A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication

Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for plan...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 1; p. 12002
Main Authors Liu, Dongdong, Cui, Lingli, Cheng, Weidong
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/acf390

Cover

Loading…
Abstract Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset .
AbstractList Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms of fault diagnosis. Deep learning has attracted increasing attention in intelligent fault diagnosis and has been successfully adopted for planetary gearbox fault diagnosis, avoiding the difficulty in manually analyzing complex fault features with signal processing methods. This paper presents a comprehensive review of deep learning-based planetary gearbox health state recognition. First, the challenges caused by the complex vibration characteristics of planetary gearboxes in fault diagnosis are analyzed. Second, according to the popularity of deep learning in planetary gearbox fault diagnosis, we briefly introduce six mainstream algorithms, i.e. autoencoder, deep Boltzmann machine, convolutional neural network, transformer, generative adversarial network, and graph neural network, and some variants of them. Then, the applications of these methods to planetary gearbox fault diagnosis are reviewed. Finally, the research prospects and challenges in this research are discussed. According to the challenges, a dataset is introduced in this paper to facilitate future investigations. We expect that this paper can provide new graduate students, institutions and companies with a preliminary understanding of methods used in this field. The dataset can be downloaded from https://github.com/Liudd-BJUT/WT-planetary-gearbox-dataset .
Author Liu, Dongdong
Cui, Lingli
Cheng, Weidong
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0003-2638-3014
  surname: Liu
  fullname: Liu, Dongdong
– sequence: 2
  givenname: Lingli
  surname: Cui
  fullname: Cui, Lingli
– sequence: 3
  givenname: Weidong
  surname: Cheng
  fullname: Cheng, Weidong
BookMark eNp1kE1PwzAMhiM0JLbBnWN-AAWnXdOG2zTxJU3iAufKTdwtqEurJDD497QMOCBxsvxaj2U_MzZxnSPGzgVcCijLK5FJkcgcxBXqJlNwxKa_0YRNQeVFAmmWnbBZCC8AUIBSU7Zfck9vlva8c9wQ9bwl9M66DbeO9y06iug_-GZI6-6dbwnbuOUhYqSB1N3G2Wg7d813FLedCRcc-761Gsd07JzhBiMGirx_rX8mp-y4wTbQ2Xeds-fbm6fVfbJ-vHtYLdeJTss8JkoLo0xtmkJIwHIh0jptChRK1IZkpgsQRalULSSmqoFCS7PIGyplqjI9aMnmDA57te9C8NRUvbe74aNKQDWKq0ZL1WipOogbEPkH0TZ-HR092vZ_8BOh5nbl
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112593
crossref_primary_10_1177_10775463241280426
crossref_primary_10_1016_j_cose_2024_104036
crossref_primary_10_1088_2631_8695_ad3a36
crossref_primary_10_1080_10589759_2024_2405062
crossref_primary_10_1088_1361_6501_ada630
crossref_primary_10_1016_j_simpat_2024_103058
crossref_primary_10_1088_1361_6501_ad0880
crossref_primary_10_1109_TIM_2024_3351254
crossref_primary_10_1088_1361_6501_ad5de7
crossref_primary_10_1007_s11071_024_09389_y
crossref_primary_10_1109_JSEN_2024_3403141
crossref_primary_10_1016_j_aei_2024_102605
crossref_primary_10_1109_JSEN_2024_3517597
crossref_primary_10_1088_1361_6501_ad289c
crossref_primary_10_3390_s25020540
crossref_primary_10_1109_TIM_2024_3385830
crossref_primary_10_1088_1361_6501_ad67f6
crossref_primary_10_1007_s11071_025_10914_w
crossref_primary_10_59400_sv2242
crossref_primary_10_1109_JIOT_2024_3377674
crossref_primary_10_3390_s24144682
crossref_primary_10_3390_e26050409
crossref_primary_10_1088_1361_6501_ad5861
crossref_primary_10_1088_1361_6501_ad50fb
crossref_primary_10_1177_14759217241249656
crossref_primary_10_1109_JSEN_2024_3461810
crossref_primary_10_1088_1361_6501_adb76f
crossref_primary_10_1088_1361_6501_ace98a
crossref_primary_10_1109_JSEN_2023_3326810
crossref_primary_10_1177_14759217251320676
crossref_primary_10_1109_JSEN_2025_3532798
crossref_primary_10_1109_JSEN_2024_3412436
crossref_primary_10_1109_JSEN_2023_3317873
crossref_primary_10_1109_JIOT_2024_3496928
crossref_primary_10_1109_JSEN_2024_3432921
crossref_primary_10_1088_1361_6501_ad5905
crossref_primary_10_1109_TR_2023_3328597
crossref_primary_10_1109_JIOT_2024_3489617
crossref_primary_10_1088_1361_6501_ad3772
crossref_primary_10_1088_1361_6501_ad5f4c
crossref_primary_10_1109_JSEN_2024_3362349
crossref_primary_10_1109_JSEN_2024_3350167
crossref_primary_10_1109_JSEN_2023_3326112
crossref_primary_10_1109_JSEN_2023_3330955
crossref_primary_10_1109_JIOT_2024_3471410
crossref_primary_10_1007_s40430_024_05155_8
crossref_primary_10_1088_1361_6501_ad356e
crossref_primary_10_1016_j_jmsy_2024_10_004
crossref_primary_10_1016_j_ress_2025_110898
crossref_primary_10_1177_09544062241266349
crossref_primary_10_3390_sym16030285
crossref_primary_10_3390_s24216907
Cites_doi 10.1109/TIM.2022.3203440
10.1016/j.jphysparis.2009.11.002
10.1109/TIM.2022.3213016
10.1177/1475921717738713
10.1016/j.ymssp.2019.106587
10.1016/j.neucom.2017.07.032
10.1007/s10845-020-01579-w
10.1109/TCYB.2021.3123667
10.1109/JSEN.2020.2980596
10.1109/TIM.2023.3244822
10.1016/j.ymssp.2020.106752
10.1016/j.isatra.2022.06.035
10.1016/j.cja.2019.07.011
10.1016/j.neucom.2020.07.088
10.1016/j.ymssp.2023.110172
10.1016/j.renene.2021.04.019
10.1016/j.ymssp.2022.109848
10.1016/j.eswa.2010.12.095
10.1016/j.measurement.2022.111697
10.1016/j.cie.2017.12.002
10.1016/j.renene.2018.09.027
10.1038/323533a0
10.1177/14759217221112835
10.1126/science.1127647
10.1016/j.mechmachtheory.2021.104260
10.1109/TSP.2020.3033962
10.3390/s20061685
10.1109/TNN.2008.2005605
10.1109/TIM.2021.3084310
10.1016/j.ymssp.2022.109760
10.1016/j.engappai.2023.106590
10.1016/j.ymssp.2019.03.036
10.1016/j.ymssp.2018.05.011
10.1016/j.measurement.2021.109565
10.1162/neco.2006.18.7.1527
10.1103/PhysRevLett.89.208102
10.1007/s00521-021-06314-x
10.1016/j.measurement.2013.11.012
10.1109/TIE.2021.3090713
10.1145/3065386
10.1162/089976602760128018
10.1177/14759217211029016
10.1109/TPAMI.2022.3152247
10.1109/TNNLS.2022.3202234
10.1007/s42417-021-00413-8
10.1016/j.neucom.2018.06.078
10.1016/j.ress.2023.109345
10.1109/JSYST.2019.2905565
10.1016/j.ymssp.2019.02.051
10.1038/nature14539
10.3390/en12234522
10.1016/j.aei.2004.08.001
10.1088/1361-6501/ab1da0
10.1016/j.ymssp.2021.107963
10.1016/j.ymssp.2015.03.005
10.1016/j.knosys.2018.07.017
10.3390/app10030932
10.1016/j.measurement.2021.109491
10.1109/TIE.2021.3100927
10.1016/j.inffus.2022.06.005
10.1109/MIM.2016.7462789
10.1109/TII.2018.2864759
10.1016/j.isatra.2022.10.008
10.1016/j.ymssp.2023.110159
10.1016/j.ymssp.2018.02.016
10.1109/TIM.2022.3217869
10.1016/j.isatra.2019.10.005
10.1016/j.compind.2018.11.003
10.1016/j.measurement.2020.107768
10.1109/TMECH.2022.3199985
10.1016/j.measurement.2017.07.017
10.1016/j.ymssp.2015.10.025
10.1016/j.apacoust.2016.07.026
10.1088/1361-6501/abf30b
10.1088/1361-6501/ac0741
10.1016/j.jsv.2016.07.013
10.1109/TIE.2020.3040669
10.1016/j.ymssp.2019.106482
10.1016/j.ymssp.2020.106683
10.1016/j.ress.2021.108187
10.1088/1361-6501/aaf319
10.1016/j.promfg.2020.07.014
10.1016/j.measurement.2021.109356
10.1109/TIE.2021.3063979
10.1109/JSYST.2019.2929617
10.1016/j.neucom.2018.05.024
10.1109/TIE.2020.2972461
10.1016/j.sigpro.2013.04.015
10.1049/iet-epa.2018.5274
10.1109/tim.2020.3020682
10.1016/j.jsv.2016.08.026
10.1109/TIE.2019.2902817
10.1109/TII.2022.3185771
10.1016/j.engappai.2020.104149
10.1016/j.ymssp.2012.06.021
10.1016/j.engfailanal.2022.106573
10.1145/3422622
10.1109/TIE.2018.2866050
10.1088/1361-6501/ac991f
10.1109/TIE.2018.2856205
10.1109/TII.2021.3102017
10.1109/JSEN.2022.3146151
10.1109/ACCESS.2020.3008208
10.1088/1361-6501/ac9e6c
10.1109/TIE.2021.3108719
10.1016/j.ymssp.2021.108653
10.1016/j.inffus.2021.03.008
10.1109/5.30749
10.1109/JSEN.2023.3269445
10.1109/TII.2020.2967822
10.1016/j.measurement.2019.04.093
10.1016/j.jsv.2005.03.007
10.3390/app11209401
10.1109/TII.2019.2955540
10.1007/s11042-017-4461-z
10.1088/1361-6501/acb377
10.1109/TMECH.2021.3058061
10.1007/s00464-019-07000-9
10.1109/TII.2022.3192597
10.1016/j.ymssp.2018.05.050
10.1109/JSEN.2021.3049953
10.1016/j.jmsy.2020.05.004
10.1016/j.ymssp.2020.107462
10.3390/s19112504
10.1016/j.jsv.2015.11.038
10.1016/j.renene.2019.06.103
10.1109/OJIM.2022.3190535
10.1109/TIM.2023.3239925
10.1109/TIE.2020.2972458
10.1016/j.ymssp.2019.106530
10.1016/j.isatra.2021.11.028
10.1155/2022/7693393
10.1088/1361-6501/ac8be9
10.1088/1361-6501/aa50e7
10.1016/j.compind.2019.01.012
10.1016/j.renene.2021.06.088
10.1109/TMECH.2023.3237233
10.1016/j.ymssp.2020.107325
10.1016/j.ymssp.2021.107997
10.1186/s40649-019-0069-y
10.1177/14759217221109938
10.1016/j.ymssp.2022.109772
10.1016/j.eswa.2021.115234
10.1016/j.ymssp.2013.01.017
10.1088/1361-6501/ac471a
10.1016/j.renene.2023.01.056
10.1016/j.measurement.2022.112346
10.1371/journal.pone.0122827
10.1016/j.ymssp.2021.108575
10.1016/j.simpat.2021.102469
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/acf390
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_acf390
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c285t-9c1d9dbdf7160a8412b2f7a191bde63c7017899b16a29f07c6d45fe86293c0883
ISSN 0957-0233
IngestDate Thu Apr 24 22:58:18 EDT 2025
Wed Aug 27 16:27:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-9c1d9dbdf7160a8412b2f7a191bde63c7017899b16a29f07c6d45fe86293c0883
ORCID 0000-0003-2638-3014
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6501/acf390/pdf
ParticipantIDs crossref_primary_10_1088_1361_6501_acf390
crossref_citationtrail_10_1088_1361_6501_acf390
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Sun (mstacf390bib152) 2023; 22
Wang (mstacf390bib1) 2019; 126
Wang (mstacf390bib11) 2016; 385
Zhang (mstacf390bib106) 2021; 161
Hoang (mstacf390bib29) 2019; 335
He (mstacf390bib51) 2016
Wang (mstacf390bib2) 2020; 145
Zhang (mstacf390bib47) 2020; 33
Lu (mstacf390bib75) 2021; 32
Liu (mstacf390bib156) 2020; 14
Helmi (mstacf390bib19) 2019; 13
Feng (mstacf390bib36) 2020; 136
Jing (mstacf390bib83) 2017; 111
Wu (mstacf390bib127) 2023; 34
Liu (mstacf390bib166) 2023; 206
Zhang (mstacf390bib4) 2019; 13
Zhang (mstacf390bib64) 2022; 71
Wang (mstacf390bib119) 2020; 16
Yu (mstacf390bib67) 2019; 30
Wang (mstacf390bib162)
Kollias (mstacf390bib61) 2022; vol 36
Scarselli (mstacf390bib57) 2009; 20
Feng (mstacf390bib35) 2019; 128
Yang (mstacf390bib65) 2021; 32
Cui (mstacf390bib131) 2021; 11
Su (mstacf390bib133) 2022; 140
Hinton (mstacf390bib44) 2006; 313
Qin (mstacf390bib80) 2019; 66
Perez-Sanjines (mstacf390bib97) 2023; 185
Abboud (mstacf390bib96) 2019; 114
Zhao (mstacf390bib17) 2019; 115
Vincent (mstacf390bib25) 2008
Pu (mstacf390bib132) 2022; 69
Ma (mstacf390bib139) 2021; 182
Luo (mstacf390bib31) 2021; 159
Zhang (mstacf390bib78) 2019; 19
Cessac (mstacf390bib146) 2010; 104
Qiu (mstacf390bib18) 2003; 17
Saufi (mstacf390bib68) 2020; 16
Ab Wahab (mstacf390bib69) 2015; 10
Liu (mstacf390bib16) 2021; 153
Huang (mstacf390bib110) 2022; 116
Shao (mstacf390bib164) 2019; 15
Lei (mstacf390bib22) 2011; 38
Wang (mstacf390bib24) 2022; 69
Li (mstacf390bib118) 2022
Chen (mstacf390bib92) 2019; 106
Ruiz (mstacf390bib60) 2020; 68
Wang (mstacf390bib158) 2023; 34
Qiu (mstacf390bib160) 2006; 289
Liu (mstacf390bib23) 2022; 10
fan (mstacf390bib134) 2022; 34
Zhang (mstacf390bib121) 2023; 191
Guo (mstacf390bib103) 2021; 178
Bechhoefer (mstacf390bib161) 2012
Goodfellow (mstacf390bib56) 2016
Feng (mstacf390bib40) 2016; 382
Xu (mstacf390bib117) 2022; 86–87
Liang (mstacf390bib138) 2020; 159
Li (mstacf390bib105) 2020; 20
Kipf (mstacf390bib58) 2017
Jin (mstacf390bib147) 2002; 89
Zhang (mstacf390bib130) 2022; 71
Emmanuel (mstacf390bib94) 2021; 33
Liang (mstacf390bib116) 2022; 69
Zhou (mstacf390bib135) 2023; 185
Tang (mstacf390bib53) 2022; 71
Chen (mstacf390bib71) 2019; 12
Zhu (mstacf390bib15) 2023; 206
Li (mstacf390bib74) 2020; 142
Chen (mstacf390bib95) 2020; 140
Zhang (mstacf390bib59) 2019; 6
Zhao (mstacf390bib107) 2021; 68
Yan (mstacf390bib90) 2014; 96
Xie (mstacf390bib112) 2022; 18
Hu (mstacf390bib125) 2018
Wang (mstacf390bib136) 2018; 310
LeCun (mstacf390bib27) 1989
Yu (mstacf390bib154) 2023; 186
Zhang (mstacf390bib111) 2021; 179
Kong (mstacf390bib9) 2022; 21
Kong (mstacf390bib34) 2019; 132
Yang (mstacf390bib81) 2021; 99
Liu (mstacf390bib6) 2023; 19
He (mstacf390bib128) 2023
Elasha (mstacf390bib33) 2018; 17
Vaswani (mstacf390bib52) 2017
Wang (mstacf390bib66) 2019; 30
Zhang (mstacf390bib122) 2023; 191
Li (mstacf390bib155) 2022; 168
Chang (mstacf390bib87) 2020; 141
Han (mstacf390bib124) 2023; 28
Chen (mstacf390bib102) 2019; 146
Miao (mstacf390bib115) 2020; 99
Shao (mstacf390bib70) 2022; 27
Jia (mstacf390bib62) 2016; 72–73
Cohen (mstacf390bib91) 1989; 77
Li (mstacf390bib143) 2021; 68
Salakhutdinov (mstacf390bib26) 2009; 5
Sun (mstacf390bib126) 2022; 1
Goodfellow (mstacf390bib55) 2020; 63
Zhu (mstacf390bib101) 2021; 70
Zhao (mstacf390bib109) 2019; 66
Cao (mstacf390bib145) 2023; 23
Hinton (mstacf390bib42) 2006; 18
Liu (mstacf390bib89) 2020; 49
He (mstacf390bib50) 2016
Hinton (mstacf390bib43) 2002; 14
Chen (mstacf390bib157) 2023; 237
Wang (mstacf390bib86) 2021; 180
Sun (mstacf390bib151) 2023; 124
Lei (mstacf390bib7) 2014; 48
Jiao (mstacf390bib104) 2019; 66
Wang (mstacf390bib93) 2020; 10
Jiao (mstacf390bib114) 2018; 160
Kong (mstacf390bib39) 2021; 21
Han (mstacf390bib85) 2019; 107
Feng (mstacf390bib113) 2021; 149
Liu (mstacf390bib49) 2022; 22
Feng (mstacf390bib149) 2019; vol 33
Kong (mstacf390bib10) 2021; 173
Chen (mstacf390bib3) 2016; 19
Feng (mstacf390bib88) 2013; 38
Li (mstacf390bib20) 2018; 116
Hassairi (mstacf390bib73) 2018; 77
Luo (mstacf390bib140) 2021; 32
LeCun (mstacf390bib46) 2015; 521
Han (mstacf390bib77) 2020; 8
Zhang (mstacf390bib12) 2023; 19
Zhang (mstacf390bib148) 2022; 201
Li (mstacf390bib150) 2022; 218
Weng (mstacf390bib123) 2023; 72
Rumelhart (mstacf390bib41) 1986; 323
Zhao (mstacf390bib137) 2022; 33
Kim (mstacf390bib100) 2022; 167
Zhang (mstacf390bib129) 2023; 28
Li (mstacf390bib8) 2022; 69
Huang (mstacf390bib84) 2023; 53
Wen (mstacf390bib141) 2020; 20
Wang (mstacf390bib38) 2015; 62–63
Zhang (mstacf390bib108) 2023; 133
Lei (mstacf390bib37) 2013; 38
Chen (mstacf390bib76) 2017; 28
Yang (mstacf390bib98) 2022; 2022
Lei (mstacf390bib14) 2020; 138
mstacf390bib159
Li (mstacf390bib13) 2021; 161
Krizhevsky (mstacf390bib45) 2017; 60
Shao (mstacf390bib72) 2021; 74
Han (mstacf390bib54) 2023; 45
Lingli (mstacf390bib99) 2022; 33
Luo (mstacf390bib30) 2021; 178
Elasha (mstacf390bib32) 2017; 115
Guo (mstacf390bib79) 2016; 365
Shan (mstacf390bib153) 2023; 72
Liu (mstacf390bib5) 2023; 22
Yu (mstacf390bib144) 2021; 70
Liang (mstacf390bib142) 2023; 135
Jiao (mstacf390bib48) 2020; 417
Liu (mstacf390bib28) 2018; 108
mstacf390bib163
Li (mstacf390bib21) 2021; 61
Xing (mstacf390bib82) 2021; 68
Wang (mstacf390bib120) 2022; 128
mstacf390bib165
Jia (mstacf390bib63) 2018; 272
References_xml – volume: 71
  start-page: 1
  year: 2022
  ident: mstacf390bib64
  article-title: Discriminative sparse autoencoder for gearbox fault diagnosis toward complex vibration signals
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3203440
– volume: 104
  start-page: 5
  year: 2010
  ident: mstacf390bib146
  article-title: Overview of facts and issues about neural coding by spikes
  publication-title: J. Physiol. Paris
  doi: 10.1016/j.jphysparis.2009.11.002
– start-page: 7132
  year: 2018
  ident: mstacf390bib125
  article-title: Squeeze-and-excitation networks
– volume: 71
  start-page: 1
  year: 2022
  ident: mstacf390bib130
  article-title: MMFNet: multisensor data and multiscale feature fusion model for intelligent cross-domain machinery fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3213016
– volume: 17
  start-page: 1192
  year: 2018
  ident: mstacf390bib33
  article-title: Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717738713
– volume: 138
  year: 2020
  ident: mstacf390bib14
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
– volume: 272
  start-page: 619
  year: 2018
  ident: mstacf390bib63
  article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.032
– volume: 32
  start-page: 407
  year: 2021
  ident: mstacf390bib140
  article-title: A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01579-w
– volume: 53
  start-page: 443
  year: 2023
  ident: mstacf390bib84
  article-title: Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3123667
– volume: 20
  start-page: 8364
  year: 2020
  ident: mstacf390bib105
  article-title: Adaptive channel weighted CNN with multisensor fusion for condition monitoring of helicopter transmission system
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2980596
– volume: 72
  start-page: 1
  year: 2023
  ident: mstacf390bib123
  article-title: A novel multisensor fusion transformer and its application into rotating machinery fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3244822
– volume: 142
  year: 2020
  ident: mstacf390bib74
  article-title: An enhanced selective ensemble deep learning method for rolling bearing fault diagnosis with beetle antennae search algorithm
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106752
– volume: 133
  start-page: 369
  year: 2023
  ident: mstacf390bib108
  article-title: Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.06.035
– volume: 33
  start-page: 439
  year: 2020
  ident: mstacf390bib47
  article-title: A new bearing fault diagnosis method based on modified convolutional neural networks
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2019.07.011
– volume: 417
  start-page: 36
  year: 2020
  ident: mstacf390bib48
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 191
  year: 2023
  ident: mstacf390bib121
  article-title: Multi-sensor open-set cross-domain intelligent diagnostics for rotating machinery under variable operating conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110172
– volume: 173
  start-page: 987
  year: 2021
  ident: mstacf390bib10
  article-title: An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.04.019
– volume: 186
  year: 2023
  ident: mstacf390bib154
  article-title: Fault diagnosis of rotating machinery based on graph weighted reinforcement networks under small samples and strong noise
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109848
– volume: 38
  start-page: 7334
  year: 2011
  ident: mstacf390bib22
  article-title: EEMD method and WNN for fault diagnosis of locomotive roller bearings
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.095
– volume: 201
  year: 2022
  ident: mstacf390bib148
  article-title: Motor current signal analysis using hypergraph neural networks for fault diagnosis of electromechanical system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111697
– volume: 116
  start-page: 37
  year: 2018
  ident: mstacf390bib20
  article-title: Data-driven bearing fault identification using improved hidden Markov model and self-organizing map
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.12.002
– volume: 132
  start-page: 1373
  year: 2019
  ident: mstacf390bib34
  article-title: Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.09.027
– volume: 323
  start-page: 533
  year: 1986
  ident: mstacf390bib41
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 22
  start-page: 1721
  year: 2023
  ident: mstacf390bib152
  article-title: Neighborhood graph embedding interpretable fault diagnosis network based on local and non-local information balanced under imbalanced samples
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217221112835
– volume: 313
  start-page: 504
  year: 2006
  ident: mstacf390bib44
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 159
  year: 2021
  ident: mstacf390bib31
  article-title: Effect of bolt constraint of ring gear on the vibration response of the planetary gearbox
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104260
– volume: 68
  start-page: 6303
  year: 2020
  ident: mstacf390bib60
  article-title: Gated graph recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3033962
– volume: 20
  start-page: 1685
  year: 2020
  ident: mstacf390bib141
  article-title: Generative adversarial learning enhanced fault diagnosis for planetary gearbox under varying working conditions
  publication-title: Sensors
  doi: 10.3390/s20061685
– volume: 20
  start-page: 61
  year: 2009
  ident: mstacf390bib57
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 70
  start-page: 1
  year: 2021
  ident: mstacf390bib101
  article-title: Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3084310
– volume: 185
  year: 2023
  ident: mstacf390bib97
  article-title: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109760
– volume: 124
  year: 2023
  ident: mstacf390bib151
  article-title: Intelligent fault diagnosis of rotating machinery under varying working conditions with global–local neighborhood and sparse graphs embedding deep regularized autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106590
– volume: 128
  start-page: 93
  year: 2019
  ident: mstacf390bib35
  article-title: Time-frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.03.036
– year: 1989
  ident: mstacf390bib27
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in Neural Information Processing Systems
– volume: 114
  start-page: 604
  year: 2019
  ident: mstacf390bib96
  article-title: Advanced bearing diagnostics: a comparative study of two powerful approaches
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.011
– volume: 180
  year: 2021
  ident: mstacf390bib86
  article-title: Intelligent fault diagnosis of planetary gearbox based on adaptive normalized CNN under complex variable working conditions and data imbalance
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109565
– volume: 18
  start-page: 1527
  year: 2006
  ident: mstacf390bib42
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– year: 2012
  ident: mstacf390bib161
– volume: 89
  year: 2002
  ident: mstacf390bib147
  article-title: Fast convergence of spike sequences to periodic patterns in recurrent networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.208102
– volume: 33
  start-page: 17223
  year: 2021
  ident: mstacf390bib94
  article-title: Planetary gear train microcrack detection using vibration data and convolutional neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06314-x
– volume: 48
  start-page: 292
  year: 2014
  ident: mstacf390bib7
  article-title: Condition monitoring and fault diagnosis of planetary gearboxes: a review
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.11.012
– volume: 69
  start-page: 6267
  year: 2022
  ident: mstacf390bib116
  article-title: Toothwise health monitoring of planetary gearbox under time-varying speed condition based on rotating encoder signal
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3090713
– volume: 60
  start-page: 84
  year: 2017
  ident: mstacf390bib45
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 14
  start-page: 1771
  year: 2002
  ident: mstacf390bib43
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– ident: mstacf390bib163
– volume: 21
  start-page: 1313
  year: 2022
  ident: mstacf390bib9
  article-title: Data-driven dictionary design–based sparse classification method for intelligent fault diagnosis of planet bearings
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211029016
– volume: 45
  start-page: 87
  year: 2023
  ident: mstacf390bib54
  article-title: A survey on vision transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
– start-page: 1
  year: 2022
  ident: mstacf390bib118
  article-title: Variational attention-based interpretable transformer network for rotary machine fault diagnosis
  doi: 10.1109/TNNLS.2022.3202234
– volume: 10
  start-page: 841
  year: 2022
  ident: mstacf390bib23
  article-title: Multi-information fusion fault diagnosis based on KNN and improved evidence theory
  publication-title: J. Vib. Eng. Technol.
  doi: 10.1007/s42417-021-00413-8
– volume: 335
  start-page: 327
  year: 2019
  ident: mstacf390bib29
  article-title: A survey on deep learning based bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.078
– volume: 237
  year: 2023
  ident: mstacf390bib157
  article-title: A novel bearing fault diagnosis method based joint attention adversarial domain adaptation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109345
– volume: 13
  start-page: 2213
  year: 2019
  ident: mstacf390bib4
  article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2905565
– volume: 126
  start-page: 662
  year: 2019
  ident: mstacf390bib1
  article-title: Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.051
– volume: 521
  start-page: 436
  year: 2015
  ident: mstacf390bib46
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 4522
  year: 2019
  ident: mstacf390bib71
  article-title: A novel deep feature learning method based on the fused-stacked AEs for planetary gear fault diagnosis
  publication-title: Energies
  doi: 10.3390/en12234522
– volume: 17
  start-page: 127
  year: 2003
  ident: mstacf390bib18
  article-title: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2004.08.001
– volume: 30
  year: 2019
  ident: mstacf390bib67
  article-title: Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab1da0
– volume: 161
  year: 2021
  ident: mstacf390bib106
  article-title: A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107963
– volume: 62–63
  start-page: 30
  year: 2015
  ident: mstacf390bib38
  article-title: Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.03.005
– volume: 160
  start-page: 237
  year: 2018
  ident: mstacf390bib114
  article-title: A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.07.017
– volume: 10
  start-page: 932
  year: 2020
  ident: mstacf390bib93
  article-title: Planetary-gearbox fault classification by convolutional neural network and recurrence plot
  publication-title: Appl. Sci.
  doi: 10.3390/app10030932
– volume: 179
  year: 2021
  ident: mstacf390bib111
  article-title: A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109491
– volume: 69
  start-page: 7263
  year: 2022
  ident: mstacf390bib8
  article-title: Synchro-reassigning transform for instantaneous frequency estimation and signal reconstruction
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3100927
– volume: 86–87
  start-page: 17
  year: 2022
  ident: mstacf390bib117
  article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2022.06.005
– volume: 19
  start-page: 22
  year: 2016
  ident: mstacf390bib3
  article-title: Wind turbine condition monitoring and fault diagnosis in China
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2016.7462789
– volume: 15
  start-page: 2446
  year: 2019
  ident: mstacf390bib164
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2864759
– volume: 135
  start-page: 462
  year: 2023
  ident: mstacf390bib142
  article-title: A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.10.008
– volume: vol 36
  start-page: 7211
  year: 2022
  ident: mstacf390bib61
  article-title: Directed graph auto-encoders
– volume: 191
  year: 2023
  ident: mstacf390bib122
  article-title: Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110159
– volume: 108
  start-page: 33
  year: 2018
  ident: mstacf390bib28
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 71
  start-page: 1
  year: 2022
  ident: mstacf390bib53
  article-title: Signal-transformer: a robust and interpretable method for rotating machinery intelligent fault diagnosis under variable operating conditions
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3217869
– year: 2016
  ident: mstacf390bib56
  article-title: NIPS 2016 tutorial: generative adversarial networks
– volume: 99
  start-page: 496
  year: 2020
  ident: mstacf390bib115
  article-title: Application of sparsity-oriented VMD for gearbox fault diagnosis based on built-in encoder information
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.10.005
– volume: 106
  start-page: 48
  year: 2019
  ident: mstacf390bib92
  article-title: Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.11.003
– volume: 159
  year: 2020
  ident: mstacf390bib138
  article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107768
– volume: 28
  start-page: 340
  year: 2023
  ident: mstacf390bib124
  article-title: Convformer-NSE: a novel end-to-end gearbox fault diagnosis framework under heavy noise using joint global and local information
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2022.3199985
– volume: 111
  start-page: 1
  year: 2017
  ident: mstacf390bib83
  article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.07.017
– volume: 72–73
  start-page: 303
  year: 2016
  ident: mstacf390bib62
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 115
  start-page: 181
  year: 2017
  ident: mstacf390bib32
  article-title: A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2016.07.026
– volume: 32
  year: 2021
  ident: mstacf390bib75
  article-title: An optimized stacked diagnosis structure for fault diagnosis of wind turbine planetary gearbox
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abf30b
– volume: 32
  year: 2021
  ident: mstacf390bib65
  article-title: Wind turbine gearbox fault diagnosis based on an improved supervised autoencoder using vibration and motor current signals
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac0741
– volume: 382
  start-page: 395
  year: 2016
  ident: mstacf390bib40
  article-title: Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.07.013
– volume: 68
  start-page: 12739
  year: 2021
  ident: mstacf390bib143
  article-title: Multireceptive field graph convolutional networks for machine fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3040669
– volume: 141
  year: 2020
  ident: mstacf390bib87
  article-title: One-dimensional fully decoupled networks for fault diagnosis of planetary gearboxes
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106482
– volume: 140
  year: 2020
  ident: mstacf390bib95
  article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106683
– volume: 218
  year: 2022
  ident: mstacf390bib150
  article-title: High-accuracy gearbox health state recognition based on graph sparse random vector functional link network
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108187
– start-page: 770
  year: 2016
  ident: mstacf390bib50
  article-title: Deep residual learning for image recognition
– ident: mstacf390bib165
– start-page: 1096
  year: 2008
  ident: mstacf390bib25
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 30
  year: 2019
  ident: mstacf390bib66
  article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaf319
– ident: mstacf390bib159
– year: 2017
  ident: mstacf390bib58
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 49
  start-page: 166
  year: 2020
  ident: mstacf390bib89
  article-title: Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method
  publication-title: Proc. Manuf.
  doi: 10.1016/j.promfg.2020.07.014
– volume: 178
  year: 2021
  ident: mstacf390bib30
  article-title: Vibration mechanism and improved phenomenological model of planetary gearbox with broken sun gear fault
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109356
– start-page: 5998
  year: 2017
  ident: mstacf390bib52
  article-title: Attention is all you need
– ident: mstacf390bib162
– start-page: 630
  year: 2016
  ident: mstacf390bib51
  article-title: Identity mappings in deep residual networks
– volume: 69
  start-page: 3109
  year: 2022
  ident: mstacf390bib24
  article-title: Variational embedding multiscale diversity entropy for fault diagnosis of large-scale machinery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3063979
– volume: 14
  start-page: 2323
  year: 2020
  ident: mstacf390bib156
  article-title: An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2929617
– volume: 310
  start-page: 213
  year: 2018
  ident: mstacf390bib136
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 68
  start-page: 2617
  year: 2021
  ident: mstacf390bib82
  article-title: Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2972461
– volume: 96
  start-page: 1
  year: 2014
  ident: mstacf390bib90
  article-title: Wavelets for fault diagnosis of rotary machines: a review with applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.04.015
– volume: 13
  start-page: 662
  year: 2019
  ident: mstacf390bib19
  article-title: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa.2018.5274
– volume: 70
  start-page: 1
  year: 2021
  ident: mstacf390bib144
  article-title: Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2020.3020682
– volume: 385
  start-page: 330
  year: 2016
  ident: mstacf390bib11
  article-title: A new SKRgram based demodulation technique for planet bearing fault detection
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.08.026
– volume: 66
  start-page: 9858
  year: 2019
  ident: mstacf390bib104
  article-title: Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2902817
– volume: 19
  start-page: 2674
  year: 2023
  ident: mstacf390bib12
  article-title: Proportion-extracting chirplet transform for nonstationary signal analysis of rotating machinery
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3185771
– volume: 99
  year: 2021
  ident: mstacf390bib81
  article-title: Joint pairwise graph embedded sparse deep belief network for fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.104149
– volume: 38
  start-page: 113
  year: 2013
  ident: mstacf390bib37
  article-title: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.06.021
– volume: 140
  year: 2022
  ident: mstacf390bib133
  article-title: Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106573
– volume: 63
  start-page: 139
  year: 2020
  ident: mstacf390bib55
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 66
  start-page: 4696
  year: 2019
  ident: mstacf390bib109
  article-title: Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2866050
– volume: 34
  year: 2022
  ident: mstacf390bib134
  article-title: A novel convolution network with self-adaptation high-pass filter for fault diagnosis of wind turbine gearbox
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac991f
– volume: 66
  start-page: 3814
  year: 2019
  ident: mstacf390bib80
  article-title: The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2856205
– volume: 18
  start-page: 3213
  year: 2022
  ident: mstacf390bib112
  article-title: Intelligent mechanical fault diagnosis using multisensor fusion and convolution neural network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3102017
– volume: 5
  start-page: 448
  year: 2009
  ident: mstacf390bib26
  article-title: Deep Boltzmann machines
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 5768
  year: 2022
  ident: mstacf390bib49
  article-title: Rolling bearing fault severity recognition via data mining integrated with convolutional neural network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3146151
– volume: 8
  start-page: 131299
  year: 2020
  ident: mstacf390bib77
  article-title: An intelligent fault diagnosis method of variable condition gearbox based on improved DBN combined with WPEE and MPE
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008208
– volume: 34
  year: 2023
  ident: mstacf390bib127
  article-title: A planetary gearbox fault diagnosis method based on time-series imaging feature fusion and a transformer model
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac9e6c
– volume: 69
  start-page: 8411
  year: 2022
  ident: mstacf390bib132
  article-title: A one-class generative adversarial detection framework for multifunctional fault diagnoses
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3108719
– volume: 168
  year: 2022
  ident: mstacf390bib155
  article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108653
– volume: 74
  start-page: 65
  year: 2021
  ident: mstacf390bib72
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.03.008
– volume: 77
  start-page: 941
  year: 1989
  ident: mstacf390bib91
  article-title: Time-frequency distributions-a review
  publication-title: Proc. IEEE
  doi: 10.1109/5.30749
– volume: 23
  start-page: 13140
  year: 2023
  ident: mstacf390bib145
  article-title: A novel spiking graph attention network for intelligent fault diagnosis of planetary gearboxes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3269445
– volume: 16
  start-page: 6263
  year: 2020
  ident: mstacf390bib68
  article-title: Gearbox fault diagnosis using a deep learning model with limited data sample
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2967822
– volume: 146
  start-page: 268
  year: 2019
  ident: mstacf390bib102
  article-title: A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.093
– volume: 289
  start-page: 1066
  year: 2006
  ident: mstacf390bib160
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.03.007
– volume: 11
  start-page: 9401
  year: 2021
  ident: mstacf390bib131
  article-title: A semi-supervised fault diagnosis method based on improved bidirectional generative adversarial network
  publication-title: Appl. Sci.
  doi: 10.3390/app11209401
– volume: 16
  start-page: 5735
  year: 2020
  ident: mstacf390bib119
  article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2955540
– volume: 77
  start-page: 5443
  year: 2018
  ident: mstacf390bib73
  article-title: A deep stacked wavelet auto-encoders to supervised feature extraction to pattern classification
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4461-z
– volume: 34
  year: 2023
  ident: mstacf390bib158
  article-title: Data-augmented patch variational autoencoding generative adversarial networks for rolling bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acb377
– volume: 27
  start-page: 24
  year: 2022
  ident: mstacf390bib70
  article-title: Modified stacked autoencoder using adaptive Morlet wavelet for intelligent fault diagnosis of rotating machinery
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2021.3058061
– volume: vol 33
  start-page: 3558
  year: 2019
  ident: mstacf390bib149
  article-title: Hypergraph neural networks
  doi: 10.1007/s00464-019-07000-9
– volume: 19
  start-page: 2717
  year: 2023
  ident: mstacf390bib6
  article-title: Flexible generalized demodulation for intelligent bearing fault diagnosis under nonstationary conditions
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3192597
– volume: 115
  start-page: 213
  year: 2019
  ident: mstacf390bib17
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 21
  start-page: 8117
  year: 2021
  ident: mstacf390bib39
  article-title: Discriminative dictionary learning-based sparse classification framework for data- driven machinery fault diagnosis
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3049953
– volume: 61
  start-page: 725
  year: 2021
  ident: mstacf390bib21
  article-title: Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.05.004
– volume: 153
  year: 2021
  ident: mstacf390bib16
  article-title: Intelligent cross-condition fault recognition of rolling bearings based on normalized resampled characteristic power and self-organizing, map
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107462
– volume: 19
  start-page: 2504
  year: 2019
  ident: mstacf390bib78
  article-title: Hybrid data fusion DBN for intelligent fault diagnosis of vehicle reducers
  publication-title: Sensors
  doi: 10.3390/s19112504
– volume: 365
  start-page: 276
  year: 2016
  ident: mstacf390bib79
  article-title: Envelope synchronous average scheme for multi-axis gear faults detection
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.11.038
– volume: 145
  start-page: 642
  year: 2020
  ident: mstacf390bib2
  article-title: An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.103
– volume: 1
  start-page: 1
  year: 2022
  ident: mstacf390bib126
  article-title: Effective convolutional transformer for highly accurate planetary gearbox fault diagnosis
  publication-title: IEEE Open J. Instrum. Meas.
  doi: 10.1109/OJIM.2022.3190535
– volume: 72
  start-page: 1
  year: 2023
  ident: mstacf390bib153
  article-title: Semisupervised fault diagnosis of gearbox using weighted graph-based label propagation and virtual adversarial training
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3239925
– volume: 68
  start-page: 2587
  year: 2021
  ident: mstacf390bib107
  article-title: Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2972458
– volume: 136
  year: 2020
  ident: mstacf390bib36
  article-title: Generalized adaptive mode decomposition for nonstationary signal analysis of rotating machinery: principle and applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106530
– start-page: 01
  year: 2023
  ident: mstacf390bib128
  article-title: A natural language processing based planetary gearbox fault diagnosis with acoustic emission signals
– volume: 128
  start-page: 470
  year: 2022
  ident: mstacf390bib120
  article-title: Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.11.028
– volume: 2022
  start-page: 1
  year: 2022
  ident: mstacf390bib98
  article-title: Multilayer extreme learning convolutional feature neural network model for the weak feature classification and status identification of planetary bearing
  publication-title: J. Sens.
  doi: 10.1155/2022/7693393
– volume: 33
  year: 2022
  ident: mstacf390bib137
  article-title: Parallel adversarial feature learning and enhancement of feature discriminability for fault diagnosis of a planetary gearbox under time-varying speed conditions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac8be9
– volume: 28
  year: 2017
  ident: mstacf390bib76
  article-title: An integrated approach to planetary gearbox fault diagnosis using deep belief networks
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa50e7
– volume: 107
  start-page: 50
  year: 2019
  ident: mstacf390bib85
  article-title: An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.012
– volume: 178
  start-page: 639
  year: 2021
  ident: mstacf390bib103
  article-title: Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.06.088
– volume: 28
  start-page: 2293
  year: 2023
  ident: mstacf390bib129
  article-title: Transformer-enabled cross-domain diagnostics for complex rotating machinery with multiple sensors
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2023.3237233
– volume: 149
  year: 2021
  ident: mstacf390bib113
  article-title: Planetary gearbox fault diagnosis via rotary encoder signal analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107325
– volume: 161
  year: 2021
  ident: mstacf390bib13
  article-title: Component matching chirplet transform via frequency-dependent chirp rate for wind turbine planetary gearbox fault diagnostics under variable speed condition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107997
– volume: 6
  start-page: 11
  year: 2019
  ident: mstacf390bib59
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-019-0069-y
– volume: 22
  start-page: 1421
  year: 2023
  ident: mstacf390bib5
  article-title: Flexible iterative generalized demodulation filtering for the fault diagnosis of rotating machinery under nonstationary conditions
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217221109938
– volume: 185
  year: 2023
  ident: mstacf390bib135
  article-title: Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109772
– volume: 182
  year: 2021
  ident: mstacf390bib139
  article-title: An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115234
– volume: 38
  start-page: 165
  year: 2013
  ident: mstacf390bib88
  article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.01.017
– volume: 33
  year: 2022
  ident: mstacf390bib99
  article-title: Fault diagnosis of a planetary gearbox based on a local bi-spectrum and a convolutional neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac471a
– volume: 206
  start-page: 645
  year: 2023
  ident: mstacf390bib166
  article-title: Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.056
– volume: 206
  year: 2023
  ident: mstacf390bib15
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112346
– volume: 10
  year: 2015
  ident: mstacf390bib69
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122827
– volume: 167
  year: 2022
  ident: mstacf390bib100
  article-title: A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108575
– volume: 116
  year: 2022
  ident: mstacf390bib110
  article-title: Deep residual networks-based intelligent fault diagnosis method of planetary gearboxes in cloud environments
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2021.102469
SSID ssj0007099
Score 2.6711843
SecondaryResourceType review_article
Snippet Planetary gearboxes have various merits in mechanical transmission, but their complex structure and intricate operation modes bring large challenges in terms...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 12002
Title A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviA0QY4DugQemYppPO-GtQqCB-HrYxN6i2LGrSFNaramG-DP4iznHjuvBJjFeotZKT2nup_Pd-Xd3hLzgpSy4FowWqZYUXeqaijqRNM2VZqzgZaRNNfLnL-zoJPt4mp9OJr8C1tKmF6_lzyvrSv5Hq7iGejVVsjfQrBeKC_gZ9YtX1DBe_0nHc195YiitajXOgBiqVFaGxtobUtwCV8Xyh6t5nA41RFPPHLLcDjtJelBqeKY9kjsNkXStetcVe6vNcRbUNtM4HQuFDKb6vxL3n9qN9du7RbN0u-bA0G5dhmBx1m4pB8paou-q9Te7DEWSBRmKMdXIKfoG1pApa2hTFlP0DuPQEtvGJZcQZ81qbKgkVxp8NJIm9zBKMzub1KmdQHq5u_Yfu57nIg6n8EVRGRmVkVFZCbfI7QRDDzMV48PXb35351Hp-jfa_-SOvlHCzD_FzEoIXJ3AZzm-T-65YAPmFjm7ZKK6PXJnIP3K9R7ZdYZ9DS9d9_HDB-RiDhZUsOzAgApGUEHbgQcVOFCBBRUMoIIAVG_AQeoVhIDCb10DDk4QwOkhOXn_7vjtEXXTOahMirynpYybshGNxog7qossTkSieY3xv2gUSyVHW4_BvIhZnZQ64pI1Wa4VRtBlKvF1pY_ITrfs1GMCsa61iITKGVeZYkktFLpNUgotszzLin0yG19kJV3rejNB5ay6Tnn75ND_YmXbtlx775Mb3HtA7m4R_pTs9Ocb9Qy90l48H2DyG8GHjXE
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+deep+learning+in+planetary+gearbox+health+state+recognition%3A+methods%2C+applications%2C+and+dataset+publication&rft.jtitle=Measurement+science+%26+technology&rft.au=Liu%2C+Dongdong&rft.au=Cui%2C+Lingli&rft.au=Cheng%2C+Weidong&rft.date=2024-01-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=1&rft.spage=12002&rft_id=info:doi/10.1088%2F1361-6501%2Facf390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acf390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon