Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance

As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical d...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 14; no. 7; p. 1373
Main Authors Xu, Fujin, Xu, Zhonglin, Xu, Changchun, Yu, Tingting
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 04.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 105 km2) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain.
AbstractList As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 10⁵ km²) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain.
As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water conservation, and climate regulation. In the context of climate change, rapidly and accurately obtaining its spatial distribution has critical decision-making significance for maintaining ecological security in the arid area of CA and the sustainable development of the “Silk Road Economic Belt”. However, conventional methods are extremely challenging to accomplish the high-resolution mapping of Picea schrenkiana in the TS, which is characterized by a wide range (9.97 × 105 km2) and complex terrain. The approach of geo-big data and cloud computing provides new opportunities to address this issue. Therefore, the purpose of this study is to propose an automatic extraction procedure for the spatial distribution of Picea schrenkiana based on Google Earth Engine and the Jeffries–Matusita (JM) distance, which considered three aspects: sample points, remote-sensing images, and classification features. The results showed that (1) after removing abnormal samples and selecting the summer image, the producer accuracy (PA) of Picea schrenkiana was improved by 2.95% and 0.24%–2.10%, respectively. (2) Both the separation obtained by the JM distance and the analysis results of eight schemes showed that spectral features and texture features played a key role in the mapping of Picea schrenkiana. (3) The JM distance can seize the classification features that are most conducive to the mapping of Picea schrenkiana, and effectively improve the classification accuracy. The PA and user accuracy of Picea schrenkiana were 96.74% and 96.96%, respectively. The overall accuracy was 91.93%, while the Kappa coefficient was 0.89. (4) The results show that Picea schrenkiana is concentrated in the middle TS and scattered in the remaining areas. In total, 85.7%, 66.4%, and 85.9% of Picea schrenkiana were distributed in the range of 1500–2700 m, 20–40°, and on shady slope and semi-shady slope, respectively. The automatic procedure adopted in this study provides a basis for the rapid and accurate mapping of the spatial distribution of coniferous forests in the complex terrain.
Author Xu, Fujin
Yu, Tingting
Xu, Changchun
Xu, Zhonglin
Author_xml – sequence: 1
  givenname: Fujin
  surname: Xu
  fullname: Xu, Fujin
– sequence: 2
  givenname: Zhonglin
  surname: Xu
  fullname: Xu, Zhonglin
– sequence: 3
  givenname: Changchun
  surname: Xu
  fullname: Xu, Changchun
– sequence: 4
  givenname: Tingting
  surname: Yu
  fullname: Yu, Tingting
BookMark eNpdkc1OAyEQx4nRRK0efAMSL3qoQmG7cKy1fkWjifW8mbLQoluowCZ68x18Al_NJxHrR4wchvn4_WcmmU206rzTCO1QcsCYJIeGclJSVrIVtEGllF0uSbn6x19H2zHek_yKUsge30Bvgzb5OSSr8OgpBVDJeoe9wWmm8e0iF6DBxzamYCftT-3GKg04qlnQ7sGCA2zdUjDOQZyBw1e-dQmsi_gIoq5x1p16P200HkFIMzxyU-s0BlcvdRfamGB1fH95vYLURptgORSc0ltozUAT9fb330F3J6Px8Kx7eX16PhxcdlVPFKk7MYJykH1pKDGSSyUKQ4WRhPcLkfMUdG24IBNKa65KKKUByllf0Zr1ihJYB-199V0E_9jqmKq5jUo3DTjt21j1hCil5ETIjO7-Q-99G1zeLlOckX42PFP7X5QKPsagTbUIdg7huaKk-rxX9Xsv9gEsGYtD
Cites_doi 10.1080/01431161.2010.531783
10.1016/j.foreco.2017.03.035
10.1016/j.rse.2011.10.014
10.1126/science.153.3731.34
10.1080/01431160802552728
10.11834/jrs.20200033
10.1016/j.rse.2011.08.027
10.1038/s41598-017-01473-1
10.3390/rs12010076
10.1080/01431160151144378
10.1016/j.isprsjprs.2011.11.002
10.1016/j.rse.2019.111402
10.1016/j.rse.2006.11.021
10.1016/j.rse.2011.05.028
10.1038/nature22062
10.1038/s41597-020-00646-4
10.1080/014311698213795
10.3390/f14050953
10.34133/2021/9873816
10.1016/j.isprsjprs.2016.01.011
10.1080/23802359.2019.1662749
10.1016/j.isprsjprs.2018.07.017
10.1109/TSMC.1973.4309314
10.1016/j.landusepol.2022.106466
10.1002/2015JD023618
10.1080/00031305.1989.10475612
10.1007/s11434-012-5268-y
10.1016/j.rse.2005.08.011
10.1007/s11629-019-5703-5
10.11834/jrs.20210547
10.1016/j.quaint.2014.10.051
10.3390/rs11070842
10.1016/j.rse.2013.04.006
10.1016/j.scitotenv.2021.148829
10.1016/j.ecoinf.2014.06.007
10.1126/science.199.4325.141
10.1080/17538947.2014.1003106
10.1109/TGRS.2006.872081
10.1108/09604520110393386
10.17521/cjpe.2015.0235
10.3390/rs12101614
10.1023/A:1010933404324
10.1111/gcb.12846
10.1080/2150704X.2017.1378454
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOI 10.3390/f14071373
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10_3390_f14071373
GeographicLocations Tien Shan Mountains
Vietnam
Central Asia
GeographicLocations_xml – name: Vietnam
– name: Tien Shan Mountains
– name: Central Asia
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c285t-bf814a969f10f949c85f18f904658a961aedf480b11d4c7a79fa1436c1d3257a3
IEDL.DBID BENPR
ISSN 1999-4907
IngestDate Fri Jul 11 10:16:51 EDT 2025
Mon Jun 30 07:16:08 EDT 2025
Tue Jul 01 01:38:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-bf814a969f10f949c85f18f904658a961aedf480b11d4c7a79fa1436c1d3257a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2843068434?pq-origsite=%requestingapplication%
PQID 2843068434
PQPubID 2032398
ParticipantIDs proquest_miscellaneous_2887994089
proquest_journals_2843068434
crossref_primary_10_3390_f14071373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230704
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 20230704
  day: 04
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_7) 2015; 21
Torres (ref_43) 2012; 120
Somers (ref_53) 2013; 136
Wardlow (ref_56) 2007; 108
Zhang (ref_26) 2021; 2021
Yang (ref_27) 2022; 38
Frigge (ref_50) 1989; 43
Breiman (ref_60) 2001; 45
Lei (ref_67) 2015; 51
Bellman (ref_52) 1966; 153
Ning (ref_66) 2022; 26
Liu (ref_20) 2017; 9
Xu (ref_5) 2016; 40
(ref_51) 2001; 11
Li (ref_33) 2018; 38
ref_23
Chen (ref_55) 2014; 24
Jiao (ref_11) 2020; 17
Zhang (ref_31) 2021; 42
Cai (ref_38) 2021; 76
Xu (ref_30) 2018; 20
Erasmi (ref_46) 2009; 30
Belgiu (ref_62) 2016; 114
Li (ref_32) 2019; 4
Hao (ref_15) 2017; 32
Luo (ref_35) 2020; 40
Hu (ref_54) 2019; 80
Li (ref_29) 2021; 42
Zhang (ref_16) 2023; 125
Guo (ref_25) 2021; 25
Tan (ref_22) 2019; 21
Liu (ref_39) 1988; 10
Weiss (ref_13) 2020; 236
ref_36
Tateishi (ref_64) 1998; 19
Liu (ref_28) 2019; 21
Arvor (ref_57) 2011; 32
Li (ref_9) 2017; 7
Ghimire (ref_61) 2012; 67
Zhu (ref_65) 2022; 47
Gong (ref_12) 2012; 57
Wang (ref_21) 2020; 7
Jiang (ref_42) 2021; 36
Zhang (ref_45) 2019; 23
Murakami (ref_59) 2010; 22
Venkatappa (ref_24) 2021; 795
Chen (ref_37) 2017; 72
Wang (ref_34) 2006; 3
Lan (ref_40) 2020; 37
Pritchard (ref_4) 2017; 545
Walker (ref_18) 2012; 117
Woodwell (ref_1) 1978; 199
Li (ref_10) 2015; 120
Li (ref_41) 2021; 38
Teluguntla (ref_63) 2018; 144
ref_44
Prichard (ref_3) 2017; 396
Wang (ref_8) 2015; 358
David (ref_49) 1977; 33
Feng (ref_17) 2006; 44
Haralick (ref_47) 1973; 3
Zhang (ref_6) 2003; 58
Liu (ref_2) 2015; 26
Vanniel (ref_58) 2005; 98
ref_48
Potapov (ref_14) 2012; 122
Baumann (ref_19) 2015; 9
Wang (ref_68) 1963; 7
References_xml – volume: 32
  start-page: 7847
  year: 2011
  ident: ref_57
  article-title: Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.531783
– volume: 396
  start-page: 217
  year: 2017
  ident: ref_3
  article-title: Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.03.035
– volume: 117
  start-page: 381
  year: 2012
  ident: ref_18
  article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.014
– volume: 153
  start-page: 34
  year: 1966
  ident: ref_52
  article-title: Dynamic Programming
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– volume: 30
  start-page: 2465
  year: 2009
  ident: ref_46
  article-title: Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—A case study from Central Sulawesi, Indonesia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802552728
– volume: 26
  start-page: 386
  year: 2022
  ident: ref_66
  article-title: Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data
  publication-title: Natl. Remote Sens. Bull.
  doi: 10.11834/jrs.20200033
– volume: 122
  start-page: 106
  year: 2012
  ident: ref_14
  article-title: Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.027
– volume: 7
  start-page: 1316
  year: 2017
  ident: ref_9
  article-title: Multivariate assessment and attribution of droughts in Central Asia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01473-1
– ident: ref_48
  doi: 10.3390/rs12010076
– volume: 72
  start-page: 18
  year: 2017
  ident: ref_37
  article-title: Impact of climate change on water resources in the Tianshan Mountians, Central Asia
  publication-title: Acta Geogr. Sin.
– volume: 37
  start-page: 416
  year: 2020
  ident: ref_40
  article-title: Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains
  publication-title: J. Zhejiang AF Univ.
– volume: 20
  start-page: 396
  year: 2018
  ident: ref_30
  article-title: Study on extraction of citrus orchard in Gannan region based on google earth engine platform
  publication-title: J. Geo-Inf. Sci.
– volume: 22
  start-page: 1335
  year: 2010
  ident: ref_59
  article-title: Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160151144378
– volume: 47
  start-page: 122
  year: 2022
  ident: ref_65
  article-title: Remote sensing crop classification method based on feature selection
  publication-title: Sci. Surv. Mapp.
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_61
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_13
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 108
  start-page: 290
  year: 2007
  ident: ref_56
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.021
– volume: 36
  start-page: 847
  year: 2021
  ident: ref_42
  article-title: An Identification Method for Mountains Coniferous in Tian- shan with Sentinel-2 Data
  publication-title: Remote Sens. Technol. Appl.
– volume: 120
  start-page: 9
  year: 2012
  ident: ref_43
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– volume: 545
  start-page: 169
  year: 2017
  ident: ref_4
  article-title: Asia’s glaciers are a regionally important buffer against drought
  publication-title: Nature
  doi: 10.1038/nature22062
– volume: 51
  start-page: 4
  year: 2015
  ident: ref_67
  article-title: Biomass Change of Middle Aged Forest of Qinghai Spruce along an Altitudinal Gradient on the North Slope of Qilian Mountains
  publication-title: Sci. Silvae Sin.
– volume: 7
  start-page: 307
  year: 2020
  ident: ref_21
  article-title: Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00646-4
– volume: 38
  start-page: 8139
  year: 2018
  ident: ref_33
  article-title: Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain
  publication-title: Acta Ecol. Sin.
– volume: 19
  start-page: 3519
  year: 1998
  ident: ref_64
  article-title: Relationships between percent vegetation cover and vegetation indices
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698213795
– ident: ref_36
  doi: 10.3390/f14050953
– volume: 21
  start-page: 731
  year: 2019
  ident: ref_28
  article-title: Monitoring the Inter-annual Change of Mangroves based on the Google Earth Engine
  publication-title: J. Geo-Inf. Sci.
– volume: 38
  start-page: 545
  year: 2021
  ident: ref_41
  article-title: Effects of stand density on the biomass allocation and tree height-diameter allometric growth of Picea schrenkiana forest on the northern slope of the western TS
  publication-title: Arid Zone Res.
– volume: 2021
  start-page: 9873816
  year: 2021
  ident: ref_26
  article-title: Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta
  publication-title: J. Remote Sens.
  doi: 10.34133/2021/9873816
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_62
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 4
  start-page: 2934
  year: 2019
  ident: ref_32
  article-title: The complete chloroplast genome sequence of Keteleeria hainanensis (Pinaceae)
  publication-title: Mitochondrial DNA Part B
  doi: 10.1080/23802359.2019.1662749
– volume: 144
  start-page: 325
  year: 2018
  ident: ref_63
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.017
– volume: 3
  start-page: 610
  year: 1973
  ident: ref_47
  article-title: Textural features for image classification
  publication-title: IEEE Trans.Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 125
  start-page: 106466
  year: 2023
  ident: ref_16
  article-title: Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2022.106466
– volume: 38
  start-page: 279
  year: 2022
  ident: ref_27
  article-title: Analysis of spatio-temporal land-use patterns and the driving forces in Xi’an City using GEE and multi-source data
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 42
  start-page: 3345
  year: 2021
  ident: ref_29
  article-title: GEE-based Extraction of Rubber Forest Distribution in Main Producing Areas of Southeast Asia
  publication-title: Chin. J. Trop. Crops
– volume: 120
  start-page: 12345
  year: 2015
  ident: ref_10
  article-title: Potential impacts of climate change on vegetation dynamics in Central Asia
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD023618
– volume: 43
  start-page: 50
  year: 1989
  ident: ref_50
  article-title: Some Implementations of the Boxplot
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1989.10475612
– volume: 57
  start-page: 2793
  year: 2012
  ident: ref_12
  article-title: Remote sensing of environmental change over China: A review
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5268-y
– volume: 7
  start-page: 285
  year: 1963
  ident: ref_68
  article-title: Picea schrenkiana survey on the north slope of Tianshan Mountains
  publication-title: Xinjiang Agric. Sci.
– volume: 98
  start-page: 468
  year: 2005
  ident: ref_58
  article-title: On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.08.011
– volume: 17
  start-page: 1735
  year: 2020
  ident: ref_11
  article-title: Stability evaluation of radial growth of Picea schrenkiana in different age groups in response to climate change in the eastern Tianshan Mountains
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-019-5703-5
– volume: 25
  start-page: 2127
  year: 2021
  ident: ref_25
  article-title: Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Sentinel-1A time series
  publication-title: Natl. Remote Sens. Bull.
  doi: 10.11834/jrs.20210547
– volume: 42
  start-page: 403
  year: 2021
  ident: ref_31
  article-title: Soil Enzyme Activity in Picea schrenkiana and Its Relationship with Environmental Factors in the Tianshan Mountains, Xinjiang
  publication-title: Huanjing Kexue
– volume: 80
  start-page: 218
  year: 2019
  ident: ref_54
  article-title: A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 21
  start-page: 937
  year: 2019
  ident: ref_22
  article-title: Mapping paddy rice in the Hainan Province using both Google Earth Engine and remote sensing images
  publication-title: J. Geo-Inf. Sci.
– volume: 358
  start-page: 48
  year: 2015
  ident: ref_8
  article-title: An analysis of precipitation variations in the west-central Tianshan Mountains over the last 300 years
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2014.10.051
– ident: ref_23
  doi: 10.3390/rs11070842
– volume: 136
  start-page: 14
  year: 2013
  ident: ref_53
  article-title: Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.006
– volume: 58
  start-page: 163
  year: 2003
  ident: ref_6
  article-title: The Geo-info-spectrum of Montane Altitudinal Belts in China
  publication-title: Acta Geogr. Sin.
– volume: 40
  start-page: 5288
  year: 2020
  ident: ref_35
  article-title: Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests
  publication-title: Acta Ecol. Sin.
– volume: 795
  start-page: 148829
  year: 2021
  ident: ref_24
  article-title: Impacts of droughts and floods on croplands and crop production in Southeast Asia—An application of Google Earth Engine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148829
– volume: 26
  start-page: 2881
  year: 2015
  ident: ref_2
  article-title: Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review
  publication-title: Chin. J. Appl. Ecol.
– volume: 32
  start-page: 386
  year: 2017
  ident: ref_15
  article-title: Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information
  publication-title: Remote Sens. Technol. Appl.
– volume: 24
  start-page: 17
  year: 2014
  ident: ref_55
  article-title: Dynamic monitoring of wetland cover changes using time-series remote sensing imagery
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2014.06.007
– volume: 199
  start-page: 141
  year: 1978
  ident: ref_1
  article-title: The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere
  publication-title: Science
  doi: 10.1126/science.199.4325.141
– volume: 3
  start-page: 564
  year: 2006
  ident: ref_34
  article-title: A preliminary study on Picea schrenkiana population dynamics in the central Tianshan Mountains, northwestern China
  publication-title: Ecol. Environ.
– volume: 33
  start-page: 768
  year: 1977
  ident: ref_49
  article-title: Exploratory Data Analysis
  publication-title: Biometrics
– volume: 9
  start-page: 3
  year: 2015
  ident: ref_19
  article-title: Big Data Analytics for Earth Sciences: The EarthServer approach
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2014.1003106
– volume: 44
  start-page: 2207
  year: 2006
  ident: ref_17
  article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– volume: 11
  start-page: 150
  year: 2001
  ident: ref_51
  article-title: The perceived service quality concept—A mistake?
  publication-title: Manag. Serv. Qual.
  doi: 10.1108/09604520110393386
– volume: 40
  start-page: 364
  year: 2016
  ident: ref_5
  article-title: Carbon storage, spatial distribution and the influence factors in Tianshan forests
  publication-title: Chin. J. Plant Ecol.
  doi: 10.17521/cjpe.2015.0235
– ident: ref_44
  doi: 10.3390/rs12101614
– volume: 23
  start-page: 313
  year: 2019
  ident: ref_45
  article-title: Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images
  publication-title: J. Remote Sens.
– volume: 76
  start-page: 2253
  year: 2021
  ident: ref_38
  article-title: Vulnerability of glacier change in Chinese Tianshan Mountains
  publication-title: Acta Geogr. Sin.
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_60
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 1951
  year: 2015
  ident: ref_7
  article-title: Carbon stock and its responses to climate change in Central Asia
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12846
– volume: 9
  start-page: 1
  year: 2017
  ident: ref_20
  article-title: Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: A case study in Fujian Province, China
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1378454
– volume: 10
  start-page: 151
  year: 1988
  ident: ref_39
  article-title: A Primary Calculation of Temperature and Precipitation in Tianshan Mountains, China
  publication-title: J. Glaciol. Geocryol.
SSID ssj0000578924
Score 2.2832088
Snippet As a distinct species in the Tianshan Mountains (TS) of Central Asia (CA), Picea schrenkiana plays a significant role in water purification, soil and water...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1373
SubjectTerms Altitude
Carbon
Central Asia
Classification
climate
Climate change
Cloud computing
Coniferous forests
Decision making
Extraction procedures
Image classification
Internet
landscapes
Mapping
Mountains
Picea schrenkiana
Precipitation
Remote sensing
Software
soil
Soil conservation
Soil water
Spatial distribution
summer
Sustainable development
Terrain
Terrestrial ecosystems
texture
Vegetation
Water conservation
Water purification
Title Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance
URI https://www.proquest.com/docview/2843068434
https://www.proquest.com/docview/2887994089
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEB6aDZReQvpHt02DWno1sWLZlk4laZ2GwoZQEsjNjC2pCS1yuuuFnErfIU-QV8uTdEb2bsmlFxtblgya0Wi-kTQfwAfCW-h5z1Mpc5uoQhkmcrdJ1hZ8En2_MRizfZ4Ux-fq60V-MQbcFuO2ypVNjIbadi3HyPfIjJJ3Sxf18fpXwqxRvLo6UmhswCaZYK0nsHlYnZx-W0dZyBvRhDCGlEIZ4fs9LxnCZGX2cCJ6aIfj5HK0DVujVygOBjE-hUcuPIPHTJvJXGzP4e5g2Xcxuaqobvr5cBhBdF6Q-yaYVZi0SHzmHLgjfRWXnZINQEHode7CD9ICFFchVjijh8UlBjFjogi8CgtxSJOZFVTvS9d9_-lERRp1KYZkhQKDjfXiqS9C1vd_bmfYL6lnMP6UFecFnB9VZ5-Ok5FcIWn3dd4njddSoSmMl6k3yrQ691J7Q3g51_ReorNe6bSR0qq2xNJ4JN-qaKXNaJhj9hImoQvuFQhpfFY2LvVF6ZSxDaZeYcvh1Sylu5rC-1VP19dDDo2asAeLo16LYwo7KxnU4zBa1P-EPoV362IaALyqgcF1S_5Gl8aoVJvX_2_iDTxhrvi411btwKSfL91b8ij6ZndUm13YmP2u_gLxKdC6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL_qlgIGwTFqHDs_PiDU0i1b2l1VaCv1FpzYphUoaXezAm68A0_AC_BQPAkzTrKoF269JIodO5Lny3jG9swH8BL9Le3ozFPKYxPIRCoicjeBKBOKRI8KpX22z2kyPpHvT-PTNfjdx8LQscpeJ3pFbeqS1si3UY2idYsX-ebiMiDWKNpd7Sk0Wlgc2u9f0WVbvD7YQ_m-iqL90eztOOhYBYIyyuImKFzGpVaJcjx0Sqoyix3PnEJHMc6wnGtrnMzCgnMjy1Snymk0KpKSG4H41gL7vQHrWBJGA1jfHU2PP6xWddD6ydCjaVMYCaHCbcfJZRKpuDrxXdX7fjLbvwt3OiuU7bSwuQdrtroPN4mmk7jfHsCvnWVT-2SubPStmbfBD6x2DM1FRizGiFq2Rzl3O7osqjtGnaMZestzW31G1Gl2XvkGM3xYnOmKTYiYQp9XC7aLk6dh2O5dXX_6YtkIEXzG2uSITFfGt_NRZujJ__nxc6KbJUpC-48SUB_CybUM-yMYVHVlN4Bx5URa2NAlqZXKFDp0Upe0nCtCvMshvOhHOr9oc3bk6OuQOPKVOIaw1csg737bRf4PZEN4vqrGH452UXRl6yW9k6VKyTBTm__v4hncGs8mR_nRwfTwMdwmnnp_zlduwaCZL-0TtGaa4mkHIQYfrxu1fwGw8Qup
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxqcqfWCjFIDhGG6-dxD4g1LK7tJSuVqiVegtObNOqKGl3swJuvANP0NfgcXgSZvKzqBduvSRKHDuS57M9Y8_MB_AK7S3jyecp4ZENZCw1EbnbQOQxRaIPM23qbJ_TeP9EfjiNTtfgdxcLQ26V3ZxYT9S2zGmPfIDTKGq3eJED37pFzEaTt5dXATFI0UlrR6fRQOTQ_fiG5tvizcEIZf16OJyMj9_tBy3DQJAPVVQFmVdcGh1rz0Ovpc5V5LnyGo3GSOF7bpz1UoUZ51bmiUm0N6hgxDm3ArFuBLZ7B9YTsop6sL43ns4-rXZ4UBNSaN006YyE0OHAc_pQJOLmInhzDagXtskWbLYaKdttIHQP1lxxHzaIspN44B7A9e6yKuvErmz8vZo3gRCs9AxVR0aMxohgNqL8uy11FpXNcP4xDC3nuSsuEIGGnRd1hWN8WJyZgh0RSYU5LxZsDxdSy7De-7L88tWxMaL5jDWJEpkpbF2vjjhDq_7Pz19HplqiJEz9UwLtQzi5lW5_BL2iLNxjYFx7kWQu9HHipLaZCb00OW3tihDvsg8vu55OL5v8HSnaPSSOdCWOPmx3MkjbIbxI_wGuDy9WxTj46ETFFK5c0jcq0VqGSj_5fxPPYQPRmn48mB4-hbtEWV-7_Mpt6FXzpXuGik2V7bQIYvD5tkH7F7EoD94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Extraction+of+the+Spatial+Distribution+of+Picea+schrenkiana+in+the+Tianshan+Mountains+Based+on+Google+Earth+Engine+and+the+Jeffries%E2%80%93Matusita+Distance&rft.jtitle=Forests&rft.au=Xu%2C+Fujin&rft.au=Xu%2C+Zhonglin&rft.au=Xu%2C+Changchun&rft.au=Yu%2C+Tingting&rft.date=2023-07-04&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=14&rft.issue=7&rft.spage=1373&rft_id=info:doi/10.3390%2Ff14071373&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon