Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control

We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narro...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 108; no. 1
Main Authors Stettner, T., Zimmermann, P., Loitsch, B., Döblinger, M., Regler, A., Mayer, B., Winnerl, J., Matich, S., Riedl, H., Kaniber, M., Abstreiter, G., Koblmüller, G., Finley, J. J.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 04.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm2 for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.
AbstractList We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm{sup 2} for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.
We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm2 for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media.
Author Winnerl, J.
Zimmermann, P.
Finley, J. J.
Matich, S.
Loitsch, B.
Regler, A.
Abstreiter, G.
Riedl, H.
Koblmüller, G.
Stettner, T.
Döblinger, M.
Kaniber, M.
Mayer, B.
Author_xml – sequence: 1
  givenname: T.
  orcidid: 0000-0002-6294-4731
  surname: Stettner
  fullname: Stettner, T.
– sequence: 2
  givenname: P.
  orcidid: 0000-0001-9203-255X
  surname: Zimmermann
  fullname: Zimmermann, P.
– sequence: 3
  givenname: B.
  surname: Loitsch
  fullname: Loitsch, B.
– sequence: 4
  givenname: M.
  surname: Döblinger
  fullname: Döblinger, M.
– sequence: 5
  givenname: A.
  surname: Regler
  fullname: Regler, A.
– sequence: 6
  givenname: B.
  surname: Mayer
  fullname: Mayer, B.
– sequence: 7
  givenname: J.
  surname: Winnerl
  fullname: Winnerl, J.
– sequence: 8
  givenname: S.
  surname: Matich
  fullname: Matich, S.
– sequence: 9
  givenname: H.
  surname: Riedl
  fullname: Riedl, H.
– sequence: 10
  givenname: M.
  surname: Kaniber
  fullname: Kaniber, M.
– sequence: 11
  givenname: G.
  surname: Abstreiter
  fullname: Abstreiter, G.
– sequence: 12
  givenname: G.
  orcidid: 0000-0002-7228-0158
  surname: Koblmüller
  fullname: Koblmüller, G.
– sequence: 13
  givenname: J. J.
  surname: Finley
  fullname: Finley, J. J.
BackLink https://www.osti.gov/biblio/22489226$$D View this record in Osti.gov
BookMark eNptkE9LAzEUxINUsK0e_AYLnjxsmz-b7OZYilah0Iuew9s0a1PSpCYp1W_vlhYE8TQ8-M0wb0Zo4IM3CN0TPCFYsCmZVJJJXskrNCS4rktGSDNAQ4wxK4Xk5AaNUtr2J6eMDdFqHuDLgisWMEvlzJ2k0CGacndw2aaNca7w4MPRRlM4SCam4mjzpjB7m8_WD7C-9_gcg7tF1x24ZO4uOkbvz09v85dyuVq8zmfLUtOG55LyddsJIjWmQOWaU6iN4F0jOmhbVhsj1wTaWkuhm7rFWvMOr6GrsJSCQMXYGD2cc0PKViVts9GbvoM3OitKq0ZSKn6pfQyfB5Oy2oZD9H0xRQklDa4bxntqeqZ0DClF06k-DrI9fQTWKYLVaVtF1GXb3vH4x7GPdgfx-x_2B1uCehw
CitedBy_id crossref_primary_10_1007_s10825_022_01859_z
crossref_primary_10_1021_acs_jpcc_7b00744
crossref_primary_10_1021_acs_nanolett_7b05015
crossref_primary_10_1039_C9NA00479C
crossref_primary_10_1364_OE_24_018417
crossref_primary_10_1021_acsnano_9b01546
crossref_primary_10_1063_1_4962269
crossref_primary_10_1002_adom_201900504
crossref_primary_10_1103_PhysRevB_109_085411
crossref_primary_10_1016_j_mee_2017_03_003
crossref_primary_10_1021_acs_nanolett_8b04048
crossref_primary_10_1088_1361_6641_aa5e45
crossref_primary_10_1063_1_5131704
crossref_primary_10_1103_PhysRevB_97_165401
crossref_primary_10_1002_smll_201900837
crossref_primary_10_1063_1_4971984
crossref_primary_10_1016_j_optlastec_2022_108150
crossref_primary_10_1021_acs_nanolett_8b02104
crossref_primary_10_1021_acsami_1c12371
crossref_primary_10_1063_1_4975780
crossref_primary_10_1021_acs_chemrev_9b00075
crossref_primary_10_1103_PhysRevApplied_20_034045
crossref_primary_10_1021_acs_nanolett_8b02503
crossref_primary_10_1016_j_mtcomm_2021_102542
crossref_primary_10_1021_acs_nanolett_8b01282
crossref_primary_10_1088_0022_3727_49_36_364004
crossref_primary_10_1515_nanoph_2019_0156
crossref_primary_10_35848_1882_0786_ab9874
crossref_primary_10_1063_1_4972481
crossref_primary_10_1038_s41598_021_00855_w
crossref_primary_10_1007_s40843_020_1288_6
crossref_primary_10_1021_acs_nanolett_6b01973
crossref_primary_10_1088_1361_6528_ac2f22
crossref_primary_10_1038_s41377_020_0279_y
crossref_primary_10_1021_acs_nanolett_6b05097
crossref_primary_10_1002_adma_201905458
crossref_primary_10_1021_acs_nanolett_8b01270
crossref_primary_10_1021_acs_nanolett_8b04103
crossref_primary_10_1002_pssr_201800527
crossref_primary_10_1134_S1063782619120236
crossref_primary_10_1017_S1431927617008017
crossref_primary_10_1088_1361_6528_ab000d
crossref_primary_10_1063_1_4942506
crossref_primary_10_1109_LPT_2019_2916459
crossref_primary_10_1088_1361_6463_aa5d8e
crossref_primary_10_1063_5_0045844
crossref_primary_10_1088_1674_1056_26_8_086201
crossref_primary_10_1088_1674_1056_26_8_086202
crossref_primary_10_1088_1674_4926_40_10_101301
crossref_primary_10_1021_acs_nanolett_7b01725
crossref_primary_10_1021_acs_nanolett_8b00621
crossref_primary_10_1063_1_5005173
crossref_primary_10_1038_ncomms15521
crossref_primary_10_1021_acsnano_9b01775
crossref_primary_10_1021_acs_nanolett_8b00309
crossref_primary_10_1021_acs_nanolett_9b01028
Cites_doi 10.1038/nmat728
10.1063/1.92959
10.1021/nl5021409
10.1063/1.1599037
10.1109/JQE.1986.1073185
10.1021/nl402145r
10.1038/nphoton.2010.315
10.1021/nl9041774
10.1038/nnano.2014.308
10.1021/acs.nanolett.5b00518
10.1038/nphoton.2015.111
10.1038/nature01353
10.1063/1.97366
10.1038/nphoton.2009.184
10.1021/jp034482n
10.1021/nl050440u
10.1126/science.1062711
10.1063/1.4775377
10.1021/nl802636b
10.1109/3.172
10.1038/nphoton.2013.303
10.1063/1.2198017
10.1063/1.4891427
10.1063/1.3540688
10.1038/ncomms3931
10.1364/OE.20.012171
10.1088/0957-4484/23/36/365204
10.1021/nl5015603
10.1002/adma.201404900
10.1021/acsnano.5b04070
10.1021/ph5003945
10.1021/nl3046816
10.1021/nl2019382
10.1109/3.29242
10.1021/acs.nanolett.5b03404
10.1063/1.1791326
10.1021/nl304182j
10.1063/1.2115087
10.1038/nnano.2011.97
10.1038/nature08364
10.1021/acs.nanolett.5b02766
ContentType Journal Article
Copyright 2016 AIP Publishing LLC.
Copyright_xml – notice: 2016 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4939549
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 22489226
10_1063_1_4939549
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UCJ
UE8
ID FETCH-LOGICAL-c285t-25dbf619c02a29d52a7e65f86fabb37ee9d1ab7c96c87b0cc5f0daf409961a433
ISSN 0003-6951
IngestDate Thu May 18 22:29:48 EDT 2023
Mon Jun 30 03:29:41 EDT 2025
Tue Jul 01 04:19:39 EDT 2025
Thu Apr 24 22:49:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-25dbf619c02a29d52a7e65f86fabb37ee9d1ab7c96c87b0cc5f0daf409961a433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6294-4731
0000-0001-9203-255X
0000-0002-7228-0158
PQID 2121807835
PQPubID 2050678
ParticipantIDs osti_scitechconnect_22489226
proquest_journals_2121807835
crossref_citationtrail_10_1063_1_4939549
crossref_primary_10_1063_1_4939549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-04
20160104
PublicationDateYYYYMMDD 2016-01-04
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-04
  day: 04
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023061715151541600_c3) 2011; 98
(2023061715151541600_c2) 2003; 83
(2023061715151541600_c37) 2014; 105
(2023061715151541600_c14) 2003; 421
(2023061715151541600_c18) 2013; 4
(2023061715151541600_c21) 2013; 102
(2023061715151541600_c27) 1982; 40
(2023061715151541600_c40) 1986; 49
(2023061715151541600_c4) 2012; 20
(2023061715151541600_c15) 2012; 23
(2023061715151541600_c20) 2006; 88
(2023061715151541600_c33) 2015; 15
(2023061715151541600_c7) 2001; 293
(2023061715151541600_c19) 2011; 5
(2023061715151541600_c24) 2014; 14
(2023061715151541600_c29) 2011; 11
(2023061715151541600_c34) 2015; 27
(2023061715151541600_c36) 2013; 13
(2023061715151541600_c41) 1989; 25
2023061715151541600_c6
(2023061715151541600_c31) 1986; 22
(2023061715151541600_c32) 1988; 24
(2023061715151541600_c25) 2009; 461
(2023061715151541600_c5) 2013; 13
(2023061715151541600_c39) 2015; 15
(2023061715151541600_c16) 2009; 9
(2023061715151541600_c28) 2015; 9
(2023061715151541600_c13) 2005; 5
(2023061715151541600_c35) 2010; 10
(2023061715151541600_c30) 2013; 13
(2023061715151541600_c22) 2014; 14
(2023061715151541600_c23) 2011; 6
(2023061715151541600_c12) 2004; 85
(2023061715151541600_c8) 2002; 1
(2023061715151541600_c1) 2009; 3
(2023061715151541600_c9) 2005; 87
(2023061715151541600_c11) 2003; 107
(2023061715151541600_c10) 2015; 10
(2023061715151541600_c26) 2015; 2
(2023061715151541600_c17) 2013; 7
(2023061715151541600_c38) 2015; 9
References_xml – volume: 1
  start-page: 106
  year: 2002
  ident: 2023061715151541600_c8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat728
– volume: 40
  start-page: 939
  year: 1982
  ident: 2023061715151541600_c27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.92959
– volume: 14
  start-page: 5206
  year: 2014
  ident: 2023061715151541600_c22
  publication-title: Nano Lett.
  doi: 10.1021/nl5021409
– volume: 83
  start-page: 1237
  year: 2003
  ident: 2023061715151541600_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1599037
– volume: 22
  start-page: 1887
  year: 1986
  ident: 2023061715151541600_c31
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1986.1073185
– volume: 13
  start-page: 5063
  year: 2013
  ident: 2023061715151541600_c5
  publication-title: Nano Lett.
  doi: 10.1021/nl402145r
– volume: 5
  start-page: 170
  year: 2011
  ident: 2023061715151541600_c19
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2010.315
– volume: 10
  start-page: 1639
  year: 2010
  ident: 2023061715151541600_c35
  publication-title: Nano Lett.
  doi: 10.1021/nl9041774
– volume: 10
  start-page: 140
  year: 2015
  ident: 2023061715151541600_c10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.308
– volume: 15
  start-page: 3295
  year: 2015
  ident: 2023061715151541600_c33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00518
– volume: 9
  start-page: 501
  year: 2015
  ident: 2023061715151541600_c28
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2015.111
– volume: 421
  start-page: 241
  year: 2003
  ident: 2023061715151541600_c14
  publication-title: Nature
  doi: 10.1038/nature01353
– volume: 49
  start-page: 1325
  year: 1986
  ident: 2023061715151541600_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97366
– volume: 3
  start-page: 569
  year: 2009
  ident: 2023061715151541600_c1
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.184
– volume: 107
  start-page: 8816
  year: 2003
  ident: 2023061715151541600_c11
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp034482n
– volume: 5
  start-page: 917
  year: 2005
  ident: 2023061715151541600_c13
  publication-title: Nano Lett.
  doi: 10.1021/nl050440u
– volume: 293
  start-page: 1289
  year: 2001
  ident: 2023061715151541600_c7
  publication-title: Science
  doi: 10.1126/science.1062711
– volume: 102
  start-page: 012115
  year: 2013
  ident: 2023061715151541600_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4775377
– volume: 9
  start-page: 112
  year: 2009
  ident: 2023061715151541600_c16
  publication-title: Nano Lett.
  doi: 10.1021/nl802636b
– volume: 24
  start-page: 635
  year: 1988
  ident: 2023061715151541600_c32
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.172
– volume: 7
  start-page: 963
  year: 2013
  ident: 2023061715151541600_c17
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2013.303
– volume: 88
  start-page: 163115
  year: 2006
  ident: 2023061715151541600_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2198017
– volume: 105
  start-page: 033111
  year: 2014
  ident: 2023061715151541600_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4891427
– volume: 98
  start-page: 021110
  year: 2011
  ident: 2023061715151541600_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3540688
– volume: 4
  start-page: 2931
  year: 2013
  ident: 2023061715151541600_c18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3931
– volume: 20
  start-page: 12171
  year: 2012
  ident: 2023061715151541600_c4
  publication-title: Opt. Express
  doi: 10.1364/OE.20.012171
– volume: 23
  start-page: 365204
  year: 2012
  ident: 2023061715151541600_c15
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/36/365204
– volume: 14
  start-page: 4535
  year: 2014
  ident: 2023061715151541600_c24
  publication-title: Nano Lett.
  doi: 10.1021/nl5015603
– volume: 27
  start-page: 2195
  year: 2015
  ident: 2023061715151541600_c34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404900
– volume: 9
  start-page: 8335
  year: 2015
  ident: 2023061715151541600_c38
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04070
– volume: 2
  start-page: 165
  year: 2015
  ident: 2023061715151541600_c26
  publication-title: ACS Photonics
  doi: 10.1021/ph5003945
– volume: 13
  start-page: 1522
  issue: 4
  year: 2013
  ident: 2023061715151541600_c30
  publication-title: Nano Lett.
  doi: 10.1021/nl3046816
– volume: 11
  start-page: 3848
  year: 2011
  ident: 2023061715151541600_c29
  publication-title: Nano Lett.
  doi: 10.1021/nl2019382
– volume: 25
  start-page: 1161
  year: 1989
  ident: 2023061715151541600_c41
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.29242
– volume-title: Nano Lett.
  ident: 2023061715151541600_c6
  article-title: Monolithically integrated high-β nanowire lasers on silicon
  doi: 10.1021/acs.nanolett.5b03404
– volume: 85
  start-page: 2361
  year: 2004
  ident: 2023061715151541600_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1791326
– volume: 13
  start-page: 1016
  year: 2013
  ident: 2023061715151541600_c36
  publication-title: Nano Lett.
  doi: 10.1021/nl304182j
– volume: 87
  start-page: 173111
  year: 2005
  ident: 2023061715151541600_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2115087
– volume: 6
  start-page: 506
  year: 2011
  ident: 2023061715151541600_c23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.97
– volume: 461
  start-page: 629
  year: 2009
  ident: 2023061715151541600_c25
  publication-title: Nature
  doi: 10.1038/nature08364
– volume: 15
  start-page: 6869
  year: 2015
  ident: 2023061715151541600_c39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02766
SSID ssj0005233
Score 2.4188426
Snippet We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms ALUMINIUM ARSENIDES
Aluminum gallium arsenides
Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Design optimization
Emission
Epitaxial growth
GAIN
Gallium arsenide
GALLIUM ARSENIDES
LANTHANUM SELENIDES
LASERS
Lasing
NANOWIRES
OPTICAL PUMPING
QUANTUM WELLS
SEMICONDUCTOR MATERIALS
TEMPERATURE DEPENDENCE
TEMPERATURE RANGE 0273-0400 K
Title Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control
URI https://www.proquest.com/docview/2121807835
https://www.osti.gov/biblio/22489226
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA96h6APolPZdEoQH4RLrm3TpsljNz-GTB3uDvZW0jQdg2s71gpjf_3OSdOu-0DUl36kTSn5pSe_c3o-CHlnYBELYNlliVExi3URMBmrkElZBByTE1baefl-F7uH8dej5GgoMO6jS7piYS7ujCv5H1ShDXDFKNl_QHZ8KDTAMeALW0AYtn-F8U6jz9Hi_UVnLctWuJtjWkrm3ARb9PGc17puMB_xHGgyBus6w6vFWiGu67F2jujOX31KVAd22ls-2vnKhf2MBPygg3MfK7NcjNbnEzSD__J1l_fH9r3mpGv7mlPbY-NPe-yjELPF1PYQ9raH-Jo85UwonzLW9iI0SNHy6aXqIGMDeXMy3ZLdQJbQjLCIFcd_j1cL1Og2CHRDKuCL98laBFpBNCNr2cdvewcTnx7OhxKJ-FpDKinBP4zPvUZAZg0I0lvLsOMWyyfksVcKaNYj_JTcs_U6eTRJFblOHuz3QDwjPzzqdII6vYE6HVCnPeoUUacj6hRRpx715-Tw86flzi7zZTGYiWTSsSgpiwr0XhNEOlJlEunUiqSSotJFwVNrVRnqIjVKGJkWgTFJFZS6AkVeiVDHnL8gs7qp7QahqD8aGYcaLsVGCuzOgzJVqU2sjKpN8n4Yq9z4nPFYumSVO98FwfMw98O6Sd6Ot572iVLuumkLBzwHdocpig36cpkuH3CFywMQuf_M2hy4VYhFEXjy8s-9X5GHV3N0i8y6s9_2NTDGrnjj58klb9JpqA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+GaAs-AlGaAs+core-multishell+nanowire+lasers+with+epitaxial+gain+control&rft.jtitle=Applied+physics+letters&rft.au=Stettner%2C+T.&rft.au=Zimmermann%2C+P.&rft.au=Loitsch%2C+B.&rft.au=Regler%2C+A.&rft.date=2016-01-04&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=1&rft_id=info:doi/10.1063%2F1.4939549&rft.externalDocID=22489226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon