F1.4896278&rft.externalDocID=22303493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |