Efficient continuous-duty Bitter-type electromagnets for cold atom experiments
We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper...
Saved in:
Published in | Review of scientific instruments Vol. 84; no. 10; p. 104706 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2013
|
Online Access | Get full text |
ISSN | 0034-6748 1089-7623 1089-7623 |
DOI | 10.1063/1.4826498 |
Cover
Abstract | We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (∼1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation. |
---|---|
AbstractList | We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation. We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation. We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (∼1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation. |
Author | Chin, Cheng Sabulsky, Dylan O. Gemelke, Nathan D. Parker, Colin V. |
Author_xml | – sequence: 1 givenname: Dylan O. surname: Sabulsky fullname: Sabulsky, Dylan O. – sequence: 2 givenname: Colin V. surname: Parker fullname: Parker, Colin V. – sequence: 3 givenname: Nathan D. surname: Gemelke fullname: Gemelke, Nathan D. – sequence: 4 givenname: Cheng surname: Chin fullname: Chin, Cheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24182143$$D View this record in MEDLINE/PubMed |
BookMark | eNplkDtPwzAUhS1UREth4A-gjDCk9SuJM0JVHlIFS3fLda6RURIH25Hov8eo7QJ3uct3jo6-SzTpXQ8I3RC8ILhkS7Lggpa8FmdoRrCo86qkbIJmGDOelxUXU3QZwidOVxBygaaUE0EJZzP0tjbGagt9zLTro-1HN4a8GeM-e7Qxgs_jfoAMWtDRu0599BBDZpxPeNtkKroug-8BvO1SR7hC50a1Aa6Pf462T-vt6iXfvD-_rh42uaaiiHltal1oA4CxoJQwpjlnUHHCQRHDyY5jpUVTFao2htZ4pxrBeIGhKjgUgs3R3aF28O5rhBBlZ4OGtlU9pP2ScF7TUgiBE3p7RMddB40c0lLl9_KkIAHLA6C9C8GDkdpGFW2y4ZVtJcHyV7Ik8ig5Je7_JE6l_9kfC257YA |
CitedBy_id | crossref_primary_10_1080_09500340_2016_1143051 crossref_primary_10_1016_j_nanoen_2024_110169 crossref_primary_10_1063_5_0120500 crossref_primary_10_1063_1_5128935 crossref_primary_10_1088_1742_6596_1528_1_012027 crossref_primary_10_1103_PhysRevA_98_043626 crossref_primary_10_1063_1_4864051 crossref_primary_10_1063_5_0026812 crossref_primary_10_1088_1742_6596_1428_1_012040 crossref_primary_10_1109_TMAG_2016_2645158 crossref_primary_10_21468_SciPostPhys_6_4_048 crossref_primary_10_1063_5_0049518 crossref_primary_10_1063_5_0100088 crossref_primary_10_1063_1_4989504 crossref_primary_10_1063_1_4892375 crossref_primary_10_1063_1_5046815 crossref_primary_10_1103_PhysRevApplied_19_064011 |
Cites_doi | 10.1103/PhysRevLett.67.3483 10.1103/PhysRevLett.48.596 10.1063/1.4811666 10.1103/PhysRevLett.86.608 10.1103/PhysRevA.35.1535 10.1080/08916159408946484 10.1063/1.2163977 10.1016/j.cej.2006.02.008 10.1063/1.1717838 10.1103/PhysRevLett.74.3352 10.1006/jmre.2000.2279 10.1063/1.1752068 10.1016/j.jmr.2003.08.002 10.1209/epl/i2000-00112-5 10.1103/PhysRevA.58.R2664 10.1088/0034-4885/26/1/303 10.1063/1.1751470 10.1103/PhysRevLett.94.123201 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.4826498 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 24182143 10_1063_1_4826498 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .DC 123 1UP 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADIYS ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS ROL RQS TAE TN5 WH7 XSW YNT YZZ ~02 .GJ 0ZJ 186 3O- 41~ 6TJ 9M8 AAYJJ ACKIV ADRHT ADXHL AETEA AFFNX AHPGS MVM NEJ NEUPN NHB NPM OHT QZG RDFOP UHB XJT XOL ZCG ZXP 7X8 |
ID | FETCH-LOGICAL-c285t-9f9c5cfee00822133c443e7414ea1f41b40ac8d75a9ff290bad83450e754e583 |
ISSN | 0034-6748 1089-7623 |
IngestDate | Fri Sep 05 09:16:22 EDT 2025 Mon Jul 21 05:49:51 EDT 2025 Thu Apr 24 22:57:54 EDT 2025 Tue Jul 01 03:21:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-9f9c5cfee00822133c443e7414ea1f41b40ac8d75a9ff290bad83450e754e583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24182143 |
PQID | 1449268880 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1449268880 pubmed_primary_24182143 crossref_citationtrail_10_1063_1_4826498 crossref_primary_10_1063_1_4826498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 2013-Oct 20131001 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Review of scientific instruments |
PublicationTitleAlternate | Rev Sci Instrum |
PublicationYear | 2013 |
References | (2023070404401793400_c15) 2003; 165 (2023070404401793400_c24) 2002 (2023070404401793400_c12) 1962; 33 (2023070404401793400_c4) 1987; 35 (2023070404401793400_c17) 2006; 118 (2023070404401793400_c23) 2013 (2023070404401793400_c1) 1982; 48 (2023070404401793400_c10) 1936; 7 (2023070404401793400_c11) 1939; 10 (2023070404401793400_c7) 2000; 49 (2023070404401793400_c26) 2010 2023070404401793400_c18 2023070404401793400_c16 (2023070404401793400_c6) 1998; 58 (2023070404401793400_c13) 1963; 26 (2023070404401793400_c14) 2001; 149 (2023070404401793400_c20) 2002 (2023070404401793400_c2) 1991; 67 (2023070404401793400_c25) 2003 (2023070404401793400_c3) 2006; 77 (2023070404401793400_c22) 1996 (2023070404401793400_c19) 2013; 84 (2023070404401793400_c21) 1994; 7 (2023070404401793400_c5) 1995; 74 (2023070404401793400_c8) 2001; 86 (2023070404401793400_c9) 2005; 94 |
References_xml | – ident: 2023070404401793400_c18 – ident: 2023070404401793400_c16 – volume-title: Fundamental Equations of Fluid Mechanics year: 1996 ident: 2023070404401793400_c22 – volume: 67 start-page: 3483 year: 1991 ident: 2023070404401793400_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.3483 – volume: 48 start-page: 596 year: 1982 ident: 2023070404401793400_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.596 – volume-title: A Heat Transfer Textbook year: 2003 ident: 2023070404401793400_c25 – volume-title: Practical Design of Magnetostatic Structure Using Numerical Simulation year: 2013 ident: 2023070404401793400_c23 – volume-title: Principles of Pulsed Magnet Design year: 2002 ident: 2023070404401793400_c24 – volume: 84 start-page: 065115 year: 2013 ident: 2023070404401793400_c19 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4811666 – start-page: 65 volume-title: Proceedings of the CAS CERN Accelerator School, Magnets, Bruges, Belgium, 16–25 June 2009 year: 2010 ident: 2023070404401793400_c26 – volume: 86 start-page: 608 year: 2001 ident: 2023070404401793400_c8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.608 – volume: 35 start-page: 1535 year: 1987 ident: 2023070404401793400_c4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.35.1535 – volume: 7 start-page: 249 issue: 4 year: 1994 ident: 2023070404401793400_c21 publication-title: Exp. Heat Transfer doi: 10.1080/08916159408946484 – volume: 77 start-page: 023106 year: 2006 ident: 2023070404401793400_c3 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2163977 – volume: 118 start-page: 183 year: 2006 ident: 2023070404401793400_c17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.02.008 – volume: 33 start-page: 342 year: 1962 ident: 2023070404401793400_c12 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1717838 – volume: 74 start-page: 3352 year: 1995 ident: 2023070404401793400_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3352 – volume: 149 start-page: 22 year: 2001 ident: 2023070404401793400_c14 publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2279 – volume: 7 start-page: 482 year: 1936 ident: 2023070404401793400_c10 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1752068 – volume: 165 start-page: 196 year: 2003 ident: 2023070404401793400_c15 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2003.08.002 – volume: 49 start-page: 8 year: 2000 ident: 2023070404401793400_c7 publication-title: Europhys. Lett. doi: 10.1209/epl/i2000-00112-5 – volume: 58 start-page: R2664 year: 1998 ident: 2023070404401793400_c6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.58.R2664 – volume: 26 start-page: 69 year: 1963 ident: 2023070404401793400_c13 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/26/1/303 – volume-title: Fundamentals of Fluid Mechanics year: 2002 ident: 2023070404401793400_c20 – volume: 10 start-page: 373 year: 1939 ident: 2023070404401793400_c11 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1751470 – volume: 94 start-page: 123201 year: 2005 ident: 2023070404401793400_c9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.123201 |
SSID | ssj0000511 |
Score | 2.2081115 |
Snippet | We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 104706 |
Title | Efficient continuous-duty Bitter-type electromagnets for cold atom experiments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24182143 https://www.proquest.com/docview/1449268880 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdgu3BBjGd5ySAOQ5VLEtuJcxzrYEKsSFDQbpGT2GhSGxBLD_DX832x42SjSINLVCVOUvn75Xs_CHmRGi51bbHWyZZM2FiyPKkiVkWlEporJQ0WOJ8s0uPP4t2pPB1yVbvqkracVb-21pX8D1XhHNAVq2T_gbLhoXACfgN94QgUhuOVaHzU9X_AaD5mnJ81GzDjWb0Bvfr1GVbpsM7B6ifdrPXXxrRd-wVYvqqnYG6vRx3-z8d66sdQ0eIqJjGhCPPWW-y10K9Fx4wuNyvvf53_XAGz-DAbolI_fMrGIU4Gmn4JV96atVm5rKBF57ufzsM1HOjt8gCMF6reJxEP2W2Bz3LBcIyJkzKOtUYqZ8B6-Zj3uvFwPcairTwdlCh0L8wEWEIiV4Pg6oP1l-RZyDLs4uspL-LC33qd7CZZhtH83YP5yftPg8iWsRut6P9234Iq5a_Cey8qLn-xRjqtZHmL3PTmBD1w2Ngj10xzm-x5hn1O931X8Zd3yCKAhV4CCx2BhV4ECwWwUAQLRbDQEVjukuWbo-XhMfPDNFiVKNmy3OaVrKwxXY__mPNKCG5AnxRGx1bEpYh0pepM6tzaJI9KXSsuZGQyKYxU_B7Zab415gGhNRdZWUdgONelSFOppQW1ExTPGrYpFnZC9vuNKirfaB7nnayKPwgyIc_D0u-uu8q2Rc_63S6A92FASzcG9gjMVmx3qUAETch9R4bwGNBMVQLGwMOrvOIRuTHA-DHZgY_JPAFlsy2feqj8Bk3_f10 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+continuous-duty+Bitter-type+electromagnets+for+cold+atom+experiments&rft.jtitle=Review+of+scientific+instruments&rft.au=Sabulsky%2C+Dylan+O.&rft.au=Parker%2C+Colin+V.&rft.au=Gemelke%2C+Nathan+D.&rft.au=Chin%2C+Cheng&rft.date=2013-10-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=84&rft.issue=10&rft_id=info:doi/10.1063%2F1.4826498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4826498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |