Efficient continuous-duty Bitter-type electromagnets for cold atom experiments

We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 84; no. 10; p. 104706
Main Authors Sabulsky, Dylan O., Parker, Colin V., Gemelke, Nathan D., Chin, Cheng
Format Journal Article
LanguageEnglish
Published United States 01.10.2013
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/1.4826498

Cover

Abstract We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (∼1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.
AbstractList We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.
We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.
We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (∼1 mm) to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperature only increases by 7 °C under continuous operation.
Author Chin, Cheng
Sabulsky, Dylan O.
Gemelke, Nathan D.
Parker, Colin V.
Author_xml – sequence: 1
  givenname: Dylan O.
  surname: Sabulsky
  fullname: Sabulsky, Dylan O.
– sequence: 2
  givenname: Colin V.
  surname: Parker
  fullname: Parker, Colin V.
– sequence: 3
  givenname: Nathan D.
  surname: Gemelke
  fullname: Gemelke, Nathan D.
– sequence: 4
  givenname: Cheng
  surname: Chin
  fullname: Chin, Cheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24182143$$D View this record in MEDLINE/PubMed
BookMark eNplkDtPwzAUhS1UREth4A-gjDCk9SuJM0JVHlIFS3fLda6RURIH25Hov8eo7QJ3uct3jo6-SzTpXQ8I3RC8ILhkS7Lggpa8FmdoRrCo86qkbIJmGDOelxUXU3QZwidOVxBygaaUE0EJZzP0tjbGagt9zLTro-1HN4a8GeM-e7Qxgs_jfoAMWtDRu0599BBDZpxPeNtkKroug-8BvO1SR7hC50a1Aa6Pf462T-vt6iXfvD-_rh42uaaiiHltal1oA4CxoJQwpjlnUHHCQRHDyY5jpUVTFao2htZ4pxrBeIGhKjgUgs3R3aF28O5rhBBlZ4OGtlU9pP2ScF7TUgiBE3p7RMddB40c0lLl9_KkIAHLA6C9C8GDkdpGFW2y4ZVtJcHyV7Ik8ig5Je7_JE6l_9kfC257YA
CitedBy_id crossref_primary_10_1080_09500340_2016_1143051
crossref_primary_10_1016_j_nanoen_2024_110169
crossref_primary_10_1063_5_0120500
crossref_primary_10_1063_1_5128935
crossref_primary_10_1088_1742_6596_1528_1_012027
crossref_primary_10_1103_PhysRevA_98_043626
crossref_primary_10_1063_1_4864051
crossref_primary_10_1063_5_0026812
crossref_primary_10_1088_1742_6596_1428_1_012040
crossref_primary_10_1109_TMAG_2016_2645158
crossref_primary_10_21468_SciPostPhys_6_4_048
crossref_primary_10_1063_5_0049518
crossref_primary_10_1063_5_0100088
crossref_primary_10_1063_1_4989504
crossref_primary_10_1063_1_4892375
crossref_primary_10_1063_1_5046815
crossref_primary_10_1103_PhysRevApplied_19_064011
Cites_doi 10.1103/PhysRevLett.67.3483
10.1103/PhysRevLett.48.596
10.1063/1.4811666
10.1103/PhysRevLett.86.608
10.1103/PhysRevA.35.1535
10.1080/08916159408946484
10.1063/1.2163977
10.1016/j.cej.2006.02.008
10.1063/1.1717838
10.1103/PhysRevLett.74.3352
10.1006/jmre.2000.2279
10.1063/1.1752068
10.1016/j.jmr.2003.08.002
10.1209/epl/i2000-00112-5
10.1103/PhysRevA.58.R2664
10.1088/0034-4885/26/1/303
10.1063/1.1751470
10.1103/PhysRevLett.94.123201
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.4826498
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 24182143
10_1063_1_4826498
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
TAE
TN5
WH7
XSW
YNT
YZZ
~02
.GJ
0ZJ
186
3O-
41~
6TJ
9M8
AAYJJ
ACKIV
ADRHT
ADXHL
AETEA
AFFNX
AHPGS
MVM
NEJ
NEUPN
NHB
NPM
OHT
QZG
RDFOP
UHB
XJT
XOL
ZCG
ZXP
7X8
ID FETCH-LOGICAL-c285t-9f9c5cfee00822133c443e7414ea1f41b40ac8d75a9ff290bad83450e754e583
ISSN 0034-6748
1089-7623
IngestDate Fri Sep 05 09:16:22 EDT 2025
Mon Jul 21 05:49:51 EDT 2025
Thu Apr 24 22:57:54 EDT 2025
Tue Jul 01 03:21:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-9f9c5cfee00822133c443e7414ea1f41b40ac8d75a9ff290bad83450e754e583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24182143
PQID 1449268880
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1449268880
pubmed_primary_24182143
crossref_citationtrail_10_1063_1_4826498
crossref_primary_10_1063_1_4826498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
2013-Oct
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2013
References (2023070404401793400_c15) 2003; 165
(2023070404401793400_c24) 2002
(2023070404401793400_c12) 1962; 33
(2023070404401793400_c4) 1987; 35
(2023070404401793400_c17) 2006; 118
(2023070404401793400_c23) 2013
(2023070404401793400_c1) 1982; 48
(2023070404401793400_c10) 1936; 7
(2023070404401793400_c11) 1939; 10
(2023070404401793400_c7) 2000; 49
(2023070404401793400_c26) 2010
2023070404401793400_c18
2023070404401793400_c16
(2023070404401793400_c6) 1998; 58
(2023070404401793400_c13) 1963; 26
(2023070404401793400_c14) 2001; 149
(2023070404401793400_c20) 2002
(2023070404401793400_c2) 1991; 67
(2023070404401793400_c25) 2003
(2023070404401793400_c3) 2006; 77
(2023070404401793400_c22) 1996
(2023070404401793400_c19) 2013; 84
(2023070404401793400_c21) 1994; 7
(2023070404401793400_c5) 1995; 74
(2023070404401793400_c8) 2001; 86
(2023070404401793400_c9) 2005; 94
References_xml – ident: 2023070404401793400_c18
– ident: 2023070404401793400_c16
– volume-title: Fundamental Equations of Fluid Mechanics
  year: 1996
  ident: 2023070404401793400_c22
– volume: 67
  start-page: 3483
  year: 1991
  ident: 2023070404401793400_c2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.3483
– volume: 48
  start-page: 596
  year: 1982
  ident: 2023070404401793400_c1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.596
– volume-title: A Heat Transfer Textbook
  year: 2003
  ident: 2023070404401793400_c25
– volume-title: Practical Design of Magnetostatic Structure Using Numerical Simulation
  year: 2013
  ident: 2023070404401793400_c23
– volume-title: Principles of Pulsed Magnet Design
  year: 2002
  ident: 2023070404401793400_c24
– volume: 84
  start-page: 065115
  year: 2013
  ident: 2023070404401793400_c19
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4811666
– start-page: 65
  volume-title: Proceedings of the CAS CERN Accelerator School, Magnets, Bruges, Belgium, 16–25 June 2009
  year: 2010
  ident: 2023070404401793400_c26
– volume: 86
  start-page: 608
  year: 2001
  ident: 2023070404401793400_c8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.608
– volume: 35
  start-page: 1535
  year: 1987
  ident: 2023070404401793400_c4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.35.1535
– volume: 7
  start-page: 249
  issue: 4
  year: 1994
  ident: 2023070404401793400_c21
  publication-title: Exp. Heat Transfer
  doi: 10.1080/08916159408946484
– volume: 77
  start-page: 023106
  year: 2006
  ident: 2023070404401793400_c3
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2163977
– volume: 118
  start-page: 183
  year: 2006
  ident: 2023070404401793400_c17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.02.008
– volume: 33
  start-page: 342
  year: 1962
  ident: 2023070404401793400_c12
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1717838
– volume: 74
  start-page: 3352
  year: 1995
  ident: 2023070404401793400_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3352
– volume: 149
  start-page: 22
  year: 2001
  ident: 2023070404401793400_c14
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2279
– volume: 7
  start-page: 482
  year: 1936
  ident: 2023070404401793400_c10
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1752068
– volume: 165
  start-page: 196
  year: 2003
  ident: 2023070404401793400_c15
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2003.08.002
– volume: 49
  start-page: 8
  year: 2000
  ident: 2023070404401793400_c7
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2000-00112-5
– volume: 58
  start-page: R2664
  year: 1998
  ident: 2023070404401793400_c6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.58.R2664
– volume: 26
  start-page: 69
  year: 1963
  ident: 2023070404401793400_c13
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/26/1/303
– volume-title: Fundamentals of Fluid Mechanics
  year: 2002
  ident: 2023070404401793400_c20
– volume: 10
  start-page: 373
  year: 1939
  ident: 2023070404401793400_c11
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1751470
– volume: 94
  start-page: 123201
  year: 2005
  ident: 2023070404401793400_c9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.123201
SSID ssj0000511
Score 2.2081115
Snippet We present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 104706
Title Efficient continuous-duty Bitter-type electromagnets for cold atom experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/24182143
https://www.proquest.com/docview/1449268880
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdgu3BBjGd5ySAOQ5VLEtuJcxzrYEKsSFDQbpGT2GhSGxBLD_DX832x42SjSINLVCVOUvn75Xs_CHmRGi51bbHWyZZM2FiyPKkiVkWlEporJQ0WOJ8s0uPP4t2pPB1yVbvqkracVb-21pX8D1XhHNAVq2T_gbLhoXACfgN94QgUhuOVaHzU9X_AaD5mnJ81GzDjWb0Bvfr1GVbpsM7B6ifdrPXXxrRd-wVYvqqnYG6vRx3-z8d66sdQ0eIqJjGhCPPWW-y10K9Fx4wuNyvvf53_XAGz-DAbolI_fMrGIU4Gmn4JV96atVm5rKBF57ufzsM1HOjt8gCMF6reJxEP2W2Bz3LBcIyJkzKOtUYqZ8B6-Zj3uvFwPcairTwdlCh0L8wEWEIiV4Pg6oP1l-RZyDLs4uspL-LC33qd7CZZhtH83YP5yftPg8iWsRut6P9234Iq5a_Cey8qLn-xRjqtZHmL3PTmBD1w2Ngj10xzm-x5hn1O931X8Zd3yCKAhV4CCx2BhV4ECwWwUAQLRbDQEVjukuWbo-XhMfPDNFiVKNmy3OaVrKwxXY__mPNKCG5AnxRGx1bEpYh0pepM6tzaJI9KXSsuZGQyKYxU_B7Zab415gGhNRdZWUdgONelSFOppQW1ExTPGrYpFnZC9vuNKirfaB7nnayKPwgyIc_D0u-uu8q2Rc_63S6A92FASzcG9gjMVmx3qUAETch9R4bwGNBMVQLGwMOrvOIRuTHA-DHZgY_JPAFlsy2feqj8Bk3_f10
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+continuous-duty+Bitter-type+electromagnets+for+cold+atom+experiments&rft.jtitle=Review+of+scientific+instruments&rft.au=Sabulsky%2C+Dylan+O.&rft.au=Parker%2C+Colin+V.&rft.au=Gemelke%2C+Nathan+D.&rft.au=Chin%2C+Cheng&rft.date=2013-10-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=84&rft.issue=10&rft_id=info:doi/10.1063%2F1.4826498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4826498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon