Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications
In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propag...
Saved in:
Published in | Journal of applied physics Vol. 116; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band. |
---|---|
AbstractList | In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band. |
Author | Gong, Rongzhou Wang, Zhixun Wang, Xian Cheng, Yongzhi Nie, Yan |
Author_xml | – sequence: 1 givenname: Zhixun surname: Wang fullname: Wang, Zhixun – sequence: 2 givenname: Yongzhi surname: Cheng fullname: Cheng, Yongzhi – sequence: 3 givenname: Yan surname: Nie fullname: Nie, Yan – sequence: 4 givenname: Xian surname: Wang fullname: Wang, Xian – sequence: 5 givenname: Rongzhou surname: Gong fullname: Gong, Rongzhou |
BackLink | https://www.osti.gov/biblio/22314576$$D View this record in Osti.gov |
BookMark | eNptkctqHDEQRUVwIGMni_yBIKssZOsxaknLYMcPMGTjrEW1pM7I9EgdSb2wvyKfbI1tMJisCopT51JVx-go5RQQ-sroKaODOGOnW2041foD2jCqDVFS0iO0oZQzoo0yn9BxrfeUMqaF2aB_F6HGPwlD8rgEmOMjtJgTzhPuYuLjPqTaGzBjn9dxDngXWiiZ1FZW19YS8LLLLafosCsPtcFc8ZQLjmkqUIInBTwUXFuXtx1xeb_0hINoD10UDzwsyxzdc3D9jD5OvRe-vNYT9Pvy5935Nbn9dXVz_uOWOK5lIwBsVGoctfYUmHLDZIKUjgrBGTcC-DDApAKAGJRS1FOh_djXN9wLbyQXJ-jbizfXFm11sQW3czml4JrlXLCtVMMbtZT8dw212fu8ln6NanvOIBXXW9mpsxfKlVxrCZPtuud1WoE4W0bt4TmW2dfn9Inv7yaWEvdQHv7DPgH8a5NM |
CitedBy_id | crossref_primary_10_1002_pssr_202300099 crossref_primary_10_1039_D4TC00214H crossref_primary_10_1016_j_optlastec_2023_109630 crossref_primary_10_1016_j_cej_2024_151862 crossref_primary_10_1063_5_0002931 crossref_primary_10_1021_acsami_3c01452 crossref_primary_10_1016_j_matlet_2017_04_109 crossref_primary_10_1364_AO_57_001757 crossref_primary_10_1002_pssa_202200374 crossref_primary_10_1002_admi_202201986 crossref_primary_10_1016_j_ceramint_2023_05_098 crossref_primary_10_1117_1_OE_55_5_057101 crossref_primary_10_1117_1_OE_58_1_015108 crossref_primary_10_1088_1361_6463_ab651a crossref_primary_10_1016_j_optcom_2021_127203 crossref_primary_10_1016_j_optlastec_2022_108557 crossref_primary_10_1088_1361_6463_aa95a9 crossref_primary_10_1364_OE_440078 crossref_primary_10_1364_OME_497654 crossref_primary_10_1088_1361_6463_ac31f5 crossref_primary_10_1002_adem_202201861 crossref_primary_10_1063_1_4975781 crossref_primary_10_1016_j_infrared_2017_05_018 crossref_primary_10_1016_j_dt_2020_05_006 crossref_primary_10_1016_j_jallcom_2016_12_047 crossref_primary_10_1364_OE_475355 crossref_primary_10_1364_OE_457547 crossref_primary_10_1016_j_applthermaleng_2024_124063 crossref_primary_10_1364_OE_438206 crossref_primary_10_1038_s41467_021_22051_0 crossref_primary_10_1002_adom_201701238 crossref_primary_10_1364_OE_484288 crossref_primary_10_1016_j_optmat_2016_09_024 crossref_primary_10_1063_1_5007818 crossref_primary_10_1364_OE_427492 crossref_primary_10_3390_photonics10080931 crossref_primary_10_1007_s10570_021_04385_6 crossref_primary_10_1111_jace_14706 crossref_primary_10_1063_5_0134673 crossref_primary_10_1016_j_infrared_2023_104643 crossref_primary_10_1186_s10033_023_00836_2 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120318 crossref_primary_10_1016_j_infrared_2020_103469 crossref_primary_10_1016_j_infrared_2020_103546 crossref_primary_10_7498_aps_66_084208 crossref_primary_10_1166_sam_2022_4215 crossref_primary_10_1080_14786435_2023_2236043 crossref_primary_10_3390_nano13061030 crossref_primary_10_1016_j_heliyon_2023_e14459 crossref_primary_10_1109_ACCESS_2019_2946405 crossref_primary_10_1364_OME_9_000195 crossref_primary_10_1109_ACCESS_2022_3223442 crossref_primary_10_1016_j_infrared_2016_10_006 crossref_primary_10_1039_D1TC02953C crossref_primary_10_1364_OE_445942 crossref_primary_10_1016_j_infrared_2021_104013 crossref_primary_10_1364_OE_26_011950 crossref_primary_10_1364_OE_553731 crossref_primary_10_1364_OE_424226 crossref_primary_10_1364_OL_43_005323 crossref_primary_10_12677_MS_2019_99104 crossref_primary_10_1039_D3MH00611E crossref_primary_10_1016_j_optmat_2019_03_033 crossref_primary_10_1002_admt_201900063 crossref_primary_10_1016_j_infrared_2018_11_001 |
Cites_doi | 10.3724/SP.J.1010.2011.00156 10.1126/science.1070050 10.4028/www.scientific.net/AMR.382.65 10.1103/PhysRevLett.58.2486 10.1002/app.24854 10.1109/TPS.2011.2160285 10.1063/1.2716379 10.2528/PIER09040802 10.1103/PhysRevLett.58.2059 10.1088/1674-1056/23/2/025201 10.1016/j.infrared.2012.01.006 10.1063/1.2010613 10.1109/8.56998 10.1063/1.3684553 10.1063/1.4863540 10.1109/TPS.2009.2032331 10.1109/50.802989 10.1364/OL.37.000299 10.1126/science.282.5394.1679 10.4028/www.scientific.net/AMR.634-638.2502 10.2528/PIERB08020601 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4892088 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 22314576 10_1063_1_4892088 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI TAF UCJ UE8 |
ID | FETCH-LOGICAL-c285t-aa1b77bb88d0a17c6f9e55c03321293a266af7eaa367770d038db97992d3d9523 |
ISSN | 0021-8979 |
IngestDate | Fri May 19 00:36:35 EDT 2023 Mon Jun 30 06:02:49 EDT 2025 Tue Jul 01 03:49:42 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-aa1b77bb88d0a17c6f9e55c03321293a266af7eaa367770d038db97992d3d9523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2126572845 |
PQPubID | 2050677 |
ParticipantIDs | osti_scitechconnect_22314576 proquest_journals_2126572845 crossref_citationtrail_10_1063_1_4892088 crossref_primary_10_1063_1_4892088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-07 20140807 |
PublicationDateYYYYMMDD | 2014-08-07 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023070421135811600_c3) 2011; 39 (2023070421135811600_c10) 2007; 101 (2023070421135811600_c22) 2013; 634 (2023070421135811600_c17) 1998; 282 (2023070421135811600_c1) 2009; 94 (2023070421135811600_c8) 2012; 382 (2023070421135811600_c14) 1995 (2023070421135811600_c11) 2009; 37 (2023070421135811600_c16) 1987; 58 (2023070421135811600_c18) 1999; 17 (2023070421135811600_c23) 2012; 37 (2023070421135811600_c13) 2014; 115 (2023070421135811600_c4) 2011; 30 (2023070421135811600_c15) 1987; 58 (2023070421135811600_c9) 2007; 104 (2023070421135811600_c12) 2012; 111 (2023070421135811600_c5) 1996 (2023070421135811600_c6) 1990; 38 (2023070421135811600_c19) 2002; 296 (2023070421135811600_c7) 2014; 23 (2023070421135811600_c20) 2005; 87 (2023070421135811600_c21) 2008; 7 (2023070421135811600_c2) 2012; 55 |
References_xml | – volume: 30 start-page: 156 year: 2011 ident: 2023070421135811600_c4 publication-title: J. Infrared Millimeter Waves doi: 10.3724/SP.J.1010.2011.00156 – volume: 296 start-page: 510 year: 2002 ident: 2023070421135811600_c19 publication-title: Science doi: 10.1126/science.1070050 – volume: 382 start-page: 65 year: 2012 ident: 2023070421135811600_c8 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.382.65 – volume: 58 start-page: 2486 year: 1987 ident: 2023070421135811600_c16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2486 – volume: 104 start-page: 2180 year: 2007 ident: 2023070421135811600_c9 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.24854 – volume: 39 start-page: 1768 year: 2011 ident: 2023070421135811600_c3 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2160285 – volume: 101 start-page: 074105 year: 2007 ident: 2023070421135811600_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.2716379 – volume: 94 start-page: 1 year: 2009 ident: 2023070421135811600_c1 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER09040802 – volume: 58 start-page: 2059 year: 1987 ident: 2023070421135811600_c15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2059 – volume: 23 start-page: 025201 year: 2014 ident: 2023070421135811600_c7 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/23/2/025201 – volume: 55 start-page: 380 year: 2012 ident: 2023070421135811600_c2 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2012.01.006 – volume: 87 start-page: 071904 year: 2005 ident: 2023070421135811600_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2010613 – volume-title: Radar Absorbing Materials: From Theory to Design and Characterization year: 1996 ident: 2023070421135811600_c5 – volume: 38 start-page: 1448 year: 1990 ident: 2023070421135811600_c6 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.56998 – volume: 111 start-page: 044902 year: 2012 ident: 2023070421135811600_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.3684553 – volume: 115 start-page: 064902 year: 2014 ident: 2023070421135811600_c13 publication-title: J. Appl. Phys. doi: 10.1063/1.4863540 – volume: 37 start-page: 2116 year: 2009 ident: 2023070421135811600_c11 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2009.2032331 – volume: 17 start-page: 2018 year: 1999 ident: 2023070421135811600_c18 publication-title: J. Lightwave Technol. doi: 10.1109/50.802989 – volume: 37 start-page: 299 year: 2012 ident: 2023070421135811600_c23 publication-title: Opt. Lett. doi: 10.1364/OL.37.000299 – volume: 282 start-page: 1679 year: 1998 ident: 2023070421135811600_c17 publication-title: Science doi: 10.1126/science.282.5394.1679 – volume-title: Photonic Crystals: Molding the Flow of Light year: 1995 ident: 2023070421135811600_c14 – volume: 634 start-page: 2502 year: 2013 ident: 2023070421135811600_c22 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.634-638.2502 – volume: 7 start-page: 133 year: 2008 ident: 2023070421135811600_c21 publication-title: Prog. Electromagn. Res. B doi: 10.2528/PIERB08020601 |
SSID | ssj0011839 |
Score | 2.4372616 |
Snippet | In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Broadband CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Compatibility Construction materials Crystal structure CRYSTALS DESIGN EMISSIVITY GERMANIUM Infrared radar LAYERS MATERIALS Mathematical analysis ONE-DIMENSIONAL CALCULATIONS Photonic crystals RADAR Reflectance REFLECTIVITY Stealth technology THICKNESS THIN FILMS TRANSFER MATRIX METHOD WAVELENGTHS Zinc sulfide ZINC SULFIDES |
Title | Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications |
URI | https://www.proquest.com/docview/2126572845 https://www.osti.gov/biblio/22314576 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyR4QDBAGwxkIR6QKo84jnN5nHbRhLqBRKt1vES-JEulqplKKsF-BfxjjmMnTbeCgJcociIrzvlifznnO8cIvTUYYJpRojnLSOD7kkgRGgc8LBhUQWudSHt2Hp6Ogw8TPun1fnZUS8tK7qubjXkl_2NVaAO7mizZf7Bs2yk0wDnYF45gYTj-lY2PavmFlYgD4XMplYb_lfOMaFO43xbdGOhyaVKkCiN-KYktGmtCB9dFWdV74KjFd-CJs7o6g1FoLYwwnSyEFouBAcKsKkitV6-mpiPguXaAg24E_DdMVzima70oLYm_EPOrwZdi-m3ZAvSwyKDtspxf3RTTVcikdrpernB84Zzckwbbzm1Bg1o0F62A1sSj1jQRnzrP0SQbUBIndr-Z_czO0V6ckIjberXtJG4zNh1a-cbFAdiY8VPsB3Hie3YzwfUC3Ocf05PxcJiOjieje2jLhz8Pv4-2Do7Ohp_b0JShlFY3ZJ-sKVcVsvdt12skp1_CCO8s9TV_GT1Gj5w58IFF0RPUy-bb6GGnHOU2uu9ezFP0wyILA7JwB1m4zPEtZGGLLHwbWbhBFm6QhQFZeB1Z-C6ycIss3EXWMzQ-OR4dnhK3dwdRfswrIgSVUSRlHGtP0EiFeZJxrjzGfMMwBfBCkUeZECyMosjTHou1NCFmXzOdcJ89R_05jGgH4QxIv8xDngehCHIaSqqFVBlVsZR5ntBd9K552alyhe3N_iqztBZYhCylqbPLLnrT3nptq7lsumnPWCwFCmrqKCsjOFNVCjyaBvB3DpcbS6ZuLviawqBCHgHV4y_-fPklerD6GvZQH6ySvQJaW8nXDmi_ADgcriI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+realization+of+one-dimensional+double+hetero-structure+photonic+crystals+for+infrared-radar+stealth-compatible+materials+applications&rft.jtitle=Journal+of+applied+physics&rft.au=Wang+Zhixun&rft.au=Cheng+Yongzhi&rft.au=Nie%2C+Yan&rft.au=Wang%2C+Xian&rft.date=2014-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=116&rft.issue=5&rft_id=info:doi/10.1063%2F1.4892088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |