Correlating hydrodynamic radii with that of two-dimensional nanoparticles
Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticl...
Saved in:
Published in | Applied physics letters Vol. 107; no. 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles. |
---|---|
AbstractList | Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles. Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles. |
Author | Liang, Hong Choi, Hyunho Yue, Yuan Kan, Yuwei Clearfield, Abraham |
Author_xml | – sequence: 1 givenname: Yuan surname: Yue fullname: Yue, Yuan – sequence: 2 givenname: Yuwei surname: Kan fullname: Kan, Yuwei – sequence: 3 givenname: Hyunho surname: Choi fullname: Choi, Hyunho – sequence: 4 givenname: Abraham surname: Clearfield fullname: Clearfield, Abraham – sequence: 5 givenname: Hong surname: Liang fullname: Liang, Hong |
BackLink | https://www.osti.gov/biblio/22486281$$D View this record in Osti.gov |
BookMark | eNptkEtLAzEUhYNUsK0u_AcDrlxMzU1m8lhK8VEouNF1yGQyTso0qUlK6b93pAVBXF0ufOdw-GZo4oO3CN0CXgBm9AEWlaRcEn6BpoA5LymAmKApxpiWTNZwhWYpbca3JpRO0WoZYrSDzs5_Fv2xjaE9er11poi6da44uNwXude5CF2RD6Fs3db65ILXQ-G1DzsdszODTdfostNDsjfnO0cfz0_vy9dy_fayWj6uS0NEnUtqKmoZBc2qzjBpAFsmLIcWc4xJXUtJRdOIjllggtOajUN5VWkruakb2dA5ujv1hpSdSsZla3oTvLcmK0IqwYiAX2oXw9fepqw2YR_H0UkRIJQzKgkZqYcTZWJIKdpOjXWji-Bz1G5QgNWPVQXqbHVM3P9J7KLb6nj8h_0G1et3BQ |
CitedBy_id | crossref_primary_10_1002_adom_202102429 crossref_primary_10_1021_acsaem_9b00513 crossref_primary_10_1016_j_triboint_2017_02_038 crossref_primary_10_1007_s12274_016_1174_y crossref_primary_10_3390_pharmaceutics17020186 crossref_primary_10_3390_antibiotics9090551 crossref_primary_10_1021_acsaem_8b00163 crossref_primary_10_1016_j_jfoodeng_2024_112035 crossref_primary_10_1021_acsami_7b19468 crossref_primary_10_1186_s12989_024_00577_7 crossref_primary_10_1007_s10854_022_09788_0 crossref_primary_10_1021_acs_chemrev_3c00581 crossref_primary_10_1039_C7RA06446B |
Cites_doi | 10.1088/0957-4484/24/26/265703 10.1016/j.jpowsour.2015.03.069 10.1002/bip.360230402 10.1021/jp811331z 10.1021/nn400280c 10.1021/jp067049x 10.1039/b820160a 10.1002/anie.200703175 10.1007/s11051-010-9858-9 10.1039/C0CP01930E 10.1021/la904070n 10.1002/andp.19053220806 10.1051/jphysrad:01936007010100 10.1021/bi00545a001 10.1007/s11051-007-9317-4 10.1021/ic8004135 10.1016/j.jcis.2010.11.032 10.1103/PhysRevE.47.248 10.1021/jp100421t 10.1002/pola.24157 10.1039/c3tc31321b 10.1002/adma.201103241 10.1002/ppsc.200700015 10.1023/A:1010067107182 10.1039/B604054C |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4937927 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22486281 10_1063_1_4937927 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UCJ UE8 |
ID | FETCH-LOGICAL-c285t-3c43e631a64fc69c10e68e71d07002559938bb8f6e1687356052744ae97c5b9b3 |
ISSN | 0003-6951 |
IngestDate | Thu May 18 18:35:33 EDT 2023 Mon Jun 30 03:14:03 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 04:19:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-3c43e631a64fc69c10e68e71d07002559938bb8f6e1687356052744ae97c5b9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2123763922 |
PQPubID | 2050678 |
ParticipantIDs | osti_scitechconnect_22486281 proquest_journals_2123763922 crossref_citationtrail_10_1063_1_4937927 crossref_primary_10_1063_1_4937927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-21 20151221 |
PublicationDateYYYYMMDD | 2015-12-21 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023061720101044400_c18) 2013; 7 (2023061720101044400_c26) 1980; 19 (2023061720101044400_c8) 1905; 322 (2023061720101044400_c17) 2010; 12 (2023061720101044400_c19) 2007; 31 (2023061720101044400_c6) 2008; 25 (2023061720101044400_c22) 2012; 24 (2023061720101044400_c4) 1993; 47 (2023061720101044400_c15) 2009; 26 (2023061720101044400_c3) 2010; 48 (2023061720101044400_c7) 2011; 13 (2023061720101044400_c5) 2008; 10 (2023061720101044400_c27) 1936; 7 (2023061720101044400_c9) 1984; 23 2023061720101044400_c24 (2023061720101044400_c1) 2000; 2 (2023061720101044400_c21) 2011; 354 (2023061720101044400_c11) 2013; 24 (2023061720101044400_c23) 2013; 1 (2023061720101044400_c14) 2009; 113 (2023061720101044400_c20) 2009; 19 (2023061720101044400_c10) 2007; 111 (2023061720101044400_c2) 1985 (2023061720101044400_c25) 2015; 284 (2023061720101044400_c12) 2007; 46 (2023061720101044400_c13) 2008; 47 (2023061720101044400_c16) 2010; 114 |
References_xml | – volume-title: Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy year: 1985 ident: 2023061720101044400_c2 – ident: 2023061720101044400_c24 publication-title: Arabian J. Chem. – volume: 24 start-page: 265703 issue: 26 year: 2013 ident: 2023061720101044400_c11 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/26/265703 – volume: 284 start-page: 435 year: 2015 ident: 2023061720101044400_c25 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.069 – volume: 23 start-page: 611 issue: 4 year: 1984 ident: 2023061720101044400_c9 publication-title: Biopolymers doi: 10.1002/bip.360230402 – volume: 113 start-page: 5150 issue: 13 year: 2009 ident: 2023061720101044400_c14 publication-title: J. Phys. Chem. C doi: 10.1021/jp811331z – volume: 7 start-page: 2898 issue: 4 year: 2013 ident: 2023061720101044400_c18 publication-title: ACS Nano doi: 10.1021/nn400280c – volume: 111 start-page: 5020 issue: 13 year: 2007 ident: 2023061720101044400_c10 publication-title: J. Phys. Chem. C doi: 10.1021/jp067049x – volume: 19 start-page: 2503 issue: 17 year: 2009 ident: 2023061720101044400_c20 publication-title: J. Mater. Chem. doi: 10.1039/b820160a – volume: 46 start-page: 8828 issue: 46 year: 2007 ident: 2023061720101044400_c12 publication-title: Angew. Chem. doi: 10.1002/anie.200703175 – volume: 12 start-page: 2799 issue: 8 year: 2010 ident: 2023061720101044400_c17 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9858-9 – volume: 13 start-page: 4846 issue: 11 year: 2011 ident: 2023061720101044400_c7 publication-title: Phys. Chem. Chem. Phys.: PCCP doi: 10.1039/C0CP01930E – volume: 26 start-page: 6720 issue: 9 year: 2009 ident: 2023061720101044400_c15 publication-title: Langmuir doi: 10.1021/la904070n – volume: 322 start-page: 549 issue: 8 year: 1905 ident: 2023061720101044400_c8 publication-title: Ann. Phys. doi: 10.1002/andp.19053220806 – volume: 7 start-page: 1 issue: 1 year: 1936 ident: 2023061720101044400_c27 publication-title: J. Phys. Radium doi: 10.1051/jphysrad:01936007010100 – volume: 19 start-page: 601 issue: 4 year: 1980 ident: 2023061720101044400_c26 publication-title: Biochemistry doi: 10.1021/bi00545a001 – volume: 10 start-page: 823 issue: 5 year: 2008 ident: 2023061720101044400_c5 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9317-4 – volume: 47 start-page: 6344 issue: 14 year: 2008 ident: 2023061720101044400_c13 publication-title: Inorg. Chem. doi: 10.1021/ic8004135 – volume: 354 start-page: 597 issue: 2 year: 2011 ident: 2023061720101044400_c21 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.11.032 – volume: 47 start-page: 248 issue: 1 year: 1993 ident: 2023061720101044400_c4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.248 – volume: 114 start-page: 5596 issue: 17 year: 2010 ident: 2023061720101044400_c16 publication-title: J. Phys. Chem. A doi: 10.1021/jp100421t – volume: 48 start-page: 3924 issue: 18 year: 2010 ident: 2023061720101044400_c3 publication-title: J. Polym. Sci. Part A: Polym. Chem. doi: 10.1002/pola.24157 – volume: 1 start-page: 6829 issue: 41 year: 2013 ident: 2023061720101044400_c23 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc31321b – volume: 24 start-page: 210 issue: 2 year: 2012 ident: 2023061720101044400_c22 publication-title: Adv. Mater. doi: 10.1002/adma.201103241 – volume: 25 start-page: 31 issue: 1 year: 2008 ident: 2023061720101044400_c6 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.200700015 – volume: 2 start-page: 123 issue: 2 year: 2000 ident: 2023061720101044400_c1 publication-title: J. Nanopart. Res. doi: 10.1023/A:1010067107182 – volume: 31 start-page: 39 issue: 1 year: 2007 ident: 2023061720101044400_c19 publication-title: New J. Chem. doi: 10.1039/B604054C |
SSID | ssj0005233 |
Score | 2.264689 |
Snippet | Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However,... Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}).... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Brownian motion LIGHT SCATTERING MATERIALS SCIENCE Mathematical analysis Measurement methods MORPHOLOGY NANOPARTICLES Photon correlation spectroscopy Scanning electron microscopy SHAPE Three dimensional motion TRANSMISSION ELECTRON MICROSCOPY TWO-DIMENSIONAL SYSTEMS Yttrium oxide YTTRIUM OXIDES Zirconium oxides ZIRCONIUM PHOSPHATES ZIRCONIUM PHOSPHIDES |
Title | Correlating hydrodynamic radii with that of two-dimensional nanoparticles |
URI | https://www.proquest.com/docview/2123763922 https://www.osti.gov/biblio/22486281 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_kiqAPolWxWmURH4Rj623247KPR1XqR0Wwhd5TyG423EFJpE0o9a93JrvJpR-I-hJCsglhf5vJbyYzvyHkjVFpYQqrmE7nCZPSaGbEzDHpE1S_4spKLHA-_KYPjuXnE3WyaZzYVZc0ds_9urWu5H9QhWOAK1bJ_gOyw03hAOwDvrAFhGH7VxjvY2sNTGYDd391WYAtDP3lp2d5sV7HGOsq7372Nxc1K1DKP8hwTKu8An85psWNKWrPS0PM43x62hX8DNR72XYh0GW7WVZfQhB12V749fBPA9tRDP2vF7YryN7kEtShWfZlW63qceCBK0ziCNXMgzEVTJuoF-uD_ZzNMewZTWpvYENf27iSQp3zDcsNVAmDCHsS-JIJcgHXhLCBbID7hWX2Wwn4BGDUthbvD7_-GGX0CNE3SMTn6oWktHg33PcK_ZjUYEZvfIQ7ZnH0kDyILgFdBCwekTu-2ib3R0KR2-Tu9wDGY_JphDkdY047zCliThFzWpf0Gub0CuZPyPHHD0f7Byy2w2AuSVXDhJPCa8FzLUunjeMzr1M_5wVY7aAcJ1Jr01J7Di-eACqrUP4x92bulDVWPCWTqq78M0K5SWdlAnMpVA4DHJyV0hrlJee2TN0OedvPUuaiVjy2LDnNupwFLTKexQndIa-HoT-DQMptg3ZxqjNgdShN7DCHyzVZjyic7iHI4ut1niGngo-fSZLnf776Bbm3WZ67ZNKctf4lMMXGvoor5DeHGWgE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+hydrodynamic+radii+with+that+of+two-dimensional+nanoparticles&rft.jtitle=Applied+physics+letters&rft.au=Yue%2C+Yuan&rft.au=Kan%2C+Yuwei&rft.au=Clearfield%2C+Abraham&rft.au=Choi%2C+Hyunho&rft.date=2015-12-21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=107&rft.issue=25&rft_id=info:doi/10.1063%2F1.4937927&rft.externalDocID=22486281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |