Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance
As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical d...
Saved in:
Published in | Forests Vol. 14; no. 7; p. 1373 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 105 km2) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain. |
---|---|
AbstractList | As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 10⁵ km²) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain. As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 105 km2) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain. |
Author | Xu, Fujin Yu, Tingting Xu, Changchun Xu, Zhonglin |
Author_xml | – sequence: 1 givenname: Fujin surname: Xu fullname: Xu, Fujin – sequence: 2 givenname: Zhonglin surname: Xu fullname: Xu, Zhonglin – sequence: 3 givenname: Changchun surname: Xu fullname: Xu, Changchun – sequence: 4 givenname: Tingting surname: Yu fullname: Yu, Tingting |
BookMark | eNpdkc1OAyEQx4nRRK0efAMSL3qoQmG7cKy1fkWjifW8mbLQoluowCZ68x18Al_NJxHrR4wchvn4_WcmmU206rzTCO1QcsCYJIeGclJSVrIVtEGllF0uSbn6x19H2zHek_yKUsge30Bvgzb5OSSr8OgpBVDJeoe9wWmm8e0iF6DBxzamYCftT-3GKg04qlnQ7sGCA2zdUjDOQZyBw1e-dQmsi_gIoq5x1p16P200HkFIMzxyU-s0BlcvdRfamGB1fH95vYLURptgORSc0ltozUAT9fb330F3J6Px8Kx7eX16PhxcdlVPFKk7MYJykH1pKDGSSyUKQ4WRhPcLkfMUdG24IBNKa65KKKUByllf0Zr1ihJYB-199V0E_9jqmKq5jUo3DTjt21j1hCil5ETIjO7-Q-99G1zeLlOckX42PFP7X5QKPsagTbUIdg7huaKk-rxX9Xsv9gEsGYtD |
Cites_doi | 10.1080/01431161.2010.531783 10.1016/j.foreco.2017.03.035 10.1016/j.rse.2011.10.014 10.1126/science.153.3731.34 10.1080/01431160802552728 10.11834/jrs.20200033 10.1016/j.rse.2011.08.027 10.1038/s41598-017-01473-1 10.3390/rs12010076 10.1080/01431160151144378 10.1016/j.isprsjprs.2011.11.002 10.1016/j.rse.2019.111402 10.1016/j.rse.2006.11.021 10.1016/j.rse.2011.05.028 10.1038/nature22062 10.1038/s41597-020-00646-4 10.1080/014311698213795 10.3390/f14050953 10.34133/2021/9873816 10.1016/j.isprsjprs.2016.01.011 10.1080/23802359.2019.1662749 10.1016/j.isprsjprs.2018.07.017 10.1109/TSMC.1973.4309314 10.1016/j.landusepol.2022.106466 10.1002/2015JD023618 10.1080/00031305.1989.10475612 10.1007/s11434-012-5268-y 10.1016/j.rse.2005.08.011 10.1007/s11629-019-5703-5 10.11834/jrs.20210547 10.1016/j.quaint.2014.10.051 10.3390/rs11070842 10.1016/j.rse.2013.04.006 10.1016/j.scitotenv.2021.148829 10.1016/j.ecoinf.2014.06.007 10.1126/science.199.4325.141 10.1080/17538947.2014.1003106 10.1109/TGRS.2006.872081 10.1108/09604520110393386 10.17521/cjpe.2015.0235 10.3390/rs12101614 10.1023/A:1010933404324 10.1111/gcb.12846 10.1080/2150704X.2017.1378454 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY 7S9 L.6 |
DOI | 10.3390/f14071373 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agriculture Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1999-4907 |
ExternalDocumentID | 10_3390_f14071373 |
GeographicLocations | Tien Shan Mountains Vietnam Central Asia |
GeographicLocations_xml | – name: Vietnam – name: Tien Shan Mountains – name: Central Asia |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAG IAO IEP ITC ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 OZF PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7S9 L.6 |
ID | FETCH-LOGICAL-c285t-bf814a969f10f949c85f18f904658a961aedf480b11d4c7a79fa1436c1d3257a3 |
IEDL.DBID | BENPR |
ISSN | 1999-4907 |
IngestDate | Fri Jul 11 10:16:51 EDT 2025 Mon Jun 30 07:16:08 EDT 2025 Tue Jul 01 01:38:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c285t-bf814a969f10f949c85f18f904658a961aedf480b11d4c7a79fa1436c1d3257a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2843068434?pq-origsite=%requestingapplication% |
PQID | 2843068434 |
PQPubID | 2032398 |
ParticipantIDs | proquest_miscellaneous_2887994089 proquest_journals_2843068434 crossref_primary_10_3390_f14071373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230704 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 20230704 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Forests |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_7) 2015; 21 Torres (ref_43) 2012; 120 Somers (ref_53) 2013; 136 Wardlow (ref_56) 2007; 108 Zhang (ref_26) 2021; 2021 Yang (ref_27) 2022; 38 Frigge (ref_50) 1989; 43 Breiman (ref_60) 2001; 45 Lei (ref_67) 2015; 51 Bellman (ref_52) 1966; 153 Ning (ref_66) 2022; 26 Liu (ref_20) 2017; 9 Xu (ref_5) 2016; 40 (ref_51) 2001; 11 Li (ref_33) 2018; 38 ref_23 Chen (ref_55) 2014; 24 Jiao (ref_11) 2020; 17 Zhang (ref_31) 2021; 42 Cai (ref_38) 2021; 76 Xu (ref_30) 2018; 20 Erasmi (ref_46) 2009; 30 Belgiu (ref_62) 2016; 114 Li (ref_32) 2019; 4 Hao (ref_15) 2017; 32 Luo (ref_35) 2020; 40 Hu (ref_54) 2019; 80 Li (ref_29) 2021; 42 Zhang (ref_16) 2023; 125 Guo (ref_25) 2021; 25 Tan (ref_22) 2019; 21 Liu (ref_39) 1988; 10 Weiss (ref_13) 2020; 236 ref_36 Tateishi (ref_64) 1998; 19 Liu (ref_28) 2019; 21 Arvor (ref_57) 2011; 32 Li (ref_9) 2017; 7 Ghimire (ref_61) 2012; 67 Zhu (ref_65) 2022; 47 Gong (ref_12) 2012; 57 Wang (ref_21) 2020; 7 Jiang (ref_42) 2021; 36 Zhang (ref_45) 2019; 23 Murakami (ref_59) 2010; 22 Venkatappa (ref_24) 2021; 795 Chen (ref_37) 2017; 72 Wang (ref_34) 2006; 3 Lan (ref_40) 2020; 37 Pritchard (ref_4) 2017; 545 Walker (ref_18) 2012; 117 Woodwell (ref_1) 1978; 199 Li (ref_10) 2015; 120 Li (ref_41) 2021; 38 Teluguntla (ref_63) 2018; 144 ref_44 Prichard (ref_3) 2017; 396 Wang (ref_8) 2015; 358 David (ref_49) 1977; 33 Feng (ref_17) 2006; 44 Haralick (ref_47) 1973; 3 Zhang (ref_6) 2003; 58 Liu (ref_2) 2015; 26 Vanniel (ref_58) 2005; 98 ref_48 Potapov (ref_14) 2012; 122 Baumann (ref_19) 2015; 9 Wang (ref_68) 1963; 7 |
References_xml | – volume: 32 start-page: 7847 year: 2011 ident: ref_57 article-title: Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.531783 – volume: 396 start-page: 217 year: 2017 ident: ref_3 article-title: Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.03.035 – volume: 117 start-page: 381 year: 2012 ident: ref_18 article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.014 – volume: 153 start-page: 34 year: 1966 ident: ref_52 article-title: Dynamic Programming publication-title: Science doi: 10.1126/science.153.3731.34 – volume: 30 start-page: 2465 year: 2009 ident: ref_46 article-title: Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—A case study from Central Sulawesi, Indonesia publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802552728 – volume: 26 start-page: 386 year: 2022 ident: ref_66 article-title: Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data publication-title: Natl. Remote Sens. Bull. doi: 10.11834/jrs.20200033 – volume: 122 start-page: 106 year: 2012 ident: ref_14 article-title: Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.027 – volume: 7 start-page: 1316 year: 2017 ident: ref_9 article-title: Multivariate assessment and attribution of droughts in Central Asia publication-title: Sci. Rep. doi: 10.1038/s41598-017-01473-1 – ident: ref_48 doi: 10.3390/rs12010076 – volume: 72 start-page: 18 year: 2017 ident: ref_37 article-title: Impact of climate change on water resources in the Tianshan Mountians, Central Asia publication-title: Acta Geogr. Sin. – volume: 37 start-page: 416 year: 2020 ident: ref_40 article-title: Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains publication-title: J. Zhejiang AF Univ. – volume: 20 start-page: 396 year: 2018 ident: ref_30 article-title: Study on extraction of citrus orchard in Gannan region based on google earth engine platform publication-title: J. Geo-Inf. Sci. – volume: 22 start-page: 1335 year: 2010 ident: ref_59 article-title: Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan publication-title: Int. J. Remote Sens. doi: 10.1080/01431160151144378 – volume: 47 start-page: 122 year: 2022 ident: ref_65 article-title: Remote sensing crop classification method based on feature selection publication-title: Sci. Surv. Mapp. – volume: 67 start-page: 93 year: 2012 ident: ref_61 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 236 start-page: 111402 year: 2020 ident: ref_13 article-title: Remote sensing for agricultural applications: A meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – volume: 108 start-page: 290 year: 2007 ident: ref_56 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.021 – volume: 36 start-page: 847 year: 2021 ident: ref_42 article-title: An Identification Method for Mountains Coniferous in Tian- shan with Sentinel-2 Data publication-title: Remote Sens. Technol. Appl. – volume: 120 start-page: 9 year: 2012 ident: ref_43 article-title: GMES Sentinel-1 mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.028 – volume: 545 start-page: 169 year: 2017 ident: ref_4 article-title: Asia’s glaciers are a regionally important buffer against drought publication-title: Nature doi: 10.1038/nature22062 – volume: 51 start-page: 4 year: 2015 ident: ref_67 article-title: Biomass Change of Middle Aged Forest of Qinghai Spruce along an Altitudinal Gradient on the North Slope of Qilian Mountains publication-title: Sci. Silvae Sin. – volume: 7 start-page: 307 year: 2020 ident: ref_21 article-title: Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive publication-title: Sci. Data doi: 10.1038/s41597-020-00646-4 – volume: 38 start-page: 8139 year: 2018 ident: ref_33 article-title: Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain publication-title: Acta Ecol. Sin. – volume: 19 start-page: 3519 year: 1998 ident: ref_64 article-title: Relationships between percent vegetation cover and vegetation indices publication-title: Int. J. Remote Sens. doi: 10.1080/014311698213795 – ident: ref_36 doi: 10.3390/f14050953 – volume: 21 start-page: 731 year: 2019 ident: ref_28 article-title: Monitoring the Inter-annual Change of Mangroves based on the Google Earth Engine publication-title: J. Geo-Inf. Sci. – volume: 38 start-page: 545 year: 2021 ident: ref_41 article-title: Effects of stand density on the biomass allocation and tree height-diameter allometric growth of Picea schrenkiana forest on the northern slope of the western TS publication-title: Arid Zone Res. – volume: 2021 start-page: 9873816 year: 2021 ident: ref_26 article-title: Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta publication-title: J. Remote Sens. doi: 10.34133/2021/9873816 – volume: 114 start-page: 24 year: 2016 ident: ref_62 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 4 start-page: 2934 year: 2019 ident: ref_32 article-title: The complete chloroplast genome sequence of Keteleeria hainanensis (Pinaceae) publication-title: Mitochondrial DNA Part B doi: 10.1080/23802359.2019.1662749 – volume: 144 start-page: 325 year: 2018 ident: ref_63 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.017 – volume: 3 start-page: 610 year: 1973 ident: ref_47 article-title: Textural features for image classification publication-title: IEEE Trans.Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 125 start-page: 106466 year: 2023 ident: ref_16 article-title: Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region publication-title: Land Use Policy doi: 10.1016/j.landusepol.2022.106466 – volume: 38 start-page: 279 year: 2022 ident: ref_27 article-title: Analysis of spatio-temporal land-use patterns and the driving forces in Xi’an City using GEE and multi-source data publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 42 start-page: 3345 year: 2021 ident: ref_29 article-title: GEE-based Extraction of Rubber Forest Distribution in Main Producing Areas of Southeast Asia publication-title: Chin. J. Trop. Crops – volume: 120 start-page: 12345 year: 2015 ident: ref_10 article-title: Potential impacts of climate change on vegetation dynamics in Central Asia publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023618 – volume: 43 start-page: 50 year: 1989 ident: ref_50 article-title: Some Implementations of the Boxplot publication-title: Am. Stat. doi: 10.1080/00031305.1989.10475612 – volume: 57 start-page: 2793 year: 2012 ident: ref_12 article-title: Remote sensing of environmental change over China: A review publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5268-y – volume: 7 start-page: 285 year: 1963 ident: ref_68 article-title: Picea schrenkiana survey on the north slope of Tianshan Mountains publication-title: Xinjiang Agric. Sci. – volume: 98 start-page: 468 year: 2005 ident: ref_58 article-title: On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.08.011 – volume: 17 start-page: 1735 year: 2020 ident: ref_11 article-title: Stability evaluation of radial growth of Picea schrenkiana in different age groups in response to climate change in the eastern Tianshan Mountains publication-title: J. Mt. Sci. doi: 10.1007/s11629-019-5703-5 – volume: 25 start-page: 2127 year: 2021 ident: ref_25 article-title: Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Sentinel-1A time series publication-title: Natl. Remote Sens. Bull. doi: 10.11834/jrs.20210547 – volume: 42 start-page: 403 year: 2021 ident: ref_31 article-title: Soil Enzyme Activity in Picea schrenkiana and Its Relationship with Environmental Factors in the Tianshan Mountains, Xinjiang publication-title: Huanjing Kexue – volume: 80 start-page: 218 year: 2019 ident: ref_54 article-title: A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 21 start-page: 937 year: 2019 ident: ref_22 article-title: Mapping paddy rice in the Hainan Province using both Google Earth Engine and remote sensing images publication-title: J. Geo-Inf. Sci. – volume: 358 start-page: 48 year: 2015 ident: ref_8 article-title: An analysis of precipitation variations in the west-central Tianshan Mountains over the last 300 years publication-title: Quat. Int. doi: 10.1016/j.quaint.2014.10.051 – ident: ref_23 doi: 10.3390/rs11070842 – volume: 136 start-page: 14 year: 2013 ident: ref_53 article-title: Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.006 – volume: 58 start-page: 163 year: 2003 ident: ref_6 article-title: The Geo-info-spectrum of Montane Altitudinal Belts in China publication-title: Acta Geogr. Sin. – volume: 40 start-page: 5288 year: 2020 ident: ref_35 article-title: Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests publication-title: Acta Ecol. Sin. – volume: 795 start-page: 148829 year: 2021 ident: ref_24 article-title: Impacts of droughts and floods on croplands and crop production in Southeast Asia—An application of Google Earth Engine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148829 – volume: 26 start-page: 2881 year: 2015 ident: ref_2 article-title: Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review publication-title: Chin. J. Appl. Ecol. – volume: 32 start-page: 386 year: 2017 ident: ref_15 article-title: Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information publication-title: Remote Sens. Technol. Appl. – volume: 24 start-page: 17 year: 2014 ident: ref_55 article-title: Dynamic monitoring of wetland cover changes using time-series remote sensing imagery publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2014.06.007 – volume: 199 start-page: 141 year: 1978 ident: ref_1 article-title: The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere publication-title: Science doi: 10.1126/science.199.4325.141 – volume: 3 start-page: 564 year: 2006 ident: ref_34 article-title: A preliminary study on Picea schrenkiana population dynamics in the central Tianshan Mountains, northwestern China publication-title: Ecol. Environ. – volume: 33 start-page: 768 year: 1977 ident: ref_49 article-title: Exploratory Data Analysis publication-title: Biometrics – volume: 9 start-page: 3 year: 2015 ident: ref_19 article-title: Big Data Analytics for Earth Sciences: The EarthServer approach publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2014.1003106 – volume: 44 start-page: 2207 year: 2006 ident: ref_17 article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – volume: 11 start-page: 150 year: 2001 ident: ref_51 article-title: The perceived service quality concept—A mistake? publication-title: Manag. Serv. Qual. doi: 10.1108/09604520110393386 – volume: 40 start-page: 364 year: 2016 ident: ref_5 article-title: Carbon storage, spatial distribution and the influence factors in Tianshan forests publication-title: Chin. J. Plant Ecol. doi: 10.17521/cjpe.2015.0235 – ident: ref_44 doi: 10.3390/rs12101614 – volume: 23 start-page: 313 year: 2019 ident: ref_45 article-title: Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images publication-title: J. Remote Sens. – volume: 76 start-page: 2253 year: 2021 ident: ref_38 article-title: Vulnerability of glacier change in Chinese Tianshan Mountains publication-title: Acta Geogr. Sin. – volume: 45 start-page: 5 year: 2001 ident: ref_60 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 21 start-page: 1951 year: 2015 ident: ref_7 article-title: Carbon stock and its responses to climate change in Central Asia publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12846 – volume: 9 start-page: 1 year: 2017 ident: ref_20 article-title: Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: A case study in Fujian Province, China publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1378454 – volume: 10 start-page: 151 year: 1988 ident: ref_39 article-title: A Primary Calculation of Temperature and Precipitation in Tianshan Mountains, China publication-title: J. Glaciol. Geocryol. |
SSID | ssj0000578924 |
Score | 2.2832088 |
Snippet | As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1373 |
SubjectTerms | Altitude Carbon Central Asia Classification climate Climate change Cloud computing Coniferous forests Decision making Extraction procedures Image classification Internet landscapes Mapping Mountains Picea schrenkiana Precipitation Remote sensing Software soil Soil conservation Soil water Spatial distribution summer Sustainable development Terrain Terrestrial ecosystems texture Vegetation Water conservation Water purification |
Title | Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance |
URI | https://www.proquest.com/docview/2843068434 https://www.proquest.com/docview/2887994089 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEB6aDZReQvpHt02DWno1sWLZlk4laZ2GwoZQEsjNjC2pCS1yuuuFnErfIU-QV8uTdEb2bsmlFxtblgya0Wi-kTQfwAfCW-h5z1Mpc5uoQhkmcrdJ1hZ8En2_MRizfZ4Ux-fq60V-MQbcFuO2ypVNjIbadi3HyPfIjJJ3Sxf18fpXwqxRvLo6UmhswCaZYK0nsHlYnZx-W0dZyBvRhDCGlEIZ4fs9LxnCZGX2cCJ6aIfj5HK0DVujVygOBjE-hUcuPIPHTJvJXGzP4e5g2Xcxuaqobvr5cBhBdF6Q-yaYVZi0SHzmHLgjfRWXnZINQEHode7CD9ICFFchVjijh8UlBjFjogi8CgtxSJOZFVTvS9d9_-lERRp1KYZkhQKDjfXiqS9C1vd_bmfYL6lnMP6UFecFnB9VZ5-Ok5FcIWn3dd4njddSoSmMl6k3yrQ691J7Q3g51_ReorNe6bSR0qq2xNJ4JN-qaKXNaJhj9hImoQvuFQhpfFY2LvVF6ZSxDaZeYcvh1Sylu5rC-1VP19dDDo2asAeLo16LYwo7KxnU4zBa1P-EPoV362IaALyqgcF1S_5Gl8aoVJvX_2_iDTxhrvi411btwKSfL91b8ij6ZndUm13YmP2u_gLxKdC6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL_qlgIGwTFqHDs_PiDU0i1b2l1VaCv1FpzYphUoaXezAm68A0_AC_BQPAkzTrKoF269JIodO5Lny3jG9swH8BL9Le3ozFPKYxPIRCoicjeBKBOKRI8KpX22z2kyPpHvT-PTNfjdx8LQscpeJ3pFbeqS1si3UY2idYsX-ebiMiDWKNpd7Sk0Wlgc2u9f0WVbvD7YQ_m-iqL90eztOOhYBYIyyuImKFzGpVaJcjx0Sqoyix3PnEJHMc6wnGtrnMzCgnMjy1Snymk0KpKSG4H41gL7vQHrWBJGA1jfHU2PP6xWddD6ydCjaVMYCaHCbcfJZRKpuDrxXdX7fjLbvwt3OiuU7bSwuQdrtroPN4mmk7jfHsCvnWVT-2SubPStmbfBD6x2DM1FRizGiFq2Rzl3O7osqjtGnaMZestzW31G1Gl2XvkGM3xYnOmKTYiYQp9XC7aLk6dh2O5dXX_6YtkIEXzG2uSITFfGt_NRZujJ__nxc6KbJUpC-48SUB_CybUM-yMYVHVlN4Bx5URa2NAlqZXKFDp0Upe0nCtCvMshvOhHOr9oc3bk6OuQOPKVOIaw1csg737bRf4PZEN4vqrGH452UXRl6yW9k6VKyTBTm__v4hncGs8mR_nRwfTwMdwmnnp_zlduwaCZL-0TtGaa4mkHIQYfrxu1fwGw8Qup |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxqcqfWCjFIDhGG6-dxD4g1LK7tJSuVqiVegtObNOqKGl3swJuvANP0NfgcXgSZvKzqBduvSRKHDuS57M9Y8_MB_AK7S3jyecp4ZENZCw1EbnbQOQxRaIPM23qbJ_TeP9EfjiNTtfgdxcLQ26V3ZxYT9S2zGmPfIDTKGq3eJED37pFzEaTt5dXATFI0UlrR6fRQOTQ_fiG5tvizcEIZf16OJyMj9_tBy3DQJAPVVQFmVdcGh1rz0Ovpc5V5LnyGo3GSOF7bpz1UoUZ51bmiUm0N6hgxDm3ArFuBLZ7B9YTsop6sL43ns4-rXZ4UBNSaN006YyE0OHAc_pQJOLmInhzDagXtskWbLYaKdttIHQP1lxxHzaIspN44B7A9e6yKuvErmz8vZo3gRCs9AxVR0aMxohgNqL8uy11FpXNcP4xDC3nuSsuEIGGnRd1hWN8WJyZgh0RSYU5LxZsDxdSy7De-7L88tWxMaL5jDWJEpkpbF2vjjhDq_7Pz19HplqiJEz9UwLtQzi5lW5_BL2iLNxjYFx7kWQu9HHipLaZCb00OW3tihDvsg8vu55OL5v8HSnaPSSOdCWOPmx3MkjbIbxI_wGuDy9WxTj46ETFFK5c0jcq0VqGSj_5fxPPYQPRmn48mB4-hbtEWV-7_Mpt6FXzpXuGik2V7bQIYvD5tkH7F7EoD94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Extraction+of+the+Spatial+Distribution+of+Picea+schrenkiana+in+the+Tianshan+Mountains+Based+on+Google+Earth+Engine+and+the+Jeffries%E2%80%93Matusita+Distance&rft.jtitle=Forests&rft.au=Xu%2C+Fujin&rft.au=Xu%2C+Zhonglin&rft.au=Xu%2C+Changchun&rft.au=Yu%2C+Tingting&rft.date=2023-07-04&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=14&rft.issue=7&rft.spage=1373&rft_id=info:doi/10.3390%2Ff14071373&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |