Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control
We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narro...
Saved in:
Published in | Applied physics letters Vol. 108; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
04.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm2 for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media. |
---|---|
AbstractList | We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm{sup 2} for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media. We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells (QWs) as active gain media. When subject to optical pumping lasing emission with distinct s-shaped input-output characteristics, linewidth narrowing and emission energies associated with the confined QWs are observed. Comparing the low temperature performance of QW NW laser structures having 7 coaxial QWs with a nominally identical structure having only a single QW shows that the threshold power density reduces several-fold, down to values as low as ∼2.4 kW/cm2 for the multiple QW NW laser. This confirms that the individual radial QWs are electronically weakly coupled and that epitaxial design can be used to optimize the gain characteristics of the devices. Temperature-dependent investigations show that lasing prevails up to 300 K, opening promising new avenues for efficient III–V semiconductor NW lasers with embedded low-dimensional gain media. |
Author | Winnerl, J. Zimmermann, P. Finley, J. J. Matich, S. Loitsch, B. Regler, A. Abstreiter, G. Riedl, H. Koblmüller, G. Stettner, T. Döblinger, M. Kaniber, M. Mayer, B. |
Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0002-6294-4731 surname: Stettner fullname: Stettner, T. – sequence: 2 givenname: P. orcidid: 0000-0001-9203-255X surname: Zimmermann fullname: Zimmermann, P. – sequence: 3 givenname: B. surname: Loitsch fullname: Loitsch, B. – sequence: 4 givenname: M. surname: Döblinger fullname: Döblinger, M. – sequence: 5 givenname: A. surname: Regler fullname: Regler, A. – sequence: 6 givenname: B. surname: Mayer fullname: Mayer, B. – sequence: 7 givenname: J. surname: Winnerl fullname: Winnerl, J. – sequence: 8 givenname: S. surname: Matich fullname: Matich, S. – sequence: 9 givenname: H. surname: Riedl fullname: Riedl, H. – sequence: 10 givenname: M. surname: Kaniber fullname: Kaniber, M. – sequence: 11 givenname: G. surname: Abstreiter fullname: Abstreiter, G. – sequence: 12 givenname: G. orcidid: 0000-0002-7228-0158 surname: Koblmüller fullname: Koblmüller, G. – sequence: 13 givenname: J. J. surname: Finley fullname: Finley, J. J. |
BackLink | https://www.osti.gov/biblio/22489226$$D View this record in Osti.gov |
BookMark | eNptkE9LAzEUxINUsK0e_AYLnjxsmz-b7OZYilah0Iuew9s0a1PSpCYp1W_vlhYE8TQ8-M0wb0Zo4IM3CN0TPCFYsCmZVJJJXskrNCS4rktGSDNAQ4wxK4Xk5AaNUtr2J6eMDdFqHuDLgisWMEvlzJ2k0CGacndw2aaNca7w4MPRRlM4SCam4mjzpjB7m8_WD7C-9_gcg7tF1x24ZO4uOkbvz09v85dyuVq8zmfLUtOG55LyddsJIjWmQOWaU6iN4F0jOmhbVhsj1wTaWkuhm7rFWvMOr6GrsJSCQMXYGD2cc0PKViVts9GbvoM3OitKq0ZSKn6pfQyfB5Oy2oZD9H0xRQklDa4bxntqeqZ0DClF06k-DrI9fQTWKYLVaVtF1GXb3vH4x7GPdgfx-x_2B1uCehw |
CitedBy_id | crossref_primary_10_1007_s10825_022_01859_z crossref_primary_10_1021_acs_jpcc_7b00744 crossref_primary_10_1021_acs_nanolett_7b05015 crossref_primary_10_1039_C9NA00479C crossref_primary_10_1364_OE_24_018417 crossref_primary_10_1021_acsnano_9b01546 crossref_primary_10_1063_1_4962269 crossref_primary_10_1002_adom_201900504 crossref_primary_10_1103_PhysRevB_109_085411 crossref_primary_10_1016_j_mee_2017_03_003 crossref_primary_10_1021_acs_nanolett_8b04048 crossref_primary_10_1088_1361_6641_aa5e45 crossref_primary_10_1063_1_5131704 crossref_primary_10_1103_PhysRevB_97_165401 crossref_primary_10_1002_smll_201900837 crossref_primary_10_1063_1_4971984 crossref_primary_10_1016_j_optlastec_2022_108150 crossref_primary_10_1021_acs_nanolett_8b02104 crossref_primary_10_1021_acsami_1c12371 crossref_primary_10_1063_1_4975780 crossref_primary_10_1021_acs_chemrev_9b00075 crossref_primary_10_1103_PhysRevApplied_20_034045 crossref_primary_10_1021_acs_nanolett_8b02503 crossref_primary_10_1016_j_mtcomm_2021_102542 crossref_primary_10_1021_acs_nanolett_8b01282 crossref_primary_10_1088_0022_3727_49_36_364004 crossref_primary_10_1515_nanoph_2019_0156 crossref_primary_10_35848_1882_0786_ab9874 crossref_primary_10_1063_1_4972481 crossref_primary_10_1038_s41598_021_00855_w crossref_primary_10_1007_s40843_020_1288_6 crossref_primary_10_1021_acs_nanolett_6b01973 crossref_primary_10_1088_1361_6528_ac2f22 crossref_primary_10_1038_s41377_020_0279_y crossref_primary_10_1021_acs_nanolett_6b05097 crossref_primary_10_1002_adma_201905458 crossref_primary_10_1021_acs_nanolett_8b01270 crossref_primary_10_1021_acs_nanolett_8b04103 crossref_primary_10_1002_pssr_201800527 crossref_primary_10_1134_S1063782619120236 crossref_primary_10_1017_S1431927617008017 crossref_primary_10_1088_1361_6528_ab000d crossref_primary_10_1063_1_4942506 crossref_primary_10_1109_LPT_2019_2916459 crossref_primary_10_1088_1361_6463_aa5d8e crossref_primary_10_1063_5_0045844 crossref_primary_10_1088_1674_1056_26_8_086201 crossref_primary_10_1088_1674_1056_26_8_086202 crossref_primary_10_1088_1674_4926_40_10_101301 crossref_primary_10_1021_acs_nanolett_7b01725 crossref_primary_10_1021_acs_nanolett_8b00621 crossref_primary_10_1063_1_5005173 crossref_primary_10_1038_ncomms15521 crossref_primary_10_1021_acsnano_9b01775 crossref_primary_10_1021_acs_nanolett_8b00309 crossref_primary_10_1021_acs_nanolett_9b01028 |
Cites_doi | 10.1038/nmat728 10.1063/1.92959 10.1021/nl5021409 10.1063/1.1599037 10.1109/JQE.1986.1073185 10.1021/nl402145r 10.1038/nphoton.2010.315 10.1021/nl9041774 10.1038/nnano.2014.308 10.1021/acs.nanolett.5b00518 10.1038/nphoton.2015.111 10.1038/nature01353 10.1063/1.97366 10.1038/nphoton.2009.184 10.1021/jp034482n 10.1021/nl050440u 10.1126/science.1062711 10.1063/1.4775377 10.1021/nl802636b 10.1109/3.172 10.1038/nphoton.2013.303 10.1063/1.2198017 10.1063/1.4891427 10.1063/1.3540688 10.1038/ncomms3931 10.1364/OE.20.012171 10.1088/0957-4484/23/36/365204 10.1021/nl5015603 10.1002/adma.201404900 10.1021/acsnano.5b04070 10.1021/ph5003945 10.1021/nl3046816 10.1021/nl2019382 10.1109/3.29242 10.1021/acs.nanolett.5b03404 10.1063/1.1791326 10.1021/nl304182j 10.1063/1.2115087 10.1038/nnano.2011.97 10.1038/nature08364 10.1021/acs.nanolett.5b02766 |
ContentType | Journal Article |
Copyright | 2016 AIP Publishing LLC. |
Copyright_xml | – notice: 2016 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4939549 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22489226 10_1063_1_4939549 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UCJ UE8 |
ID | FETCH-LOGICAL-c285t-25dbf619c02a29d52a7e65f86fabb37ee9d1ab7c96c87b0cc5f0daf409961a433 |
ISSN | 0003-6951 |
IngestDate | Thu May 18 22:29:48 EDT 2023 Mon Jun 30 03:29:41 EDT 2025 Tue Jul 01 04:19:39 EDT 2025 Thu Apr 24 22:49:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-25dbf619c02a29d52a7e65f86fabb37ee9d1ab7c96c87b0cc5f0daf409961a433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6294-4731 0000-0001-9203-255X 0000-0002-7228-0158 |
PQID | 2121807835 |
PQPubID | 2050678 |
ParticipantIDs | osti_scitechconnect_22489226 proquest_journals_2121807835 crossref_citationtrail_10_1063_1_4939549 crossref_primary_10_1063_1_4939549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-04 20160104 |
PublicationDateYYYYMMDD | 2016-01-04 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023061715151541600_c3) 2011; 98 (2023061715151541600_c2) 2003; 83 (2023061715151541600_c37) 2014; 105 (2023061715151541600_c14) 2003; 421 (2023061715151541600_c18) 2013; 4 (2023061715151541600_c21) 2013; 102 (2023061715151541600_c27) 1982; 40 (2023061715151541600_c40) 1986; 49 (2023061715151541600_c4) 2012; 20 (2023061715151541600_c15) 2012; 23 (2023061715151541600_c20) 2006; 88 (2023061715151541600_c33) 2015; 15 (2023061715151541600_c7) 2001; 293 (2023061715151541600_c19) 2011; 5 (2023061715151541600_c24) 2014; 14 (2023061715151541600_c29) 2011; 11 (2023061715151541600_c34) 2015; 27 (2023061715151541600_c36) 2013; 13 (2023061715151541600_c41) 1989; 25 2023061715151541600_c6 (2023061715151541600_c31) 1986; 22 (2023061715151541600_c32) 1988; 24 (2023061715151541600_c25) 2009; 461 (2023061715151541600_c5) 2013; 13 (2023061715151541600_c39) 2015; 15 (2023061715151541600_c16) 2009; 9 (2023061715151541600_c28) 2015; 9 (2023061715151541600_c13) 2005; 5 (2023061715151541600_c35) 2010; 10 (2023061715151541600_c30) 2013; 13 (2023061715151541600_c22) 2014; 14 (2023061715151541600_c23) 2011; 6 (2023061715151541600_c12) 2004; 85 (2023061715151541600_c8) 2002; 1 (2023061715151541600_c1) 2009; 3 (2023061715151541600_c9) 2005; 87 (2023061715151541600_c11) 2003; 107 (2023061715151541600_c10) 2015; 10 (2023061715151541600_c26) 2015; 2 (2023061715151541600_c17) 2013; 7 (2023061715151541600_c38) 2015; 9 |
References_xml | – volume: 1 start-page: 106 year: 2002 ident: 2023061715151541600_c8 publication-title: Nat. Mater. doi: 10.1038/nmat728 – volume: 40 start-page: 939 year: 1982 ident: 2023061715151541600_c27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.92959 – volume: 14 start-page: 5206 year: 2014 ident: 2023061715151541600_c22 publication-title: Nano Lett. doi: 10.1021/nl5021409 – volume: 83 start-page: 1237 year: 2003 ident: 2023061715151541600_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1599037 – volume: 22 start-page: 1887 year: 1986 ident: 2023061715151541600_c31 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1986.1073185 – volume: 13 start-page: 5063 year: 2013 ident: 2023061715151541600_c5 publication-title: Nano Lett. doi: 10.1021/nl402145r – volume: 5 start-page: 170 year: 2011 ident: 2023061715151541600_c19 publication-title: Nature Photon. doi: 10.1038/nphoton.2010.315 – volume: 10 start-page: 1639 year: 2010 ident: 2023061715151541600_c35 publication-title: Nano Lett. doi: 10.1021/nl9041774 – volume: 10 start-page: 140 year: 2015 ident: 2023061715151541600_c10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.308 – volume: 15 start-page: 3295 year: 2015 ident: 2023061715151541600_c33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00518 – volume: 9 start-page: 501 year: 2015 ident: 2023061715151541600_c28 publication-title: Nature Photon. doi: 10.1038/nphoton.2015.111 – volume: 421 start-page: 241 year: 2003 ident: 2023061715151541600_c14 publication-title: Nature doi: 10.1038/nature01353 – volume: 49 start-page: 1325 year: 1986 ident: 2023061715151541600_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.97366 – volume: 3 start-page: 569 year: 2009 ident: 2023061715151541600_c1 publication-title: Nature Photon. doi: 10.1038/nphoton.2009.184 – volume: 107 start-page: 8816 year: 2003 ident: 2023061715151541600_c11 publication-title: J. Phys. Chem. doi: 10.1021/jp034482n – volume: 5 start-page: 917 year: 2005 ident: 2023061715151541600_c13 publication-title: Nano Lett. doi: 10.1021/nl050440u – volume: 293 start-page: 1289 year: 2001 ident: 2023061715151541600_c7 publication-title: Science doi: 10.1126/science.1062711 – volume: 102 start-page: 012115 year: 2013 ident: 2023061715151541600_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4775377 – volume: 9 start-page: 112 year: 2009 ident: 2023061715151541600_c16 publication-title: Nano Lett. doi: 10.1021/nl802636b – volume: 24 start-page: 635 year: 1988 ident: 2023061715151541600_c32 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.172 – volume: 7 start-page: 963 year: 2013 ident: 2023061715151541600_c17 publication-title: Nature Photon. doi: 10.1038/nphoton.2013.303 – volume: 88 start-page: 163115 year: 2006 ident: 2023061715151541600_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2198017 – volume: 105 start-page: 033111 year: 2014 ident: 2023061715151541600_c37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4891427 – volume: 98 start-page: 021110 year: 2011 ident: 2023061715151541600_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3540688 – volume: 4 start-page: 2931 year: 2013 ident: 2023061715151541600_c18 publication-title: Nat. Commun. doi: 10.1038/ncomms3931 – volume: 20 start-page: 12171 year: 2012 ident: 2023061715151541600_c4 publication-title: Opt. Express doi: 10.1364/OE.20.012171 – volume: 23 start-page: 365204 year: 2012 ident: 2023061715151541600_c15 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/36/365204 – volume: 14 start-page: 4535 year: 2014 ident: 2023061715151541600_c24 publication-title: Nano Lett. doi: 10.1021/nl5015603 – volume: 27 start-page: 2195 year: 2015 ident: 2023061715151541600_c34 publication-title: Adv. Mater. doi: 10.1002/adma.201404900 – volume: 9 start-page: 8335 year: 2015 ident: 2023061715151541600_c38 publication-title: ACS Nano doi: 10.1021/acsnano.5b04070 – volume: 2 start-page: 165 year: 2015 ident: 2023061715151541600_c26 publication-title: ACS Photonics doi: 10.1021/ph5003945 – volume: 13 start-page: 1522 issue: 4 year: 2013 ident: 2023061715151541600_c30 publication-title: Nano Lett. doi: 10.1021/nl3046816 – volume: 11 start-page: 3848 year: 2011 ident: 2023061715151541600_c29 publication-title: Nano Lett. doi: 10.1021/nl2019382 – volume: 25 start-page: 1161 year: 1989 ident: 2023061715151541600_c41 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.29242 – volume-title: Nano Lett. ident: 2023061715151541600_c6 article-title: Monolithically integrated high-β nanowire lasers on silicon doi: 10.1021/acs.nanolett.5b03404 – volume: 85 start-page: 2361 year: 2004 ident: 2023061715151541600_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1791326 – volume: 13 start-page: 1016 year: 2013 ident: 2023061715151541600_c36 publication-title: Nano Lett. doi: 10.1021/nl304182j – volume: 87 start-page: 173111 year: 2005 ident: 2023061715151541600_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2115087 – volume: 6 start-page: 506 year: 2011 ident: 2023061715151541600_c23 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.97 – volume: 461 start-page: 629 year: 2009 ident: 2023061715151541600_c25 publication-title: Nature doi: 10.1038/nature08364 – volume: 15 start-page: 6869 year: 2015 ident: 2023061715151541600_c39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02766 |
SSID | ssj0005233 |
Score | 2.4188426 |
Snippet | We demonstrate the growth and single-mode lasing operation of GaAs-AlGaAs core-multishell nanowires (NW) with radial single and multiple GaAs quantum wells... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | ALUMINIUM ARSENIDES Aluminum gallium arsenides Applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Design optimization Emission Epitaxial growth GAIN Gallium arsenide GALLIUM ARSENIDES LANTHANUM SELENIDES LASERS Lasing NANOWIRES OPTICAL PUMPING QUANTUM WELLS SEMICONDUCTOR MATERIALS TEMPERATURE DEPENDENCE TEMPERATURE RANGE 0273-0400 K |
Title | Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control |
URI | https://www.proquest.com/docview/2121807835 https://www.osti.gov/biblio/22489226 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA96h6APolPZdEoQH4RLrm3TpsljNz-GTB3uDvZW0jQdg2s71gpjf_3OSdOu-0DUl36kTSn5pSe_c3o-CHlnYBELYNlliVExi3URMBmrkElZBByTE1baefl-F7uH8dej5GgoMO6jS7piYS7ujCv5H1ShDXDFKNl_QHZ8KDTAMeALW0AYtn-F8U6jz9Hi_UVnLctWuJtjWkrm3ARb9PGc17puMB_xHGgyBus6w6vFWiGu67F2jujOX31KVAd22ls-2vnKhf2MBPygg3MfK7NcjNbnEzSD__J1l_fH9r3mpGv7mlPbY-NPe-yjELPF1PYQ9raH-Jo85UwonzLW9iI0SNHy6aXqIGMDeXMy3ZLdQJbQjLCIFcd_j1cL1Og2CHRDKuCL98laBFpBNCNr2cdvewcTnx7OhxKJ-FpDKinBP4zPvUZAZg0I0lvLsOMWyyfksVcKaNYj_JTcs_U6eTRJFblOHuz3QDwjPzzqdII6vYE6HVCnPeoUUacj6hRRpx715-Tw86flzi7zZTGYiWTSsSgpiwr0XhNEOlJlEunUiqSSotJFwVNrVRnqIjVKGJkWgTFJFZS6AkVeiVDHnL8gs7qp7QahqD8aGYcaLsVGCuzOgzJVqU2sjKpN8n4Yq9z4nPFYumSVO98FwfMw98O6Sd6Ot572iVLuumkLBzwHdocpig36cpkuH3CFywMQuf_M2hy4VYhFEXjy8s-9X5GHV3N0i8y6s9_2NTDGrnjj58klb9JpqA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+GaAs-AlGaAs+core-multishell+nanowire+lasers+with+epitaxial+gain+control&rft.jtitle=Applied+physics+letters&rft.au=Stettner%2C+T.&rft.au=Zimmermann%2C+P.&rft.au=Loitsch%2C+B.&rft.au=Regler%2C+A.&rft.date=2016-01-04&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=1&rft_id=info:doi/10.1063%2F1.4939549&rft.externalDocID=22489226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |