Twins transformer: rolling bearing fault diagnosis based on cross-attention fusion of time and frequency domain features

Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this resear...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 9; p. 96113
Main Authors Gao, Zhikang, Wang, Yanxue, Li, Xinming, Yao, Jiachi
Format Journal Article
LanguageEnglish
Published 01.09.2024
Online AccessGet full text

Cover

Loading…
Abstract Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy.
AbstractList Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy.
Author Wang, Yanxue
Yao, Jiachi
Gao, Zhikang
Li, Xinming
Author_xml – sequence: 1
  givenname: Zhikang
  orcidid: 0009-0001-6174-288X
  surname: Gao
  fullname: Gao, Zhikang
– sequence: 2
  givenname: Yanxue
  orcidid: 0000-0001-8739-4740
  surname: Wang
  fullname: Wang, Yanxue
– sequence: 3
  givenname: Xinming
  orcidid: 0009-0002-3226-6295
  surname: Li
  fullname: Li, Xinming
– sequence: 4
  givenname: Jiachi
  orcidid: 0000-0001-5876-4773
  surname: Yao
  fullname: Yao, Jiachi
BookMark eNp1kE9LxDAQxYOs4O7q3WO-QN1M07SNN1n8Bwte9l6mabJE2kSTFN1vb-uKB8HTY4Z5w3u_FVk47zQh18BugNX1BngJWSkYbLAT3MAZWf6uFmTJpKgylnN-QVYxvjLGKiblknzuP6yLNAV00fgw6HBLg-976w601RhmNTj2iXYWD85HG2mLUXfUO6qCjzHDlLRLdprNGGfxhiY7aIquoybo91E7daSdH9BONxrTGHS8JOcG-6ivfnRN9g_3--1Ttnt5fN7e7TKV1yJluTKFAoCqLqtKtAiagxAgZGGqVmDOZD7V5aUBLUtecFZJYNjVhao7piRfk_L09jtr0KZRNuGcdqps-wZYM-NrZlbNzKo54ZuM7I_xLdgBw_F_yxcWKXau
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3455355
crossref_primary_10_1088_1361_6501_ad7e3d
crossref_primary_10_1177_14727978251322545
crossref_primary_10_1088_1361_6501_ad8770
Cites_doi 10.1016/j.conengprac.2021.104952
10.1109/TR.2023.3322860
10.1088/1361-6501/aceb0c
10.1007/s11465-021-0650-6
10.1016/j.measurement.2020.108774
10.1016/j.engappai.2023.106507
10.1038/s41598-020-68173-1
10.1007/s12206-022-0102-1
10.3390/app13158689
10.1109/TIE.2017.2774777
10.1016/j.ymssp.2020.107233
10.1016/j.ymssp.2021.108616
10.1016/j.isatra.2019.07.001
10.1016/j.measurement.2021.109022
10.3233/JIFS-189004
10.1016/j.knosys.2023.111344
10.1016/j.neucom.2020.07.088
10.1016/j.bspc.2022.104206
10.1016/j.aei.2023.102322
10.1016/j.measurement.2023.113687
10.1007/s41095-022-0271-y
10.1088/1361-6501/ace7e6
10.1214/10-BA521
10.48550/arXiv.2103.00112
10.1088/1361-6501/abfbab
10.1007/s10845-020-01600-2
10.1016/j.aei.2022.101750
10.1007/s11071-024-09389-y
10.1016/j.inffus.2023.102147
10.3390/mi13101656
10.1088/1361-6501/ad41fb
10.17762/ijrmee.v9i2.364
10.1002/we.2491
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/ad53f1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_ad53f1
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c285t-2cf4c111786775ba1e31551594f7b5a2092d5336f1e9634307910ad84c8d0c93
ISSN 0957-0233
IngestDate Wed Aug 27 16:39:04 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-2cf4c111786775ba1e31551594f7b5a2092d5336f1e9634307910ad84c8d0c93
ORCID 0009-0002-3226-6295
0000-0001-5876-4773
0000-0001-8739-4740
0009-0001-6174-288X
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6501/ad53f1/pdf
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_ad53f1
crossref_primary_10_1088_1361_6501_ad53f1
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Abdeltwab (mstad53f1bib4) 2022; 9
Zhu (mstad53f1bib18) 2022; 36
Wang (mstad53f1bib6) 2021; 16
Dong (mstad53f1bib3) 2024; 112
Wen (mstad53f1bib28) 2017; 65
Li (mstad53f1bib34) 2024; 103
Cui (mstad53f1bib1) 2024; 59
Zhu (mstad53f1bib31) 2019
Yang (mstad53f1bib12) 2021; 32
Song (mstad53f1bib10) 2023; 13
Wang (mstad53f1bib24) 2024; 284
Wang (mstad53f1bib13) 2020; 96
Han (mstad53f1bib8) 2021; 177
Sun (mstad53f1bib22) 2023; 73
Dong (mstad53f1bib11) 2024; 35
Dong (mstad53f1bib5) 2023; 34
Han (mstad53f1bib20) 2021; vol 34
Raffel (mstad53f1bib29) 2020; 21
Guo (mstad53f1bib32) 2022; 8
Li (mstad53f1bib26) 2023; 223
Zhang (mstad53f1bib17) 2021; 171
He (mstad53f1bib23) 2022; 13
Ding (mstad53f1bib21) 2022; 168
Jiao (mstad53f1bib15) 2020; 417
Wang (mstad53f1bib30) 2020
Wang (mstad53f1bib33) 2023; 79
Chen (mstad53f1bib16) 2021; 32
Strömbergsson (mstad53f1bib27) 2020; 23
Mao (mstad53f1bib14) 2021; 150
Zhang (mstad53f1bib25) 2020; 39
Wang (mstad53f1bib2) 2022; 54
Chen (mstad53f1bib7) 2021; 117
Yang (mstad53f1bib9) 2023; 34
Hou (mstad53f1bib19) 2023; 124
References_xml – volume: 117
  year: 2021
  ident: mstad53f1bib7
  article-title: Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104952
– volume: 73
  start-page: 1258
  year: 2023
  ident: mstad53f1bib22
  article-title: LiteFormer: a lightweight and efficient transformer for rotating machine fault diagnosis
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2023.3322860
– volume: 34
  year: 2023
  ident: mstad53f1bib5
  article-title: Non-negative wavelet matrix factorization-based bearing fault intelligent classification method
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aceb0c
– volume: 16
  start-page: 814
  year: 2021
  ident: mstad53f1bib6
  article-title: Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical fault diagnosis of bearings
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-021-0650-6
– volume: 171
  year: 2021
  ident: mstad53f1bib17
  article-title: Fault diagnosis of rotating machinery based on recurrent neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108774
– volume: 124
  year: 2023
  ident: mstad53f1bib19
  article-title: Diagnosisformer: an efficient rolling bearing fault diagnosis method based on improved Transformer
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106507
– start-page: 11534
  year: 2020
  ident: mstad53f1bib30
  article-title: ECA-Net: efficient channel attention for deep convolutional neural networks
  doi: 10.1038/s41598-020-68173-1
– volume: 36
  start-page: 527
  year: 2022
  ident: mstad53f1bib18
  article-title: Application of recurrent neural network to mechanical fault diagnosis: a review
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0102-1
– volume: 13
  start-page: 8689
  year: 2023
  ident: mstad53f1bib10
  article-title: Multi-scale feature fusion convolutional neural networks for fault diagnosis of electromechanical actuator
  publication-title: Appl. Sci.
  doi: 10.3390/app13158689
– volume: 65
  start-page: 5990
  year: 2017
  ident: mstad53f1bib28
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 150
  year: 2021
  ident: mstad53f1bib14
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107233
– volume: 168
  year: 2022
  ident: mstad53f1bib21
  article-title: A novel time–frequency Transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108616
– volume: 96
  start-page: 457
  year: 2020
  ident: mstad53f1bib13
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 177
  year: 2021
  ident: mstad53f1bib8
  article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109022
– volume: 39
  start-page: 5193
  year: 2020
  ident: mstad53f1bib25
  article-title: Fault diagnosis of rotating machinery based on time-frequency image feature extraction
  publication-title: J. Int. Fuzzy Syst.
  doi: 10.3233/JIFS-189004
– volume: 284
  year: 2024
  ident: mstad53f1bib24
  article-title: Rolling bearing fault diagnosis method using time-frequency information integration and multi-scale TransFusion network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111344
– volume: 417
  start-page: 36
  year: 2020
  ident: mstad53f1bib15
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 79
  year: 2023
  ident: mstad53f1bib33
  article-title: Arrhythmia classification algorithm based on multi-head self-attention mechanism
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104206
– volume: 59
  year: 2024
  ident: mstad53f1bib1
  article-title: Triplet attention-enhanced residual tree-inspired decision network: a hierarchical fault diagnosis model for unbalanced bearing datasets
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102322
– volume: 223
  year: 2023
  ident: mstad53f1bib26
  article-title: Twins transformer: cross-attention based two-branch transformer network for rotating bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113687
– volume: 8
  start-page: 331
  year: 2022
  ident: mstad53f1bib32
  article-title: Attention mechanisms in computer vision: a survey
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0271-y
– volume: 34
  year: 2023
  ident: mstad53f1bib9
  article-title: Mechanical fault diagnosis based on deep transfer learning: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ace7e6
– volume: 21
  start-page: 1
  year: 2020
  ident: mstad53f1bib29
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
  doi: 10.1214/10-BA521
– volume: vol 34
  start-page: 15908
  year: 2021
  ident: mstad53f1bib20
  article-title: Transformer in transformer
  doi: 10.48550/arXiv.2103.00112
– volume: 32
  year: 2021
  ident: mstad53f1bib12
  article-title: An intelligent fault diagnosis method for an electromechanical actuator based on sparse feature and long short-term network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abfbab
– volume: 32
  start-page: 971
  year: 2021
  ident: mstad53f1bib16
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01600-2
– start-page: 6688
  year: 2019
  ident: mstad53f1bib31
  article-title: An empirical study of spatial attention mechanisms in deep networks
– volume: 54
  year: 2022
  ident: mstad53f1bib2
  article-title: A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101750
– volume: 112
  start-page: 6439
  year: 2024
  ident: mstad53f1bib3
  article-title: An intelligent bearing fault diagnosis framework: one-dimensional improved self-attention-enhanced CNN and empirical wavelet transform
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-09389-y
– volume: 103
  year: 2024
  ident: mstad53f1bib34
  article-title: CrossFuse: a novel cross attention mechanism based infrared and visible image fusion approach
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102147
– volume: 13
  start-page: 1656
  year: 2022
  ident: mstad53f1bib23
  article-title: A siamese vision Transformer for bearings fault diagnosis
  publication-title: Micromachines
  doi: 10.3390/mi13101656
– volume: 35
  year: 2024
  ident: mstad53f1bib11
  article-title: Rotating machinery fault classification based on one-dimensional residual network with attention mechanism and bidirectional gated recurrent unit
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad41fb
– volume: 9
  start-page: 01
  year: 2022
  ident: mstad53f1bib4
  article-title: A review on engine fault diagnosis through vibration analysis
  publication-title: Int. J. Recent Technol. Mech. Electr. Eng.
  doi: 10.17762/ijrmee.v9i2.364
– volume: 23
  start-page: 1381
  year: 2020
  ident: mstad53f1bib27
  article-title: Bearing monitoring in the wind turbine drivetrain: a comparative study of the FFT and wavelet transforms
  publication-title: Wind Energy
  doi: 10.1002/we.2491
SSID ssj0007099
Score 2.4812295
Snippet Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 96113
Title Twins transformer: rolling bearing fault diagnosis based on cross-attention fusion of time and frequency domain features
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFS0gyks-cKBahU1i58UNIaBUvA6LtOUS2Y6jRrTZapOIwr_hnzJjOw-1VKJcoijyjrKZTzOfx5_HhDwL41CwTGZeCXMNj6eF9iT2vS1ClYBTlBCFUfl-ig--8sNVtJrNfk9US10rX6hff91X8j9ehWfgV9wlew3PDkbhAdyDf-EKHobrv_n4Bwpc2p57anPk48a12ZaAYSOTFN1JizVWlNRVzRzzVoFrBCZBethf0yoey65x7BEPnDerCuXGKq1_zov1qahgjDaNQJspp_04lhnn_S4hBFR7qWr_TpjC7Lfj6rtwGdPU8m28ORL1eTfg7IORGayq-rQahx5ZA4cVSkCnBYuQD4qssfKYeEAVbFzTNu6yOPCALAbTwGz7mDgAZpMom8WB3cB6Kf5DzMRSRG8NE10RsTIYs12_wn8hCQ7SRLMon6Y52sjRRm4t3CA3Q5iJ4CEZ7z9_GZJ94meunaP9T24lHCwshrdYWAsT5jOhMMs7ZNvNPegrC6QdMtP1LrllNMCq2SU7Ls439LlrRr5_l5wbjNEJxl5ShzDqEEYNwuiAMGoQRtc1vYAwahFG1yVFhFFAGB0QRi3CaI-we2T59s3y9YHnTuvwVJhGrReqkivInAl2SIykCDRDOh5lvExkJEI_C-EzsLgMNAR9DrkFmKooUq7SwlcZu0-26nWtHxAq_EgmMXDZmJVcq0QKxgSXAeORL7Qq98ii_5C5cp3s8UCVk_wq5-2R_eEXZ7aLy5VjH15j7CNye0T4Y7LVbjr9BEhqK58amPwBjuyScQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twins+transformer%3A+rolling+bearing+fault+diagnosis+based+on+cross-attention+fusion+of+time+and+frequency+domain+features&rft.jtitle=Measurement+science+%26+technology&rft.au=Gao%2C+Zhikang&rft.au=Wang%2C+Yanxue&rft.au=Li%2C+Xinming&rft.au=Yao%2C+Jiachi&rft.date=2024-09-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=9&rft.spage=96113&rft_id=info:doi/10.1088%2F1361-6501%2Fad53f1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad53f1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon