Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors

Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 105; no. 11
Main Authors Zhao, Jianhong, Tang, Libin, Xiang, Jinzhong, Ji, Rongbin, Yuan, Jun, Zhao, Jun, Yu, Ruiyun, Tai, Yunjian, Song, Liyuan
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 15.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼105 at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.
AbstractList Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.
Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼105 at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.
Author Ji, Rongbin
Yu, Ruiyun
Tai, Yunjian
Yuan, Jun
Zhao, Jianhong
Zhao, Jun
Xiang, Jinzhong
Song, Liyuan
Tang, Libin
Author_xml – sequence: 1
  givenname: Jianhong
  surname: Zhao
  fullname: Zhao, Jianhong
– sequence: 2
  givenname: Libin
  surname: Tang
  fullname: Tang, Libin
– sequence: 3
  givenname: Jinzhong
  surname: Xiang
  fullname: Xiang, Jinzhong
– sequence: 4
  givenname: Rongbin
  surname: Ji
  fullname: Ji, Rongbin
– sequence: 5
  givenname: Jun
  surname: Yuan
  fullname: Yuan, Jun
– sequence: 6
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
– sequence: 7
  givenname: Ruiyun
  surname: Yu
  fullname: Yu, Ruiyun
– sequence: 8
  givenname: Yunjian
  surname: Tai
  fullname: Tai, Yunjian
– sequence: 9
  givenname: Liyuan
  surname: Song
  fullname: Song, Liyuan
BackLink https://www.osti.gov/biblio/22303493$$D View this record in Osti.gov
BookMark eNptkEtLQzEQhYNUsK0u_AcXXAm9bR5NcuNOii8QdKELVyFNpvaWNrlNUsF_b7QFQVwNM3xz5swZoJ4PHhA6J3hMsGATMp42SlDZHKE-wVLWjJCmh_oYY1YLxckJGqS0Ki2njPXR22y5DrH1ULnQgaveo-mWUNrtzvi825RxTlfVc4TORJPb4EdVFwsacwtpVBnvqm4ZcvgI62xaWznIYHOI6RQdL8w6wdmhDtHr7c3L7L5-fLp7mF0_1pY2PNeWWSPMVAJnkmOsmqlTjjtL1AJLcI4rIZqFEsAdSJjPqXSNIUAb6jijxLIhutjrhpRbnWxb7i9t8L7Y0JQyzKaK_VLF_HYHKetV2EVfjGlKqOBcSiUKNdlTNoaUIix0kfv5OkfTrjXB-jtlTfQh5bJx-Weji-3GxM9_2C-yMX4s
CitedBy_id crossref_primary_10_1063_5_0049183
crossref_primary_10_1039_C5RA02358K
crossref_primary_10_1038_s41598_017_10534_4
crossref_primary_10_1021_acs_jpcc_5b05935
crossref_primary_10_1021_acssuschemeng_9b02193
crossref_primary_10_1016_j_jwpe_2021_102249
crossref_primary_10_1016_j_flatc_2022_100454
crossref_primary_10_1364_OME_9_000339
crossref_primary_10_3390_nano8090635
crossref_primary_10_1021_acsami_1c01879
crossref_primary_10_1039_C7NR07639H
crossref_primary_10_3390_nano6110198
crossref_primary_10_1016_j_jallcom_2021_161561
crossref_primary_10_1007_s10008_016_3221_8
crossref_primary_10_1016_j_carbon_2020_11_092
crossref_primary_10_1016_j_snb_2018_03_109
crossref_primary_10_1016_j_nantod_2023_101837
crossref_primary_10_1016_j_diamond_2020_107913
crossref_primary_10_3390_cryst13060983
crossref_primary_10_1016_j_cej_2018_12_131
crossref_primary_10_1007_s11051_021_05154_z
crossref_primary_10_1016_j_diamond_2022_109229
crossref_primary_10_1039_C7NJ01989K
crossref_primary_10_1016_j_ccr_2023_215270
crossref_primary_10_1016_j_saa_2019_117659
crossref_primary_10_1016_j_apsusc_2021_149195
crossref_primary_10_1016_j_chemosphere_2024_143604
crossref_primary_10_1039_C7EN00179G
crossref_primary_10_1002_er_5889
crossref_primary_10_1039_D3NR05842E
crossref_primary_10_1021_acsami_9b03194
crossref_primary_10_1016_j_electacta_2018_11_162
crossref_primary_10_1002_aenm_201901341
crossref_primary_10_1002_cjoc_202200337
crossref_primary_10_1016_j_aca_2023_341430
crossref_primary_10_1016_j_mtchem_2018_09_007
crossref_primary_10_1016_j_jphotochem_2018_09_014
crossref_primary_10_1039_C8TB00428E
crossref_primary_10_1016_j_bios_2017_03_032
crossref_primary_10_1088_2053_1591_aaf913
crossref_primary_10_1016_j_aca_2020_11_054
crossref_primary_10_1063_1_4984238
crossref_primary_10_1016_j_carbon_2023_118341
crossref_primary_10_1016_j_heliyon_2024_e34387
crossref_primary_10_1063_1_4907260
crossref_primary_10_1002_cssc_201700910
crossref_primary_10_1039_C5NR07579C
crossref_primary_10_1039_D0RA04549G
crossref_primary_10_1016_j_optmat_2018_06_040
crossref_primary_10_1016_S1872_5805_22_60639_5
crossref_primary_10_1149_1945_7111_aca99d
crossref_primary_10_1021_acssuschemeng_7b02852
crossref_primary_10_1166_jnn_2021_19306
crossref_primary_10_1149_2162_8777_ac7dc7
crossref_primary_10_3390_nano15060459
crossref_primary_10_1039_C9TB02468A
crossref_primary_10_1142_S0219581X23300092
crossref_primary_10_1016_j_jcis_2021_05_034
crossref_primary_10_1016_j_msec_2020_110651
crossref_primary_10_1016_j_mtchem_2023_101769
crossref_primary_10_1088_2752_5724_ad08cb
crossref_primary_10_1021_acs_est_8b05866
crossref_primary_10_1080_1061186X_2018_1437920
Cites_doi 10.1038/nmat1849
10.1039/c0jm02910f
10.1021/ja2036749
10.1039/c2jm35305a
10.1038/nature01217
10.1021/cr940472u
10.1016/j.matlet.2012.11.029
10.1021/nl2038979
10.1002/anie.200906623
10.1063/1.3533021
10.1039/c1nj20658c
10.1002/chem.201201043
10.1103/PhysRevB.79.125411
10.1021/ja01008a016
10.1039/c2ee22982j
10.1039/c2cc35559k
10.1021/nl101474d
10.1126/science.1154663
10.1002/adma.200902825
10.1103/PhysRevB.77.235411
10.1002/ppsc.201300252
10.1063/1.4776651
10.1038/nmat2378
10.1002/adma.201003819
10.1021/nl9040912
10.1021/ja050124h
10.1038/nnano.2010.132
10.1039/c0jm02922j
10.1038/nnano.2008.67
10.1126/science.1130681
10.1016/S1386-9477(02)00374-0
10.1002/ppsc.201200131
10.1016/j.apsusc.2014.02.028
10.1021/ja0722224
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4896278
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 22303493
10_1063_1_4896278
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UCJ
UE8
ID FETCH-LOGICAL-c285t-c3ca6a47e537500984d9d5dc19f07edd59668f96e5de7ebb27d8a1e282d5321c3
ISSN 0003-6951
IngestDate Thu May 18 18:21:07 EDT 2023
Sun Jun 29 13:26:30 EDT 2025
Tue Jul 01 04:19:13 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-c3ca6a47e537500984d9d5dc19f07edd59668f96e5de7ebb27d8a1e282d5321c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2126557796
PQPubID 2050678
ParticipantIDs osti_scitechconnect_22303493
proquest_journals_2126557796
crossref_citationtrail_10_1063_1_4896278
crossref_primary_10_1063_1_4896278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-15
20140915
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062314515949100_c13a) 2008; 320
(2023062314515949100_c26a) 1968; 90
(2023062314515949100_c1) 2012; 5
(2023062314515949100_c24) 2012; 22
(2023062314515949100_c6) 2011; 23
(2023062314515949100_c17d) 2005; 127
(2023062314515949100_c17a) 2008; 77
(2023062314515949100_c22a) 2011; 21
(2023062314515949100_c3) 2010; 49
(2023062314515949100_c13b) 2010; 10
(2023062314515949100_c15a) 2012; 18
(2023062314515949100_c11) 2013; 30
(2023062314515949100_c10b) 2013; 93
(2023062314515949100_c5a) 2002; 14
(2023062314515949100_c26b) 2000; 100
(2023062314515949100_c14b) 2012; 36
(2023062314515949100_c7) 2005
(2023062314515949100_c2) 2006; 313
(2023062314515949100_c4) 2007; 6
Sadtler (2023062314515949100_c23) 1978
(2023062314515949100_c19) 2008; 3
(2023062314515949100_c25) 2014; 31
(2023062314515949100_c16) 2013; 102
(2023062314515949100_c9) 2011; 133
(2023062314515949100_c10a) 2010; 10
(2023062314515949100_c18) 2009; 79
(2023062314515949100_c20) 2007; 129
(2023062314515949100_c21) 2010; 5
2023062314515949100_c28
(2023062314515949100_c8) 2002; 420
(2023062314515949100_c15b) 2012; 48
(2023062314515949100_c22b) 2011; 21
(2023062314515949100_c5b) 2010; 97
(2023062314515949100_c17b) 2012; 7
(2023062314515949100_c27) 2014; 301
(2023062314515949100_c14a) 2010; 22
(2023062314515949100_c17c) 2009; 8
(2023062314515949100_c12) 2012; 12
References_xml – volume: 6
  start-page: 183
  year: 2007
  ident: 2023062314515949100_c4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 21
  start-page: 3391
  year: 2011
  ident: 2023062314515949100_c22b
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02910f
– volume: 133
  start-page: 9960
  year: 2011
  ident: 2023062314515949100_c9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2036749
– volume: 22
  start-page: 22378
  year: 2012
  ident: 2023062314515949100_c24
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35305a
– volume: 420
  start-page: 800
  year: 2002
  ident: 2023062314515949100_c8
  publication-title: Nature
  doi: 10.1038/nature01217
– volume: 100
  start-page: 39
  year: 2000
  ident: 2023062314515949100_c26b
  publication-title: Chem. Rev.
  doi: 10.1021/cr940472u
– volume: 93
  start-page: 161
  year: 2013
  ident: 2023062314515949100_c10b
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.11.029
– volume: 12
  start-page: 844
  year: 2012
  ident: 2023062314515949100_c12
  publication-title: Nano Lett.
  doi: 10.1021/nl2038979
– volume: 49
  start-page: 6726
  year: 2010
  ident: 2023062314515949100_c3
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200906623
– volume: 97
  start-page: 262113
  year: 2010
  ident: 2023062314515949100_c5b
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3533021
– volume: 36
  start-page: 97
  year: 2012
  ident: 2023062314515949100_c14b
  publication-title: New J. Chem.
  doi: 10.1039/c1nj20658c
– volume: 18
  start-page: 12522
  year: 2012
  ident: 2023062314515949100_c15a
  publication-title: Chemistry
  doi: 10.1002/chem.201201043
– volume: 79
  start-page: 125411
  year: 2009
  ident: 2023062314515949100_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.125411
– volume: 90
  start-page: 1475
  year: 1968
  ident: 2023062314515949100_c26a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01008a016
– volume: 5
  start-page: 8869
  year: 2012
  ident: 2023062314515949100_c1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22982j
– volume: 48
  start-page: 10177
  year: 2012
  ident: 2023062314515949100_c15b
  publication-title: Chem. Commun. (Cambridge, U.K.)
  doi: 10.1039/c2cc35559k
– volume: 10
  start-page: 2679
  year: 2010
  ident: 2023062314515949100_c10a
  publication-title: Nano Lett.
  doi: 10.1021/nl101474d
– volume: 320
  start-page: 356
  year: 2008
  ident: 2023062314515949100_c13a
  publication-title: Science
  doi: 10.1126/science.1154663
– volume: 22
  start-page: 734
  year: 2010
  ident: 2023062314515949100_c14a
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– ident: 2023062314515949100_c28
– volume: 77
  start-page: 235411
  year: 2008
  ident: 2023062314515949100_c17a
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.235411
– volume: 31
  start-page: 415
  year: 2014
  ident: 2023062314515949100_c25
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201300252
– volume: 102
  start-page: 021105
  year: 2013
  ident: 2023062314515949100_c16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4776651
– volume: 8
  start-page: 235
  year: 2009
  ident: 2023062314515949100_c17c
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2378
– volume: 23
  start-page: 776
  year: 2011
  ident: 2023062314515949100_c6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003819
– volume: 10
  start-page: 1623
  year: 2010
  ident: 2023062314515949100_c13b
  publication-title: Nano Lett.
  doi: 10.1021/nl9040912
– volume: 127
  start-page: 5917
  year: 2005
  ident: 2023062314515949100_c17d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja050124h
– volume: 5
  start-page: 574
  year: 2010
  ident: 2023062314515949100_c21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 21
  start-page: 3335
  year: 2011
  ident: 2023062314515949100_c22a
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02922j
– volume: 3
  start-page: 210
  year: 2008
  ident: 2023062314515949100_c19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.67
– volume: 313
  start-page: 951
  year: 2006
  ident: 2023062314515949100_c2
  publication-title: Science
  doi: 10.1126/science.1130681
– start-page: 55
  volume-title: Annual Review Biomededical Engineering
  year: 2005
  ident: 2023062314515949100_c7
– volume: 14
  start-page: 115
  year: 2002
  ident: 2023062314515949100_c5a
  publication-title: Physica E
  doi: 10.1016/S1386-9477(02)00374-0
– volume: 7
  start-page: 1239
  year: 2012
  ident: 2023062314515949100_c17b
  publication-title: ACS Nano
– volume: 30
  start-page: 523
  year: 2013
  ident: 2023062314515949100_c11
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201200131
– volume: 301
  start-page: 156
  year: 2014
  ident: 2023062314515949100_c27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.028
– volume-title: The Sadtler Handbook of Infrared Spectra
  year: 1978
  ident: 2023062314515949100_c23
– volume: 129
  start-page: 7758
  year: 2007
  ident: 2023062314515949100_c20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0722224
SSID ssj0005233
Score 2.409404
Snippet Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms ANNEALING
Applied physics
CARBON FIBERS
Chlorine
CHLORINE ADDITIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cotton
CURRENTS
Dark current
Degreasing
DETECTION
Detectors
DOPED MATERIALS
Doping
ELECTRIC POTENTIAL
ELECTRICAL PROPERTIES
ELECTRONS
GRAPHENE
LASER RADIATION
Optical properties
Optoelectronic devices
Organic chemistry
Photoelectric effect
Photoelectric emission
PHOTOVOLTAIC EFFECT
Quantum confinement
QUANTUM DOTS
RED SHIFT
TEMPERATURE RANGE 0273-0400 K
VISIBLE RADIATION
Title Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors
URI https://www.proquest.com/docview/2126557796
https://www.osti.gov/biblio/22303493
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA66h6APoqfi6SlBfBD2erZN0rS-HadyLHdy4B6svpTml1s422W3vtxf76RJuhUXUV_KMu2W0vk6-TKZ-YLQa8MV8FQWR0okeUSZ4ZFQWkesgG9JMEFjYxP6F5-ysys6W7BF2OLed5d04lje7Owr-R-vgg38artk_8Gzw03BAL_Bv3AED8Pxr3x8uuzr5_RUtSsgjr34NMQu2ykJQ8l3MHd9xdvlWjuJb7fEvrIJ-LVVUg21m6tl27UQqLqqllOluz6VvxkT18BWXSZkM73u24AGQv51WbklHEDbsvWjIdgXtc9Hz-rmZnxi7u3ntagHfM5qV-zdfAtGn49IqC2ecB2ZQ4wlUVZ4GVntwmrMbTbUR9oQd2M2BliyM6ADg7K5hWOa212C8u2oNdQSAr-xGjvkNtpLYaqQTtDeyfuL88-jQh9Cwr6J9rmCvlRG3g73_YWVTFqIrr-NzT3hmD9A9_1MAZ84tz9Et3Szj-6N9CP30Z1L541H6EuAAu6hgAMUsIcCtlB4h0dAOMJbGBxhAAEegwAPIHiMrj5-mJ-eRX7XjEimOesiSWSVVZRrRoANxkVOVaGYkklhYq6VYjDBzU2RaaY010KkXOVVomHqrRhJE0meoEnTNvopwnbNtCqsIlIuKDdCiAoILE1TaYxJ4vwAvQlvrZReUt7ubHJd9qUNGSmT0r_gA_RquHTldFR2XXRoX30J5M8qGEtb6iW7MngYTgeXlP4r3JRAvTLGOC-yZ3_-93N0dwvXQzTp1j_0CyCUnXjpEfMTQFF37Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine+doped+graphene+quantum+dots%3A+Preparation%2C+properties%2C+and+photovoltaic+detectors&rft.jtitle=Applied+physics+letters&rft.au=Zhao%2C+Jianhong&rft.au=Xiang%2C+Jinzhong&rft.au=Tang%2C+Libin&rft.au=Ji%2C+Rongbin&rft.date=2014-09-15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=105&rft.issue=11&rft_id=info:doi/10.1063%2F1.4896278&rft.externalDocID=22303493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon