Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-f...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 105; no. 13
Main Authors Huber-Rodriguez, Benjamin, Kwang, Siu Yi, Hardy, Will J., Ji, Heng, Chen, Chih-Wei, Morosan, Emilia, Natelson, Douglas
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 29.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.
AbstractList The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.
The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.
Author Huber-Rodriguez, Benjamin
Kwang, Siu Yi
Morosan, Emilia
Hardy, Will J.
Chen, Chih-Wei
Ji, Heng
Natelson, Douglas
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Huber-Rodriguez
  fullname: Huber-Rodriguez, Benjamin
– sequence: 2
  givenname: Siu Yi
  surname: Kwang
  fullname: Kwang, Siu Yi
– sequence: 3
  givenname: Will J.
  surname: Hardy
  fullname: Hardy, Will J.
– sequence: 4
  givenname: Heng
  surname: Ji
  fullname: Ji, Heng
– sequence: 5
  givenname: Chih-Wei
  surname: Chen
  fullname: Chen, Chih-Wei
– sequence: 6
  givenname: Emilia
  surname: Morosan
  fullname: Morosan, Emilia
– sequence: 7
  givenname: Douglas
  surname: Natelson
  fullname: Natelson, Douglas
BackLink https://www.osti.gov/biblio/22350787$$D View this record in Osti.gov
BookMark eNptkE1LxDAQhoOs4Ppx8B8EPHnobj6atjmq-AWCl_Uc0nZis3YTTVLRf2_WFQTxNAzvM-_MvIdo5rwDhE4pWVBS8SVdlI2sKlbuoTkldV1wSpsZmhNCeFFJQQ_QYYzr3ArG-RyZ1QBho8fxE_fBvoPD2unRP2NvcBoAX-rwMugpZgGMgS5hnb6FDSQ9FtbFadTJB5yCdtEm6x22Dr9nl95OG9xb_2F7OEb7Ro8RTn7qEXq6uV5d3RUPj7f3VxcPRccakQpGDQfKmZSdkJK1LWGmL0HqkrWC1tATwjirgYJuGwlCtkLwqoayNZxXXPMjdLbz9TFZFTuboBs671y-XDHGBamb-pd6Df5tgpjU2k8h_x0Vo6wSggjOMnW-o7rgYwxg1GuwGx0-FSVqG7ai6ifszC7_sHm13qaRc7HjPxNfNBeB6w
CitedBy_id crossref_primary_10_1088_2053_1583_aae0de
Cites_doi 10.1103/PhysRevB.74.205118
10.1143/JPSJ.52.3611
10.1038/nnano.2009.266
10.1143/JPSJ.54.2603
10.1016/0375-9601(68)91321-2
10.1021/nl9028973
10.1080/00150197808237231
10.1038/nature12425
10.1103/PhysRevB.11.4383
10.1088/0022-3719/1/1/322
10.1038/nnano.2012.70
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4896624
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 22350787
10_1063_1_4896624
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UCJ
UE8
ID FETCH-LOGICAL-c285t-21f3e13299c5992bb02fd4e9a42b517ed002327e1eab89e59b55367e4bf3363a3
ISSN 0003-6951
IngestDate Thu May 18 22:35:07 EDT 2023
Mon Jun 30 04:19:24 EDT 2025
Tue Jul 01 04:19:14 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-21f3e13299c5992bb02fd4e9a42b517ed002327e1eab89e59b55367e4bf3363a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2126550532
PQPubID 2050678
ParticipantIDs osti_scitechconnect_22350787
proquest_journals_2126550532
crossref_primary_10_1063_1_4896624
crossref_citationtrail_10_1063_1_4896624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-29
20140929
PublicationDateYYYYMMDD 2014-09-29
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-29
  day: 29
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023070514233097700_c12) 1978; 20
(2023070514233097700_c7) 2009; 9
(2023070514233097700_c8) 2012; 7
(2023070514233097700_c6) 2009; 4
(2023070514233097700_c10) 1983; 52
(2023070514233097700_c1) 2013; 500
(2023070514233097700_c4) 1968; 1
(2023070514233097700_c9) 1919; 20
(2023070514233097700_c11) 1985; 54
(2023070514233097700_c3) 1968; 27
(2023070514233097700_c5) 2006; 74
(2023070514233097700_c2) 1975; 11
References_xml – volume: 74
  start-page: 205118
  year: 2006
  ident: 2023070514233097700_c5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.205118
– volume: 52
  start-page: 3611
  year: 1983
  ident: 2023070514233097700_c10
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.52.3611
– volume: 4
  start-page: 732
  year: 2009
  ident: 2023070514233097700_c6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.266
– volume: 54
  start-page: 2603
  year: 1985
  ident: 2023070514233097700_c11
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.54.2603
– volume: 27
  start-page: 34
  year: 1968
  ident: 2023070514233097700_c3
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(68)91321-2
– volume: 9
  start-page: 4527
  year: 2009
  ident: 2023070514233097700_c7
  publication-title: Nano Lett.
  doi: 10.1021/nl9028973
– volume: 20
  start-page: 261
  year: 1978
  ident: 2023070514233097700_c12
  publication-title: Ferroelectrics
  doi: 10.1080/00150197808237231
– volume: 500
  start-page: 431
  year: 2013
  ident: 2023070514233097700_c1
  publication-title: Nature
  doi: 10.1038/nature12425
– volume: 11
  start-page: 4383
  year: 1975
  ident: 2023070514233097700_c2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.11.4383
– volume: 1
  start-page: 189
  year: 1968
  ident: 2023070514233097700_c4
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/1/1/322
– volume: 20
  start-page: 401
  year: 1919
  ident: 2023070514233097700_c9
  publication-title: Z. Phys.
– volume: 7
  start-page: 357
  year: 2012
  ident: 2023070514233097700_c8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.70
SSID ssj0005233
Score 2.1375923
Snippet The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
Barkhausen effect
Bridge approaches
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DIELECTRIC MATERIALS
Insulators
Magnetic permeability
Material properties
Metal-insulator transition
METALS
PHASE TRANSFORMATIONS
Phase transitions
Strain
STRAINS
TIME DEPENDENCE
Vanadium dioxide
VANADIUM OXIDES
Title Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide
URI https://www.proquest.com/docview/2126550532
https://www.osti.gov/biblio/22350787
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5QwEG50Lyb6YPTUeHqaxvhgQjihhQKPp97lctk7je4m6xNpaTlRDswu66-_3iktsOjGqC9kQ1lSOl-nM9Nvpgg9lX7mJZmAiRRF1A0Swl0uOXF5pDwmYfqxtk7B2Tk7mQeni3AxxHTb7JJGHGQ_tuaV_I9U4R7IVWfJ_oNk-5fCDfgN8oUrSBiufytj0Ktl-d2RS621HF7pWEy_78-Xnz5wHWOxtA2buaiPjeal29LQtc-tz4moDHdLhz--tDyw9aUji_pbIUdcoc5oNQGRlVO22UCrARxCLd23NXTnYm1i0y9U9ZFfFsNm_1eua4AXa-d9Mag_Sx_Q0Z9ho-q0gFXRrqw2MOEHmkVBBvXX7ziNWA9vTPdGKpm6LLFVZ5XRwl6kg6dWMXdq2gs38Ui36n8wuHQo4iCIwY0zydnjGtvnr9Pj-XSazo4Ws6toh4BzQSZo5_DV2fTdBjWI0u6kRd21riIVo8_7V4_smEkNn_jbat6aKLNb6Kb1LfChAcptdEVVu-jGRsXJXXTNjswdlPfgwQY82IAH1zkGjOABPNiAB_OmbfgFPHgADy4q3IEHW_DcRfPjo9nLE9ceuuFmJA4bl_g5VT4FKyULk4QI4ZFcBirhARGhHymprTwSKV9xEScqTEQYUhapQOSUMsrpPTSp6krdR5hQ6cHfcklzEuScJ9RTinkyluCkQs_30LNuCNPMVqTXB6OUacuMYDT1Uzvae-hJ_-hnU4Zl20P7Wg4p2I66AHKmmWJZk4IBDE5PHEFzJ5_UTuJVCpYb0046JQ_-3PwQXR9Avo8mzXKtHoE92ojHFj4_AW5JkDc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+driven+analog+of+the+Barkhausen+effect+at+the+metal-insulator+transition+in+vanadium+dioxide&rft.jtitle=Applied+physics+letters&rft.au=Huber-Rodriguez%2C+Benjamin&rft.au=Kwang+Siu+Yi&rft.au=Hardy%2C+Will+J&rft.au=Ji+Heng&rft.date=2014-09-29&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=105&rft.issue=13&rft_id=info:doi/10.1063%2F1.4896624&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon