Twins transformer: rolling bearing fault diagnosis based on cross-attention fusion of time and frequency domain features
Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this resear...
Saved in:
Published in | Measurement science & technology Vol. 35; no. 9; p. 96113 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy. |
---|---|
AbstractList | Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and are unable to capture both time and frequency domain fault characteristics of the original signal. To address these limitations, this research introduces a two-channel Transformer fault diagnosis model that integrates time and frequency domain features through a cross-attention mechanism. Initially, the original time-domain fault signal is converted to the frequency domain using the Fast Fourier Transform, followed by global and local feature extraction via a Convolutional Neural Network. Next, through the self-attention mechanism on the two-channel Transformer, separate fault features associated with long distances within each sequence are modeled and then fed into the feature fusion module of the cross-attention mechanism. During the fusion process, frequency domain features serve as the query sequence Q and time domain features as the key-value pairs K. By calculating the attention weights between Q and K, the model excavates deeper fault features of the original signal. Besides preserving the intrinsic associative information within sequences learned via the self-attention mechanism, the Twins Transformer also models the degree of association between different sequence features using the cross-attention mechanism. Finally, the proposed model’s performance was validated using four different experiments on four bearing datasets, achieving average accuracy rates of 99.67%, 98.76%, 98.47% and 99.41%. These results confirm the model’s effective extraction of time and frequency domain correlation features, demonstrating fast convergence, superior performance and high accuracy. |
Author | Wang, Yanxue Yao, Jiachi Gao, Zhikang Li, Xinming |
Author_xml | – sequence: 1 givenname: Zhikang orcidid: 0009-0001-6174-288X surname: Gao fullname: Gao, Zhikang – sequence: 2 givenname: Yanxue orcidid: 0000-0001-8739-4740 surname: Wang fullname: Wang, Yanxue – sequence: 3 givenname: Xinming orcidid: 0009-0002-3226-6295 surname: Li fullname: Li, Xinming – sequence: 4 givenname: Jiachi orcidid: 0000-0001-5876-4773 surname: Yao fullname: Yao, Jiachi |
BookMark | eNp1kE9LxDAQxYOs4O7q3WO-QN1M07SNN1n8Bwte9l6mabJE2kSTFN1vb-uKB8HTY4Z5w3u_FVk47zQh18BugNX1BngJWSkYbLAT3MAZWf6uFmTJpKgylnN-QVYxvjLGKiblknzuP6yLNAV00fgw6HBLg-976w601RhmNTj2iXYWD85HG2mLUXfUO6qCjzHDlLRLdprNGGfxhiY7aIquoybo91E7daSdH9BONxrTGHS8JOcG-6ivfnRN9g_3--1Ttnt5fN7e7TKV1yJluTKFAoCqLqtKtAiagxAgZGGqVmDOZD7V5aUBLUtecFZJYNjVhao7piRfk_L09jtr0KZRNuGcdqps-wZYM-NrZlbNzKo54ZuM7I_xLdgBw_F_yxcWKXau |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3455355 crossref_primary_10_1088_1361_6501_ad7e3d crossref_primary_10_1177_14727978251322545 crossref_primary_10_1088_1361_6501_ad8770 |
Cites_doi | 10.1016/j.conengprac.2021.104952 10.1109/TR.2023.3322860 10.1088/1361-6501/aceb0c 10.1007/s11465-021-0650-6 10.1016/j.measurement.2020.108774 10.1016/j.engappai.2023.106507 10.1038/s41598-020-68173-1 10.1007/s12206-022-0102-1 10.3390/app13158689 10.1109/TIE.2017.2774777 10.1016/j.ymssp.2020.107233 10.1016/j.ymssp.2021.108616 10.1016/j.isatra.2019.07.001 10.1016/j.measurement.2021.109022 10.3233/JIFS-189004 10.1016/j.knosys.2023.111344 10.1016/j.neucom.2020.07.088 10.1016/j.bspc.2022.104206 10.1016/j.aei.2023.102322 10.1016/j.measurement.2023.113687 10.1007/s41095-022-0271-y 10.1088/1361-6501/ace7e6 10.1214/10-BA521 10.48550/arXiv.2103.00112 10.1088/1361-6501/abfbab 10.1007/s10845-020-01600-2 10.1016/j.aei.2022.101750 10.1007/s11071-024-09389-y 10.1016/j.inffus.2023.102147 10.3390/mi13101656 10.1088/1361-6501/ad41fb 10.17762/ijrmee.v9i2.364 10.1002/we.2491 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/ad53f1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_ad53f1 |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c285t-2cf4c111786775ba1e31551594f7b5a2092d5336f1e9634307910ad84c8d0c93 |
ISSN | 0957-0233 |
IngestDate | Wed Aug 27 16:39:04 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-2cf4c111786775ba1e31551594f7b5a2092d5336f1e9634307910ad84c8d0c93 |
ORCID | 0009-0002-3226-6295 0000-0001-5876-4773 0000-0001-8739-4740 0009-0001-6174-288X |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6501/ad53f1/pdf |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_ad53f1 crossref_primary_10_1088_1361_6501_ad53f1 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2024 |
References | Abdeltwab (mstad53f1bib4) 2022; 9 Zhu (mstad53f1bib18) 2022; 36 Wang (mstad53f1bib6) 2021; 16 Dong (mstad53f1bib3) 2024; 112 Wen (mstad53f1bib28) 2017; 65 Li (mstad53f1bib34) 2024; 103 Cui (mstad53f1bib1) 2024; 59 Zhu (mstad53f1bib31) 2019 Yang (mstad53f1bib12) 2021; 32 Song (mstad53f1bib10) 2023; 13 Wang (mstad53f1bib24) 2024; 284 Wang (mstad53f1bib13) 2020; 96 Han (mstad53f1bib8) 2021; 177 Sun (mstad53f1bib22) 2023; 73 Dong (mstad53f1bib11) 2024; 35 Dong (mstad53f1bib5) 2023; 34 Han (mstad53f1bib20) 2021; vol 34 Raffel (mstad53f1bib29) 2020; 21 Guo (mstad53f1bib32) 2022; 8 Li (mstad53f1bib26) 2023; 223 Zhang (mstad53f1bib17) 2021; 171 He (mstad53f1bib23) 2022; 13 Ding (mstad53f1bib21) 2022; 168 Jiao (mstad53f1bib15) 2020; 417 Wang (mstad53f1bib30) 2020 Wang (mstad53f1bib33) 2023; 79 Chen (mstad53f1bib16) 2021; 32 Strömbergsson (mstad53f1bib27) 2020; 23 Mao (mstad53f1bib14) 2021; 150 Zhang (mstad53f1bib25) 2020; 39 Wang (mstad53f1bib2) 2022; 54 Chen (mstad53f1bib7) 2021; 117 Yang (mstad53f1bib9) 2023; 34 Hou (mstad53f1bib19) 2023; 124 |
References_xml | – volume: 117 year: 2021 ident: mstad53f1bib7 article-title: Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104952 – volume: 73 start-page: 1258 year: 2023 ident: mstad53f1bib22 article-title: LiteFormer: a lightweight and efficient transformer for rotating machine fault diagnosis publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2023.3322860 – volume: 34 year: 2023 ident: mstad53f1bib5 article-title: Non-negative wavelet matrix factorization-based bearing fault intelligent classification method publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aceb0c – volume: 16 start-page: 814 year: 2021 ident: mstad53f1bib6 article-title: Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical fault diagnosis of bearings publication-title: Front. Mech. Eng. doi: 10.1007/s11465-021-0650-6 – volume: 171 year: 2021 ident: mstad53f1bib17 article-title: Fault diagnosis of rotating machinery based on recurrent neural networks publication-title: Measurement doi: 10.1016/j.measurement.2020.108774 – volume: 124 year: 2023 ident: mstad53f1bib19 article-title: Diagnosisformer: an efficient rolling bearing fault diagnosis method based on improved Transformer publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106507 – start-page: 11534 year: 2020 ident: mstad53f1bib30 article-title: ECA-Net: efficient channel attention for deep convolutional neural networks doi: 10.1038/s41598-020-68173-1 – volume: 36 start-page: 527 year: 2022 ident: mstad53f1bib18 article-title: Application of recurrent neural network to mechanical fault diagnosis: a review publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-0102-1 – volume: 13 start-page: 8689 year: 2023 ident: mstad53f1bib10 article-title: Multi-scale feature fusion convolutional neural networks for fault diagnosis of electromechanical actuator publication-title: Appl. Sci. doi: 10.3390/app13158689 – volume: 65 start-page: 5990 year: 2017 ident: mstad53f1bib28 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – volume: 150 year: 2021 ident: mstad53f1bib14 article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107233 – volume: 168 year: 2022 ident: mstad53f1bib21 article-title: A novel time–frequency Transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108616 – volume: 96 start-page: 457 year: 2020 ident: mstad53f1bib13 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.07.001 – volume: 177 year: 2021 ident: mstad53f1bib8 article-title: Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2021.109022 – volume: 39 start-page: 5193 year: 2020 ident: mstad53f1bib25 article-title: Fault diagnosis of rotating machinery based on time-frequency image feature extraction publication-title: J. Int. Fuzzy Syst. doi: 10.3233/JIFS-189004 – volume: 284 year: 2024 ident: mstad53f1bib24 article-title: Rolling bearing fault diagnosis method using time-frequency information integration and multi-scale TransFusion network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111344 – volume: 417 start-page: 36 year: 2020 ident: mstad53f1bib15 article-title: A comprehensive review on convolutional neural network in machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.088 – volume: 79 year: 2023 ident: mstad53f1bib33 article-title: Arrhythmia classification algorithm based on multi-head self-attention mechanism publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104206 – volume: 59 year: 2024 ident: mstad53f1bib1 article-title: Triplet attention-enhanced residual tree-inspired decision network: a hierarchical fault diagnosis model for unbalanced bearing datasets publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102322 – volume: 223 year: 2023 ident: mstad53f1bib26 article-title: Twins transformer: cross-attention based two-branch transformer network for rotating bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2023.113687 – volume: 8 start-page: 331 year: 2022 ident: mstad53f1bib32 article-title: Attention mechanisms in computer vision: a survey publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0271-y – volume: 34 year: 2023 ident: mstad53f1bib9 article-title: Mechanical fault diagnosis based on deep transfer learning: a review publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ace7e6 – volume: 21 start-page: 1 year: 2020 ident: mstad53f1bib29 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. doi: 10.1214/10-BA521 – volume: vol 34 start-page: 15908 year: 2021 ident: mstad53f1bib20 article-title: Transformer in transformer doi: 10.48550/arXiv.2103.00112 – volume: 32 year: 2021 ident: mstad53f1bib12 article-title: An intelligent fault diagnosis method for an electromechanical actuator based on sparse feature and long short-term network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abfbab – volume: 32 start-page: 971 year: 2021 ident: mstad53f1bib16 article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01600-2 – start-page: 6688 year: 2019 ident: mstad53f1bib31 article-title: An empirical study of spatial attention mechanisms in deep networks – volume: 54 year: 2022 ident: mstad53f1bib2 article-title: A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101750 – volume: 112 start-page: 6439 year: 2024 ident: mstad53f1bib3 article-title: An intelligent bearing fault diagnosis framework: one-dimensional improved self-attention-enhanced CNN and empirical wavelet transform publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-09389-y – volume: 103 year: 2024 ident: mstad53f1bib34 article-title: CrossFuse: a novel cross attention mechanism based infrared and visible image fusion approach publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102147 – volume: 13 start-page: 1656 year: 2022 ident: mstad53f1bib23 article-title: A siamese vision Transformer for bearings fault diagnosis publication-title: Micromachines doi: 10.3390/mi13101656 – volume: 35 year: 2024 ident: mstad53f1bib11 article-title: Rotating machinery fault classification based on one-dimensional residual network with attention mechanism and bidirectional gated recurrent unit publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad41fb – volume: 9 start-page: 01 year: 2022 ident: mstad53f1bib4 article-title: A review on engine fault diagnosis through vibration analysis publication-title: Int. J. Recent Technol. Mech. Electr. Eng. doi: 10.17762/ijrmee.v9i2.364 – volume: 23 start-page: 1381 year: 2020 ident: mstad53f1bib27 article-title: Bearing monitoring in the wind turbine drivetrain: a comparative study of the FFT and wavelet transforms publication-title: Wind Energy doi: 10.1002/we.2491 |
SSID | ssj0007099 |
Score | 2.4812295 |
Snippet | Current self-attention based Transformer models in the field of fault diagnosis are limited to identifying correlation information within a single sequence and... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 96113 |
Title | Twins transformer: rolling bearing fault diagnosis based on cross-attention fusion of time and frequency domain features |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuFS0gyks-cKBahU1i58UNIaBUvA6LtOUS2Y6jRrTZapOIwr_hnzJjOw-1VKJcoijyjrKZTzOfx5_HhDwL41CwTGZeCXMNj6eF9iT2vS1ClYBTlBCFUfl-ig--8sNVtJrNfk9US10rX6hff91X8j9ehWfgV9wlew3PDkbhAdyDf-EKHobrv_n4Bwpc2p57anPk48a12ZaAYSOTFN1JizVWlNRVzRzzVoFrBCZBethf0yoey65x7BEPnDerCuXGKq1_zov1qahgjDaNQJspp_04lhnn_S4hBFR7qWr_TpjC7Lfj6rtwGdPU8m28ORL1eTfg7IORGayq-rQahx5ZA4cVSkCnBYuQD4qssfKYeEAVbFzTNu6yOPCALAbTwGz7mDgAZpMom8WB3cB6Kf5DzMRSRG8NE10RsTIYs12_wn8hCQ7SRLMon6Y52sjRRm4t3CA3Q5iJ4CEZ7z9_GZJ94meunaP9T24lHCwshrdYWAsT5jOhMMs7ZNvNPegrC6QdMtP1LrllNMCq2SU7Ls439LlrRr5_l5wbjNEJxl5ShzDqEEYNwuiAMGoQRtc1vYAwahFG1yVFhFFAGB0QRi3CaI-we2T59s3y9YHnTuvwVJhGrReqkivInAl2SIykCDRDOh5lvExkJEI_C-EzsLgMNAR9DrkFmKooUq7SwlcZu0-26nWtHxAq_EgmMXDZmJVcq0QKxgSXAeORL7Qq98ii_5C5cp3s8UCVk_wq5-2R_eEXZ7aLy5VjH15j7CNye0T4Y7LVbjr9BEhqK58amPwBjuyScQ |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twins+transformer%3A+rolling+bearing+fault+diagnosis+based+on+cross-attention+fusion+of+time+and+frequency+domain+features&rft.jtitle=Measurement+science+%26+technology&rft.au=Gao%2C+Zhikang&rft.au=Wang%2C+Yanxue&rft.au=Li%2C+Xinming&rft.au=Yao%2C+Jiachi&rft.date=2024-09-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=9&rft.spage=96113&rft_id=info:doi/10.1088%2F1361-6501%2Fad53f1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad53f1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |