A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication
Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for plan...
Saved in:
Published in | Measurement science & technology Vol. 35; no. 1; p. 12002 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2024
|
Online Access | Get full text |
ISSN | 0957-0233 1361-6501 |
DOI | 10.1088/1361-6501/acf390 |
Cover
Loading…
Abstract | Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset . |
---|---|
AbstractList | Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset . |
Author | Liu, Dongdong Cui, Lingli Cheng, Weidong |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0003-2638-3014 surname: Liu fullname: Liu, Dongdong – sequence: 2 givenname: Lingli surname: Cui fullname: Cui, Lingli – sequence: 3 givenname: Weidong surname: Cheng fullname: Cheng, Weidong |
BookMark | eNp1kE1PwzAMhiM0JLbBnWN-AAWnXdOG2zTxJU3iAufKTdwtqEurJDD497QMOCBxsvxaj2U_MzZxnSPGzgVcCijLK5FJkcgcxBXqJlNwxKa_0YRNQeVFAmmWnbBZCC8AUIBSU7Zfck9vlva8c9wQ9bwl9M66DbeO9y06iug_-GZI6-6dbwnbuOUhYqSB1N3G2Wg7d813FLedCRcc-761Gsd07JzhBiMGirx_rX8mp-y4wTbQ2Xeds-fbm6fVfbJ-vHtYLdeJTss8JkoLo0xtmkJIwHIh0jptChRK1IZkpgsQRalULSSmqoFCS7PIGyplqjI9aMnmDA57te9C8NRUvbe74aNKQDWKq0ZL1WipOogbEPkH0TZ-HR092vZ_8BOh5nbl |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112593 crossref_primary_10_1177_10775463241280426 crossref_primary_10_1016_j_cose_2024_104036 crossref_primary_10_1088_2631_8695_ad3a36 crossref_primary_10_1080_10589759_2024_2405062 crossref_primary_10_1088_1361_6501_ada630 crossref_primary_10_1016_j_simpat_2024_103058 crossref_primary_10_1088_1361_6501_ad0880 crossref_primary_10_1109_TIM_2024_3351254 crossref_primary_10_1088_1361_6501_ad5de7 crossref_primary_10_1007_s11071_024_09389_y crossref_primary_10_1109_JSEN_2024_3403141 crossref_primary_10_1016_j_aei_2024_102605 crossref_primary_10_1109_JSEN_2024_3517597 crossref_primary_10_1088_1361_6501_ad289c crossref_primary_10_3390_s25020540 crossref_primary_10_1109_TIM_2024_3385830 crossref_primary_10_1088_1361_6501_ad67f6 crossref_primary_10_1007_s11071_025_10914_w crossref_primary_10_59400_sv2242 crossref_primary_10_1109_JIOT_2024_3377674 crossref_primary_10_3390_s24144682 crossref_primary_10_3390_e26050409 crossref_primary_10_1088_1361_6501_ad5861 crossref_primary_10_1088_1361_6501_ad50fb crossref_primary_10_1177_14759217241249656 crossref_primary_10_1109_JSEN_2024_3461810 crossref_primary_10_1088_1361_6501_adb76f crossref_primary_10_1088_1361_6501_ace98a crossref_primary_10_1109_JSEN_2023_3326810 crossref_primary_10_1177_14759217251320676 crossref_primary_10_1109_JSEN_2025_3532798 crossref_primary_10_1109_JSEN_2024_3412436 crossref_primary_10_1109_JSEN_2023_3317873 crossref_primary_10_1109_JIOT_2024_3496928 crossref_primary_10_1109_JSEN_2024_3432921 crossref_primary_10_1088_1361_6501_ad5905 crossref_primary_10_1109_TR_2023_3328597 crossref_primary_10_1109_JIOT_2024_3489617 crossref_primary_10_1088_1361_6501_ad3772 crossref_primary_10_1088_1361_6501_ad5f4c crossref_primary_10_1109_JSEN_2024_3362349 crossref_primary_10_1109_JSEN_2024_3350167 crossref_primary_10_1109_JSEN_2023_3326112 crossref_primary_10_1109_JSEN_2023_3330955 crossref_primary_10_1109_JIOT_2024_3471410 crossref_primary_10_1007_s40430_024_05155_8 crossref_primary_10_1088_1361_6501_ad356e crossref_primary_10_1016_j_jmsy_2024_10_004 crossref_primary_10_1016_j_ress_2025_110898 crossref_primary_10_1177_09544062241266349 crossref_primary_10_3390_sym16030285 crossref_primary_10_3390_s24216907 |
Cites_doi | 10.1109/TIM.2022.3203440 10.1016/j.jphysparis.2009.11.002 10.1109/TIM.2022.3213016 10.1177/1475921717738713 10.1016/j.ymssp.2019.106587 10.1016/j.neucom.2017.07.032 10.1007/s10845-020-01579-w 10.1109/TCYB.2021.3123667 10.1109/JSEN.2020.2980596 10.1109/TIM.2023.3244822 10.1016/j.ymssp.2020.106752 10.1016/j.isatra.2022.06.035 10.1016/j.cja.2019.07.011 10.1016/j.neucom.2020.07.088 10.1016/j.ymssp.2023.110172 10.1016/j.renene.2021.04.019 10.1016/j.ymssp.2022.109848 10.1016/j.eswa.2010.12.095 10.1016/j.measurement.2022.111697 10.1016/j.cie.2017.12.002 10.1016/j.renene.2018.09.027 10.1038/323533a0 10.1177/14759217221112835 10.1126/science.1127647 10.1016/j.mechmachtheory.2021.104260 10.1109/TSP.2020.3033962 10.3390/s20061685 10.1109/TNN.2008.2005605 10.1109/TIM.2021.3084310 10.1016/j.ymssp.2022.109760 10.1016/j.engappai.2023.106590 10.1016/j.ymssp.2019.03.036 10.1016/j.ymssp.2018.05.011 10.1016/j.measurement.2021.109565 10.1162/neco.2006.18.7.1527 10.1103/PhysRevLett.89.208102 10.1007/s00521-021-06314-x 10.1016/j.measurement.2013.11.012 10.1109/TIE.2021.3090713 10.1145/3065386 10.1162/089976602760128018 10.1177/14759217211029016 10.1109/TPAMI.2022.3152247 10.1109/TNNLS.2022.3202234 10.1007/s42417-021-00413-8 10.1016/j.neucom.2018.06.078 10.1016/j.ress.2023.109345 10.1109/JSYST.2019.2905565 10.1016/j.ymssp.2019.02.051 10.1038/nature14539 10.3390/en12234522 10.1016/j.aei.2004.08.001 10.1088/1361-6501/ab1da0 10.1016/j.ymssp.2021.107963 10.1016/j.ymssp.2015.03.005 10.1016/j.knosys.2018.07.017 10.3390/app10030932 10.1016/j.measurement.2021.109491 10.1109/TIE.2021.3100927 10.1016/j.inffus.2022.06.005 10.1109/MIM.2016.7462789 10.1109/TII.2018.2864759 10.1016/j.isatra.2022.10.008 10.1016/j.ymssp.2023.110159 10.1016/j.ymssp.2018.02.016 10.1109/TIM.2022.3217869 10.1016/j.isatra.2019.10.005 10.1016/j.compind.2018.11.003 10.1016/j.measurement.2020.107768 10.1109/TMECH.2022.3199985 10.1016/j.measurement.2017.07.017 10.1016/j.ymssp.2015.10.025 10.1016/j.apacoust.2016.07.026 10.1088/1361-6501/abf30b 10.1088/1361-6501/ac0741 10.1016/j.jsv.2016.07.013 10.1109/TIE.2020.3040669 10.1016/j.ymssp.2019.106482 10.1016/j.ymssp.2020.106683 10.1016/j.ress.2021.108187 10.1088/1361-6501/aaf319 10.1016/j.promfg.2020.07.014 10.1016/j.measurement.2021.109356 10.1109/TIE.2021.3063979 10.1109/JSYST.2019.2929617 10.1016/j.neucom.2018.05.024 10.1109/TIE.2020.2972461 10.1016/j.sigpro.2013.04.015 10.1049/iet-epa.2018.5274 10.1109/tim.2020.3020682 10.1016/j.jsv.2016.08.026 10.1109/TIE.2019.2902817 10.1109/TII.2022.3185771 10.1016/j.engappai.2020.104149 10.1016/j.ymssp.2012.06.021 10.1016/j.engfailanal.2022.106573 10.1145/3422622 10.1109/TIE.2018.2866050 10.1088/1361-6501/ac991f 10.1109/TIE.2018.2856205 10.1109/TII.2021.3102017 10.1109/JSEN.2022.3146151 10.1109/ACCESS.2020.3008208 10.1088/1361-6501/ac9e6c 10.1109/TIE.2021.3108719 10.1016/j.ymssp.2021.108653 10.1016/j.inffus.2021.03.008 10.1109/5.30749 10.1109/JSEN.2023.3269445 10.1109/TII.2020.2967822 10.1016/j.measurement.2019.04.093 10.1016/j.jsv.2005.03.007 10.3390/app11209401 10.1109/TII.2019.2955540 10.1007/s11042-017-4461-z 10.1088/1361-6501/acb377 10.1109/TMECH.2021.3058061 10.1007/s00464-019-07000-9 10.1109/TII.2022.3192597 10.1016/j.ymssp.2018.05.050 10.1109/JSEN.2021.3049953 10.1016/j.jmsy.2020.05.004 10.1016/j.ymssp.2020.107462 10.3390/s19112504 10.1016/j.jsv.2015.11.038 10.1016/j.renene.2019.06.103 10.1109/OJIM.2022.3190535 10.1109/TIM.2023.3239925 10.1109/TIE.2020.2972458 10.1016/j.ymssp.2019.106530 10.1016/j.isatra.2021.11.028 10.1155/2022/7693393 10.1088/1361-6501/ac8be9 10.1088/1361-6501/aa50e7 10.1016/j.compind.2019.01.012 10.1016/j.renene.2021.06.088 10.1109/TMECH.2023.3237233 10.1016/j.ymssp.2020.107325 10.1016/j.ymssp.2021.107997 10.1186/s40649-019-0069-y 10.1177/14759217221109938 10.1016/j.ymssp.2022.109772 10.1016/j.eswa.2021.115234 10.1016/j.ymssp.2013.01.017 10.1088/1361-6501/ac471a 10.1016/j.renene.2023.01.056 10.1016/j.measurement.2022.112346 10.1371/journal.pone.0122827 10.1016/j.ymssp.2021.108575 10.1016/j.simpat.2021.102469 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/acf390 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_acf390 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c285t-9c1d9dbdf7160a8412b2f7a191bde63c7017899b16a29f07c6d45fe86293c0883 |
ISSN | 0957-0233 |
IngestDate | Thu Apr 24 22:58:18 EDT 2025 Wed Aug 27 16:27:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-9c1d9dbdf7160a8412b2f7a191bde63c7017899b16a29f07c6d45fe86293c0883 |
ORCID | 0000-0003-2638-3014 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6501/acf390/pdf |
ParticipantIDs | crossref_primary_10_1088_1361_6501_acf390 crossref_citationtrail_10_1088_1361_6501_acf390 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2024 |
References | Sun (mstacf390bib152) 2023; 22 Wang (mstacf390bib1) 2019; 126 Wang (mstacf390bib11) 2016; 385 Zhang (mstacf390bib106) 2021; 161 Hoang (mstacf390bib29) 2019; 335 He (mstacf390bib51) 2016 Wang (mstacf390bib2) 2020; 145 Zhang (mstacf390bib47) 2020; 33 Lu (mstacf390bib75) 2021; 32 Liu (mstacf390bib156) 2020; 14 Helmi (mstacf390bib19) 2019; 13 Feng (mstacf390bib36) 2020; 136 Jing (mstacf390bib83) 2017; 111 Wu (mstacf390bib127) 2023; 34 Liu (mstacf390bib166) 2023; 206 Zhang (mstacf390bib4) 2019; 13 Zhang (mstacf390bib64) 2022; 71 Wang (mstacf390bib119) 2020; 16 Yu (mstacf390bib67) 2019; 30 Wang (mstacf390bib162) Kollias (mstacf390bib61) 2022; vol 36 Scarselli (mstacf390bib57) 2009; 20 Feng (mstacf390bib35) 2019; 128 Yang (mstacf390bib65) 2021; 32 Cui (mstacf390bib131) 2021; 11 Su (mstacf390bib133) 2022; 140 Hinton (mstacf390bib44) 2006; 313 Qin (mstacf390bib80) 2019; 66 Perez-Sanjines (mstacf390bib97) 2023; 185 Abboud (mstacf390bib96) 2019; 114 Zhao (mstacf390bib17) 2019; 115 Vincent (mstacf390bib25) 2008 Pu (mstacf390bib132) 2022; 69 Ma (mstacf390bib139) 2021; 182 Luo (mstacf390bib31) 2021; 159 Zhang (mstacf390bib78) 2019; 19 Cessac (mstacf390bib146) 2010; 104 Qiu (mstacf390bib18) 2003; 17 Saufi (mstacf390bib68) 2020; 16 Ab Wahab (mstacf390bib69) 2015; 10 Liu (mstacf390bib16) 2021; 153 Huang (mstacf390bib110) 2022; 116 Shao (mstacf390bib164) 2019; 15 Lei (mstacf390bib22) 2011; 38 Wang (mstacf390bib24) 2022; 69 Li (mstacf390bib118) 2022 Chen (mstacf390bib92) 2019; 106 Ruiz (mstacf390bib60) 2020; 68 Wang (mstacf390bib158) 2023; 34 Qiu (mstacf390bib160) 2006; 289 Liu (mstacf390bib23) 2022; 10 fan (mstacf390bib134) 2022; 34 Zhang (mstacf390bib121) 2023; 191 Guo (mstacf390bib103) 2021; 178 Bechhoefer (mstacf390bib161) 2012 Goodfellow (mstacf390bib56) 2016 Feng (mstacf390bib40) 2016; 382 Xu (mstacf390bib117) 2022; 86–87 Liang (mstacf390bib138) 2020; 159 Li (mstacf390bib105) 2020; 20 Kipf (mstacf390bib58) 2017 Jin (mstacf390bib147) 2002; 89 Zhang (mstacf390bib130) 2022; 71 Emmanuel (mstacf390bib94) 2021; 33 Liang (mstacf390bib116) 2022; 69 Zhou (mstacf390bib135) 2023; 185 Tang (mstacf390bib53) 2022; 71 Chen (mstacf390bib71) 2019; 12 Zhu (mstacf390bib15) 2023; 206 Li (mstacf390bib74) 2020; 142 Chen (mstacf390bib95) 2020; 140 Zhang (mstacf390bib59) 2019; 6 Zhao (mstacf390bib107) 2021; 68 Yan (mstacf390bib90) 2014; 96 Xie (mstacf390bib112) 2022; 18 Hu (mstacf390bib125) 2018 Wang (mstacf390bib136) 2018; 310 LeCun (mstacf390bib27) 1989 Yu (mstacf390bib154) 2023; 186 Zhang (mstacf390bib111) 2021; 179 Kong (mstacf390bib9) 2022; 21 Kong (mstacf390bib34) 2019; 132 Yang (mstacf390bib81) 2021; 99 Liu (mstacf390bib6) 2023; 19 He (mstacf390bib128) 2023 Elasha (mstacf390bib33) 2018; 17 Vaswani (mstacf390bib52) 2017 Wang (mstacf390bib66) 2019; 30 Zhang (mstacf390bib122) 2023; 191 Li (mstacf390bib155) 2022; 168 Chang (mstacf390bib87) 2020; 141 Han (mstacf390bib124) 2023; 28 Chen (mstacf390bib102) 2019; 146 Miao (mstacf390bib115) 2020; 99 Shao (mstacf390bib70) 2022; 27 Jia (mstacf390bib62) 2016; 72–73 Cohen (mstacf390bib91) 1989; 77 Li (mstacf390bib143) 2021; 68 Salakhutdinov (mstacf390bib26) 2009; 5 Sun (mstacf390bib126) 2022; 1 Goodfellow (mstacf390bib55) 2020; 63 Zhu (mstacf390bib101) 2021; 70 Zhao (mstacf390bib109) 2019; 66 Cao (mstacf390bib145) 2023; 23 Hinton (mstacf390bib42) 2006; 18 Liu (mstacf390bib89) 2020; 49 He (mstacf390bib50) 2016 Hinton (mstacf390bib43) 2002; 14 Chen (mstacf390bib157) 2023; 237 Wang (mstacf390bib86) 2021; 180 Sun (mstacf390bib151) 2023; 124 Lei (mstacf390bib7) 2014; 48 Jiao (mstacf390bib104) 2019; 66 Wang (mstacf390bib93) 2020; 10 Jiao (mstacf390bib114) 2018; 160 Kong (mstacf390bib39) 2021; 21 Han (mstacf390bib85) 2019; 107 Feng (mstacf390bib113) 2021; 149 Liu (mstacf390bib49) 2022; 22 Feng (mstacf390bib149) 2019; vol 33 Kong (mstacf390bib10) 2021; 173 Chen (mstacf390bib3) 2016; 19 Feng (mstacf390bib88) 2013; 38 Li (mstacf390bib20) 2018; 116 Hassairi (mstacf390bib73) 2018; 77 Luo (mstacf390bib140) 2021; 32 LeCun (mstacf390bib46) 2015; 521 Han (mstacf390bib77) 2020; 8 Zhang (mstacf390bib12) 2023; 19 Zhang (mstacf390bib148) 2022; 201 Li (mstacf390bib150) 2022; 218 Weng (mstacf390bib123) 2023; 72 Rumelhart (mstacf390bib41) 1986; 323 Zhao (mstacf390bib137) 2022; 33 Kim (mstacf390bib100) 2022; 167 Zhang (mstacf390bib129) 2023; 28 Li (mstacf390bib8) 2022; 69 Huang (mstacf390bib84) 2023; 53 Wen (mstacf390bib141) 2020; 20 Wang (mstacf390bib38) 2015; 62–63 Zhang (mstacf390bib108) 2023; 133 Lei (mstacf390bib37) 2013; 38 Chen (mstacf390bib76) 2017; 28 Yang (mstacf390bib98) 2022; 2022 Lei (mstacf390bib14) 2020; 138 mstacf390bib159 Li (mstacf390bib13) 2021; 161 Krizhevsky (mstacf390bib45) 2017; 60 Shao (mstacf390bib72) 2021; 74 Han (mstacf390bib54) 2023; 45 Lingli (mstacf390bib99) 2022; 33 Luo (mstacf390bib30) 2021; 178 Elasha (mstacf390bib32) 2017; 115 Guo (mstacf390bib79) 2016; 365 Shan (mstacf390bib153) 2023; 72 Liu (mstacf390bib5) 2023; 22 Yu (mstacf390bib144) 2021; 70 Liang (mstacf390bib142) 2023; 135 Jiao (mstacf390bib48) 2020; 417 Liu (mstacf390bib28) 2018; 108 mstacf390bib163 Li (mstacf390bib21) 2021; 61 Xing (mstacf390bib82) 2021; 68 Wang (mstacf390bib120) 2022; 128 mstacf390bib165 Jia (mstacf390bib63) 2018; 272 |
References_xml | – volume: 71 start-page: 1 year: 2022 ident: mstacf390bib64 article-title: Discriminative sparse autoencoder for gearbox fault diagnosis toward complex vibration signals publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3203440 – volume: 104 start-page: 5 year: 2010 ident: mstacf390bib146 article-title: Overview of facts and issues about neural coding by spikes publication-title: J. Physiol. Paris doi: 10.1016/j.jphysparis.2009.11.002 – start-page: 7132 year: 2018 ident: mstacf390bib125 article-title: Squeeze-and-excitation networks – volume: 71 start-page: 1 year: 2022 ident: mstacf390bib130 article-title: MMFNet: multisensor data and multiscale feature fusion model for intelligent cross-domain machinery fault diagnosis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3213016 – volume: 17 start-page: 1192 year: 2018 ident: mstacf390bib33 article-title: Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission publication-title: Struct. Health Monit. doi: 10.1177/1475921717738713 – volume: 138 year: 2020 ident: mstacf390bib14 article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106587 – volume: 272 start-page: 619 year: 2018 ident: mstacf390bib63 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.032 – volume: 32 start-page: 407 year: 2021 ident: mstacf390bib140 article-title: A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01579-w – volume: 53 start-page: 443 year: 2023 ident: mstacf390bib84 article-title: Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3123667 – volume: 20 start-page: 8364 year: 2020 ident: mstacf390bib105 article-title: Adaptive channel weighted CNN with multisensor fusion for condition monitoring of helicopter transmission system publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2980596 – volume: 72 start-page: 1 year: 2023 ident: mstacf390bib123 article-title: A novel multisensor fusion transformer and its application into rotating machinery fault diagnosis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3244822 – volume: 142 year: 2020 ident: mstacf390bib74 article-title: An enhanced selective ensemble deep learning method for rolling bearing fault diagnosis with beetle antennae search algorithm publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106752 – volume: 133 start-page: 369 year: 2023 ident: mstacf390bib108 article-title: Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.06.035 – volume: 33 start-page: 439 year: 2020 ident: mstacf390bib47 article-title: A new bearing fault diagnosis method based on modified convolutional neural networks publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.07.011 – volume: 417 start-page: 36 year: 2020 ident: mstacf390bib48 article-title: A comprehensive review on convolutional neural network in machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.088 – volume: 191 year: 2023 ident: mstacf390bib121 article-title: Multi-sensor open-set cross-domain intelligent diagnostics for rotating machinery under variable operating conditions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110172 – volume: 173 start-page: 987 year: 2021 ident: mstacf390bib10 article-title: An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2021.04.019 – volume: 186 year: 2023 ident: mstacf390bib154 article-title: Fault diagnosis of rotating machinery based on graph weighted reinforcement networks under small samples and strong noise publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109848 – volume: 38 start-page: 7334 year: 2011 ident: mstacf390bib22 article-title: EEMD method and WNN for fault diagnosis of locomotive roller bearings publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.095 – volume: 201 year: 2022 ident: mstacf390bib148 article-title: Motor current signal analysis using hypergraph neural networks for fault diagnosis of electromechanical system publication-title: Measurement doi: 10.1016/j.measurement.2022.111697 – volume: 116 start-page: 37 year: 2018 ident: mstacf390bib20 article-title: Data-driven bearing fault identification using improved hidden Markov model and self-organizing map publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.12.002 – volume: 132 start-page: 1373 year: 2019 ident: mstacf390bib34 article-title: Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear publication-title: Renew. Energy doi: 10.1016/j.renene.2018.09.027 – volume: 323 start-page: 533 year: 1986 ident: mstacf390bib41 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 22 start-page: 1721 year: 2023 ident: mstacf390bib152 article-title: Neighborhood graph embedding interpretable fault diagnosis network based on local and non-local information balanced under imbalanced samples publication-title: Struct. Health Monit. doi: 10.1177/14759217221112835 – volume: 313 start-page: 504 year: 2006 ident: mstacf390bib44 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 159 year: 2021 ident: mstacf390bib31 article-title: Effect of bolt constraint of ring gear on the vibration response of the planetary gearbox publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104260 – volume: 68 start-page: 6303 year: 2020 ident: mstacf390bib60 article-title: Gated graph recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3033962 – volume: 20 start-page: 1685 year: 2020 ident: mstacf390bib141 article-title: Generative adversarial learning enhanced fault diagnosis for planetary gearbox under varying working conditions publication-title: Sensors doi: 10.3390/s20061685 – volume: 20 start-page: 61 year: 2009 ident: mstacf390bib57 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 70 start-page: 1 year: 2021 ident: mstacf390bib101 article-title: Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3084310 – volume: 185 year: 2023 ident: mstacf390bib97 article-title: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109760 – volume: 124 year: 2023 ident: mstacf390bib151 article-title: Intelligent fault diagnosis of rotating machinery under varying working conditions with global–local neighborhood and sparse graphs embedding deep regularized autoencoder publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106590 – volume: 128 start-page: 93 year: 2019 ident: mstacf390bib35 article-title: Time-frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.03.036 – year: 1989 ident: mstacf390bib27 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in Neural Information Processing Systems – volume: 114 start-page: 604 year: 2019 ident: mstacf390bib96 article-title: Advanced bearing diagnostics: a comparative study of two powerful approaches publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.011 – volume: 180 year: 2021 ident: mstacf390bib86 article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance publication-title: Measurement doi: 10.1016/j.measurement.2021.109565 – volume: 18 start-page: 1527 year: 2006 ident: mstacf390bib42 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – year: 2012 ident: mstacf390bib161 – volume: 89 year: 2002 ident: mstacf390bib147 article-title: Fast convergence of spike sequences to periodic patterns in recurrent networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.208102 – volume: 33 start-page: 17223 year: 2021 ident: mstacf390bib94 article-title: Planetary gear train microcrack detection using vibration data and convolutional neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06314-x – volume: 48 start-page: 292 year: 2014 ident: mstacf390bib7 article-title: Condition monitoring and fault diagnosis of planetary gearboxes: a review publication-title: Measurement doi: 10.1016/j.measurement.2013.11.012 – volume: 69 start-page: 6267 year: 2022 ident: mstacf390bib116 article-title: Toothwise health monitoring of planetary gearbox under time-varying speed condition based on rotating encoder signal publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3090713 – volume: 60 start-page: 84 year: 2017 ident: mstacf390bib45 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 14 start-page: 1771 year: 2002 ident: mstacf390bib43 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – ident: mstacf390bib163 – volume: 21 start-page: 1313 year: 2022 ident: mstacf390bib9 article-title: Data-driven dictionary design–based sparse classification method for intelligent fault diagnosis of planet bearings publication-title: Struct. Health Monit. doi: 10.1177/14759217211029016 – volume: 45 start-page: 87 year: 2023 ident: mstacf390bib54 article-title: A survey on vision transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3152247 – start-page: 1 year: 2022 ident: mstacf390bib118 article-title: Variational attention-based interpretable transformer network for rotary machine fault diagnosis doi: 10.1109/TNNLS.2022.3202234 – volume: 10 start-page: 841 year: 2022 ident: mstacf390bib23 article-title: Multi-information fusion fault diagnosis based on KNN and improved evidence theory publication-title: J. Vib. Eng. Technol. doi: 10.1007/s42417-021-00413-8 – volume: 335 start-page: 327 year: 2019 ident: mstacf390bib29 article-title: A survey on deep learning based bearing fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.078 – volume: 237 year: 2023 ident: mstacf390bib157 article-title: A novel bearing fault diagnosis method based joint attention adversarial domain adaptation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109345 – volume: 13 start-page: 2213 year: 2019 ident: mstacf390bib4 article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2905565 – volume: 126 start-page: 662 year: 2019 ident: mstacf390bib1 article-title: Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.02.051 – volume: 521 start-page: 436 year: 2015 ident: mstacf390bib46 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 4522 year: 2019 ident: mstacf390bib71 article-title: A novel deep feature learning method based on the fused-stacked AEs for planetary gear fault diagnosis publication-title: Energies doi: 10.3390/en12234522 – volume: 17 start-page: 127 year: 2003 ident: mstacf390bib18 article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2004.08.001 – volume: 30 year: 2019 ident: mstacf390bib67 article-title: Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab1da0 – volume: 161 year: 2021 ident: mstacf390bib106 article-title: A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107963 – volume: 62–63 start-page: 30 year: 2015 ident: mstacf390bib38 article-title: Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.03.005 – volume: 160 start-page: 237 year: 2018 ident: mstacf390bib114 article-title: A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.07.017 – volume: 10 start-page: 932 year: 2020 ident: mstacf390bib93 article-title: Planetary-gearbox fault classification by convolutional neural network and recurrence plot publication-title: Appl. Sci. doi: 10.3390/app10030932 – volume: 179 year: 2021 ident: mstacf390bib111 article-title: A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox publication-title: Measurement doi: 10.1016/j.measurement.2021.109491 – volume: 69 start-page: 7263 year: 2022 ident: mstacf390bib8 article-title: Synchro-reassigning transform for instantaneous frequency estimation and signal reconstruction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3100927 – volume: 86–87 start-page: 17 year: 2022 ident: mstacf390bib117 article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion publication-title: Inform. Fusion doi: 10.1016/j.inffus.2022.06.005 – volume: 19 start-page: 22 year: 2016 ident: mstacf390bib3 article-title: Wind turbine condition monitoring and fault diagnosis in China publication-title: IEEE Instrum. Meas. Mag. doi: 10.1109/MIM.2016.7462789 – volume: 15 start-page: 2446 year: 2019 ident: mstacf390bib164 article-title: Highly accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2864759 – volume: 135 start-page: 462 year: 2023 ident: mstacf390bib142 article-title: A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.10.008 – volume: vol 36 start-page: 7211 year: 2022 ident: mstacf390bib61 article-title: Directed graph auto-encoders – volume: 191 year: 2023 ident: mstacf390bib122 article-title: Universal source-free domain adaptation method for cross-domain fault diagnosis of machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110159 – volume: 108 start-page: 33 year: 2018 ident: mstacf390bib28 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – volume: 71 start-page: 1 year: 2022 ident: mstacf390bib53 article-title: Signal-transformer: a robust and interpretable method for rotating machinery intelligent fault diagnosis under variable operating conditions publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3217869 – year: 2016 ident: mstacf390bib56 article-title: NIPS 2016 tutorial: generative adversarial networks – volume: 99 start-page: 496 year: 2020 ident: mstacf390bib115 article-title: Application of sparsity-oriented VMD for gearbox fault diagnosis based on built-in encoder information publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.10.005 – volume: 106 start-page: 48 year: 2019 ident: mstacf390bib92 article-title: Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.11.003 – volume: 159 year: 2020 ident: mstacf390bib138 article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2020.107768 – volume: 28 start-page: 340 year: 2023 ident: mstacf390bib124 article-title: Convformer-NSE: a novel end-to-end gearbox fault diagnosis framework under heavy noise using joint global and local information publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2022.3199985 – volume: 111 start-page: 1 year: 2017 ident: mstacf390bib83 article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox publication-title: Measurement doi: 10.1016/j.measurement.2017.07.017 – volume: 72–73 start-page: 303 year: 2016 ident: mstacf390bib62 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 115 start-page: 181 year: 2017 ident: mstacf390bib32 article-title: A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2016.07.026 – volume: 32 year: 2021 ident: mstacf390bib75 article-title: An optimized stacked diagnosis structure for fault diagnosis of wind turbine planetary gearbox publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abf30b – volume: 32 year: 2021 ident: mstacf390bib65 article-title: Wind turbine gearbox fault diagnosis based on an improved supervised autoencoder using vibration and motor current signals publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac0741 – volume: 382 start-page: 395 year: 2016 ident: mstacf390bib40 article-title: Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.07.013 – volume: 68 start-page: 12739 year: 2021 ident: mstacf390bib143 article-title: Multireceptive field graph convolutional networks for machine fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3040669 – volume: 141 year: 2020 ident: mstacf390bib87 article-title: One-dimensional fully decoupled networks for fault diagnosis of planetary gearboxes publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106482 – volume: 140 year: 2020 ident: mstacf390bib95 article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106683 – volume: 218 year: 2022 ident: mstacf390bib150 article-title: High-accuracy gearbox health state recognition based on graph sparse random vector functional link network publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108187 – start-page: 770 year: 2016 ident: mstacf390bib50 article-title: Deep residual learning for image recognition – ident: mstacf390bib165 – start-page: 1096 year: 2008 ident: mstacf390bib25 article-title: Extracting and composing robust features with denoising autoencoders – volume: 30 year: 2019 ident: mstacf390bib66 article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aaf319 – ident: mstacf390bib159 – year: 2017 ident: mstacf390bib58 article-title: Semi-supervised classification with graph convolutional networks – volume: 49 start-page: 166 year: 2020 ident: mstacf390bib89 article-title: Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method publication-title: Proc. Manuf. doi: 10.1016/j.promfg.2020.07.014 – volume: 178 year: 2021 ident: mstacf390bib30 article-title: Vibration mechanism and improved phenomenological model of planetary gearbox with broken sun gear fault publication-title: Measurement doi: 10.1016/j.measurement.2021.109356 – start-page: 5998 year: 2017 ident: mstacf390bib52 article-title: Attention is all you need – ident: mstacf390bib162 – start-page: 630 year: 2016 ident: mstacf390bib51 article-title: Identity mappings in deep residual networks – volume: 69 start-page: 3109 year: 2022 ident: mstacf390bib24 article-title: Variational embedding multiscale diversity entropy for fault diagnosis of large-scale machinery publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3063979 – volume: 14 start-page: 2323 year: 2020 ident: mstacf390bib156 article-title: An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2929617 – volume: 310 start-page: 213 year: 2018 ident: mstacf390bib136 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 68 start-page: 2617 year: 2021 ident: mstacf390bib82 article-title: Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2972461 – volume: 96 start-page: 1 year: 2014 ident: mstacf390bib90 article-title: Wavelets for fault diagnosis of rotary machines: a review with applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.04.015 – volume: 13 start-page: 662 year: 2019 ident: mstacf390bib19 article-title: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS publication-title: IET Electr. Power Appl. doi: 10.1049/iet-epa.2018.5274 – volume: 70 start-page: 1 year: 2021 ident: mstacf390bib144 article-title: Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2020.3020682 – volume: 385 start-page: 330 year: 2016 ident: mstacf390bib11 article-title: A new SKRgram based demodulation technique for planet bearing fault detection publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.08.026 – volume: 66 start-page: 9858 year: 2019 ident: mstacf390bib104 article-title: Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2902817 – volume: 19 start-page: 2674 year: 2023 ident: mstacf390bib12 article-title: Proportion-extracting chirplet transform for nonstationary signal analysis of rotating machinery publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3185771 – volume: 99 year: 2021 ident: mstacf390bib81 article-title: Joint pairwise graph embedded sparse deep belief network for fault diagnosis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104149 – volume: 38 start-page: 113 year: 2013 ident: mstacf390bib37 article-title: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.06.021 – volume: 140 year: 2022 ident: mstacf390bib133 article-title: Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106573 – volume: 63 start-page: 139 year: 2020 ident: mstacf390bib55 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 66 start-page: 4696 year: 2019 ident: mstacf390bib109 article-title: Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2866050 – volume: 34 year: 2022 ident: mstacf390bib134 article-title: A novel convolution network with self-adaptation high-pass filter for fault diagnosis of wind turbine gearbox publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac991f – volume: 66 start-page: 3814 year: 2019 ident: mstacf390bib80 article-title: The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2856205 – volume: 18 start-page: 3213 year: 2022 ident: mstacf390bib112 article-title: Intelligent mechanical fault diagnosis using multisensor fusion and convolution neural network publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3102017 – volume: 5 start-page: 448 year: 2009 ident: mstacf390bib26 article-title: Deep Boltzmann machines publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 5768 year: 2022 ident: mstacf390bib49 article-title: Rolling bearing fault severity recognition via data mining integrated with convolutional neural network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3146151 – volume: 8 start-page: 131299 year: 2020 ident: mstacf390bib77 article-title: An intelligent fault diagnosis method of variable condition gearbox based on improved DBN combined with WPEE and MPE publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008208 – volume: 34 year: 2023 ident: mstacf390bib127 article-title: A planetary gearbox fault diagnosis method based on time-series imaging feature fusion and a transformer model publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac9e6c – volume: 69 start-page: 8411 year: 2022 ident: mstacf390bib132 article-title: A one-class generative adversarial detection framework for multifunctional fault diagnoses publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3108719 – volume: 168 year: 2022 ident: mstacf390bib155 article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108653 – volume: 74 start-page: 65 year: 2021 ident: mstacf390bib72 article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.03.008 – volume: 77 start-page: 941 year: 1989 ident: mstacf390bib91 article-title: Time-frequency distributions-a review publication-title: Proc. IEEE doi: 10.1109/5.30749 – volume: 23 start-page: 13140 year: 2023 ident: mstacf390bib145 article-title: A novel spiking graph attention network for intelligent fault diagnosis of planetary gearboxes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3269445 – volume: 16 start-page: 6263 year: 2020 ident: mstacf390bib68 article-title: Gearbox fault diagnosis using a deep learning model with limited data sample publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2967822 – volume: 146 start-page: 268 year: 2019 ident: mstacf390bib102 article-title: A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes publication-title: Measurement doi: 10.1016/j.measurement.2019.04.093 – volume: 289 start-page: 1066 year: 2006 ident: mstacf390bib160 article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.03.007 – volume: 11 start-page: 9401 year: 2021 ident: mstacf390bib131 article-title: A semi-supervised fault diagnosis method based on improved bidirectional generative adversarial network publication-title: Appl. Sci. doi: 10.3390/app11209401 – volume: 16 start-page: 5735 year: 2020 ident: mstacf390bib119 article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2955540 – volume: 77 start-page: 5443 year: 2018 ident: mstacf390bib73 article-title: A deep stacked wavelet auto-encoders to supervised feature extraction to pattern classification publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-017-4461-z – volume: 34 year: 2023 ident: mstacf390bib158 article-title: Data-augmented patch variational autoencoding generative adversarial networks for rolling bearing fault diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acb377 – volume: 27 start-page: 24 year: 2022 ident: mstacf390bib70 article-title: Modified stacked autoencoder using adaptive Morlet wavelet for intelligent fault diagnosis of rotating machinery publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2021.3058061 – volume: vol 33 start-page: 3558 year: 2019 ident: mstacf390bib149 article-title: Hypergraph neural networks doi: 10.1007/s00464-019-07000-9 – volume: 19 start-page: 2717 year: 2023 ident: mstacf390bib6 article-title: Flexible generalized demodulation for intelligent bearing fault diagnosis under nonstationary conditions publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3192597 – volume: 115 start-page: 213 year: 2019 ident: mstacf390bib17 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 21 start-page: 8117 year: 2021 ident: mstacf390bib39 article-title: Discriminative dictionary learning-based sparse classification framework for data- driven machinery fault diagnosis publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3049953 – volume: 61 start-page: 725 year: 2021 ident: mstacf390bib21 article-title: Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.05.004 – volume: 153 year: 2021 ident: mstacf390bib16 article-title: Intelligent cross-condition fault recognition of rolling bearings based on normalized resampled characteristic power and self-organizing, map publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107462 – volume: 19 start-page: 2504 year: 2019 ident: mstacf390bib78 article-title: Hybrid data fusion DBN for intelligent fault diagnosis of vehicle reducers publication-title: Sensors doi: 10.3390/s19112504 – volume: 365 start-page: 276 year: 2016 ident: mstacf390bib79 article-title: Envelope synchronous average scheme for multi-axis gear faults detection publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.11.038 – volume: 145 start-page: 642 year: 2020 ident: mstacf390bib2 article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.103 – volume: 1 start-page: 1 year: 2022 ident: mstacf390bib126 article-title: Effective convolutional transformer for highly accurate planetary gearbox fault diagnosis publication-title: IEEE Open J. Instrum. Meas. doi: 10.1109/OJIM.2022.3190535 – volume: 72 start-page: 1 year: 2023 ident: mstacf390bib153 article-title: Semisupervised fault diagnosis of gearbox using weighted graph-based label propagation and virtual adversarial training publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3239925 – volume: 68 start-page: 2587 year: 2021 ident: mstacf390bib107 article-title: Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2972458 – volume: 136 year: 2020 ident: mstacf390bib36 article-title: Generalized adaptive mode decomposition for nonstationary signal analysis of rotating machinery: principle and applications publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106530 – start-page: 01 year: 2023 ident: mstacf390bib128 article-title: A natural language processing based planetary gearbox fault diagnosis with acoustic emission signals – volume: 128 start-page: 470 year: 2022 ident: mstacf390bib120 article-title: Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.11.028 – volume: 2022 start-page: 1 year: 2022 ident: mstacf390bib98 article-title: Multilayer extreme learning convolutional feature neural network model for the weak feature classification and status identification of planetary bearing publication-title: J. Sens. doi: 10.1155/2022/7693393 – volume: 33 year: 2022 ident: mstacf390bib137 article-title: Parallel adversarial feature learning and enhancement of feature discriminability for fault diagnosis of a planetary gearbox under time-varying speed conditions publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac8be9 – volume: 28 year: 2017 ident: mstacf390bib76 article-title: An integrated approach to planetary gearbox fault diagnosis using deep belief networks publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa50e7 – volume: 107 start-page: 50 year: 2019 ident: mstacf390bib85 article-title: An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.01.012 – volume: 178 start-page: 639 year: 2021 ident: mstacf390bib103 article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information publication-title: Renew. Energy doi: 10.1016/j.renene.2021.06.088 – volume: 28 start-page: 2293 year: 2023 ident: mstacf390bib129 article-title: Transformer-enabled cross-domain diagnostics for complex rotating machinery with multiple sensors publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2023.3237233 – volume: 149 year: 2021 ident: mstacf390bib113 article-title: Planetary gearbox fault diagnosis via rotary encoder signal analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107325 – volume: 161 year: 2021 ident: mstacf390bib13 article-title: Component matching chirplet transform via frequency-dependent chirp rate for wind turbine planetary gearbox fault diagnostics under variable speed condition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107997 – volume: 6 start-page: 11 year: 2019 ident: mstacf390bib59 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-019-0069-y – volume: 22 start-page: 1421 year: 2023 ident: mstacf390bib5 article-title: Flexible iterative generalized demodulation filtering for the fault diagnosis of rotating machinery under nonstationary conditions publication-title: Struct. Health Monit. doi: 10.1177/14759217221109938 – volume: 185 year: 2023 ident: mstacf390bib135 article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109772 – volume: 182 year: 2021 ident: mstacf390bib139 article-title: An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115234 – volume: 38 start-page: 165 year: 2013 ident: mstacf390bib88 article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.01.017 – volume: 33 year: 2022 ident: mstacf390bib99 article-title: Fault diagnosis of a planetary gearbox based on a local bi-spectrum and a convolutional neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac471a – volume: 206 start-page: 645 year: 2023 ident: mstacf390bib166 article-title: Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.056 – volume: 206 year: 2023 ident: mstacf390bib15 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2022.112346 – volume: 10 year: 2015 ident: mstacf390bib69 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One doi: 10.1371/journal.pone.0122827 – volume: 167 year: 2022 ident: mstacf390bib100 article-title: A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108575 – volume: 116 year: 2022 ident: mstacf390bib110 article-title: Deep residual networks-based intelligent fault diagnosis method of planetary gearboxes in cloud environments publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102469 |
SSID | ssj0007099 |
Score | 2.6711843 |
SecondaryResourceType | review_article |
Snippet | Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 12002 |
Title | A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviA0QY4DugQemYppPO-GtQqCB-HrYxN6i2LGrSFNaramG-DP4iznHjuvBJjFeotZKT2nup_Pd-Xd3hLzgpSy4FowWqZYUXeqaijqRNM2VZqzgZaRNNfLnL-zoJPt4mp9OJr8C1tKmF6_lzyvrSv5Hq7iGejVVsjfQrBeKC_gZ9YtX1DBe_0nHc195YiitajXOgBiqVFaGxtobUtwCV8Xyh6t5nA41RFPPHLLcDjtJelBqeKY9kjsNkXStetcVe6vNcRbUNtM4HQuFDKb6vxL3n9qN9du7RbN0u-bA0G5dhmBx1m4pB8paou-q9Te7DEWSBRmKMdXIKfoG1pApa2hTFlP0DuPQEtvGJZcQZ81qbKgkVxp8NJIm9zBKMzub1KmdQHq5u_Yfu57nIg6n8EVRGRmVkVFZCbfI7QRDDzMV48PXb35351Hp-jfa_-SOvlHCzD_FzEoIXJ3AZzm-T-65YAPmFjm7ZKK6PXJnIP3K9R7ZdYZ9DS9d9_HDB-RiDhZUsOzAgApGUEHbgQcVOFCBBRUMoIIAVG_AQeoVhIDCb10DDk4QwOkhOXn_7vjtEXXTOahMirynpYybshGNxog7qossTkSieY3xv2gUSyVHW4_BvIhZnZQ64pI1Wa4VRtBlKvF1pY_ITrfs1GMCsa61iITKGVeZYkktFLpNUgotszzLin0yG19kJV3rejNB5ay6Tnn75ND_YmXbtlx775Mb3HtA7m4R_pTs9Ocb9Qy90l48H2DyG8GHjXE |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+deep+learning+in+planetary+gearbox+health+state+recognition%3A+methods%2C+applications%2C+and+dataset+publication&rft.jtitle=Measurement+science+%26+technology&rft.au=Liu%2C+Dongdong&rft.au=Cui%2C+Lingli&rft.au=Cheng%2C+Weidong&rft.date=2024-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=1&rft.spage=12002&rft_id=info:doi/10.1088%2F1361-6501%2Facf390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acf390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |