Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide
The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-f...
Saved in:
Published in | Applied physics letters Vol. 105; no. 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
29.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions. |
---|---|
AbstractList | The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions. The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions. |
Author | Huber-Rodriguez, Benjamin Kwang, Siu Yi Morosan, Emilia Hardy, Will J. Chen, Chih-Wei Ji, Heng Natelson, Douglas |
Author_xml | – sequence: 1 givenname: Benjamin surname: Huber-Rodriguez fullname: Huber-Rodriguez, Benjamin – sequence: 2 givenname: Siu Yi surname: Kwang fullname: Kwang, Siu Yi – sequence: 3 givenname: Will J. surname: Hardy fullname: Hardy, Will J. – sequence: 4 givenname: Heng surname: Ji fullname: Ji, Heng – sequence: 5 givenname: Chih-Wei surname: Chen fullname: Chen, Chih-Wei – sequence: 6 givenname: Emilia surname: Morosan fullname: Morosan, Emilia – sequence: 7 givenname: Douglas surname: Natelson fullname: Natelson, Douglas |
BackLink | https://www.osti.gov/biblio/22350787$$D View this record in Osti.gov |
BookMark | eNptkE1LxDAQhoOs4Ppx8B8EPHnobj6atjmq-AWCl_Uc0nZis3YTTVLRf2_WFQTxNAzvM-_MvIdo5rwDhE4pWVBS8SVdlI2sKlbuoTkldV1wSpsZmhNCeFFJQQ_QYYzr3ArG-RyZ1QBho8fxE_fBvoPD2unRP2NvcBoAX-rwMugpZgGMgS5hnb6FDSQ9FtbFadTJB5yCdtEm6x22Dr9nl95OG9xb_2F7OEb7Ro8RTn7qEXq6uV5d3RUPj7f3VxcPRccakQpGDQfKmZSdkJK1LWGmL0HqkrWC1tATwjirgYJuGwlCtkLwqoayNZxXXPMjdLbz9TFZFTuboBs671y-XDHGBamb-pd6Df5tgpjU2k8h_x0Vo6wSggjOMnW-o7rgYwxg1GuwGx0-FSVqG7ai6ifszC7_sHm13qaRc7HjPxNfNBeB6w |
CitedBy_id | crossref_primary_10_1088_2053_1583_aae0de |
Cites_doi | 10.1103/PhysRevB.74.205118 10.1143/JPSJ.52.3611 10.1038/nnano.2009.266 10.1143/JPSJ.54.2603 10.1016/0375-9601(68)91321-2 10.1021/nl9028973 10.1080/00150197808237231 10.1038/nature12425 10.1103/PhysRevB.11.4383 10.1088/0022-3719/1/1/322 10.1038/nnano.2012.70 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4896624 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22350787 10_1063_1_4896624 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UCJ UE8 |
ID | FETCH-LOGICAL-c285t-21f3e13299c5992bb02fd4e9a42b517ed002327e1eab89e59b55367e4bf3363a3 |
ISSN | 0003-6951 |
IngestDate | Thu May 18 22:35:07 EDT 2023 Mon Jun 30 04:19:24 EDT 2025 Tue Jul 01 04:19:14 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-21f3e13299c5992bb02fd4e9a42b517ed002327e1eab89e59b55367e4bf3363a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2126550532 |
PQPubID | 2050678 |
ParticipantIDs | osti_scitechconnect_22350787 proquest_journals_2126550532 crossref_primary_10_1063_1_4896624 crossref_citationtrail_10_1063_1_4896624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-29 20140929 |
PublicationDateYYYYMMDD | 2014-09-29 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023070514233097700_c12) 1978; 20 (2023070514233097700_c7) 2009; 9 (2023070514233097700_c8) 2012; 7 (2023070514233097700_c6) 2009; 4 (2023070514233097700_c10) 1983; 52 (2023070514233097700_c1) 2013; 500 (2023070514233097700_c4) 1968; 1 (2023070514233097700_c9) 1919; 20 (2023070514233097700_c11) 1985; 54 (2023070514233097700_c3) 1968; 27 (2023070514233097700_c5) 2006; 74 (2023070514233097700_c2) 1975; 11 |
References_xml | – volume: 74 start-page: 205118 year: 2006 ident: 2023070514233097700_c5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.205118 – volume: 52 start-page: 3611 year: 1983 ident: 2023070514233097700_c10 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.52.3611 – volume: 4 start-page: 732 year: 2009 ident: 2023070514233097700_c6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.266 – volume: 54 start-page: 2603 year: 1985 ident: 2023070514233097700_c11 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.54.2603 – volume: 27 start-page: 34 year: 1968 ident: 2023070514233097700_c3 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(68)91321-2 – volume: 9 start-page: 4527 year: 2009 ident: 2023070514233097700_c7 publication-title: Nano Lett. doi: 10.1021/nl9028973 – volume: 20 start-page: 261 year: 1978 ident: 2023070514233097700_c12 publication-title: Ferroelectrics doi: 10.1080/00150197808237231 – volume: 500 start-page: 431 year: 2013 ident: 2023070514233097700_c1 publication-title: Nature doi: 10.1038/nature12425 – volume: 11 start-page: 4383 year: 1975 ident: 2023070514233097700_c2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.11.4383 – volume: 1 start-page: 189 year: 1968 ident: 2023070514233097700_c4 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/1/1/322 – volume: 20 start-page: 401 year: 1919 ident: 2023070514233097700_c9 publication-title: Z. Phys. – volume: 7 start-page: 357 year: 2012 ident: 2023070514233097700_c8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.70 |
SSID | ssj0005233 |
Score | 2.1375923 |
Snippet | The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Barkhausen effect Bridge approaches CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIELECTRIC MATERIALS Insulators Magnetic permeability Material properties Metal-insulator transition METALS PHASE TRANSFORMATIONS Phase transitions Strain STRAINS TIME DEPENDENCE Vanadium dioxide VANADIUM OXIDES |
Title | Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide |
URI | https://www.proquest.com/docview/2126550532 https://www.osti.gov/biblio/22350787 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5QwEG50Lyb6YPTUeHqaxvhgQjihhQKPp97lctk7je4m6xNpaTlRDswu66-_3iktsOjGqC9kQ1lSOl-nM9Nvpgg9lX7mJZmAiRRF1A0Swl0uOXF5pDwmYfqxtk7B2Tk7mQeni3AxxHTb7JJGHGQ_tuaV_I9U4R7IVWfJ_oNk-5fCDfgN8oUrSBiufytj0Ktl-d2RS621HF7pWEy_78-Xnz5wHWOxtA2buaiPjeal29LQtc-tz4moDHdLhz--tDyw9aUji_pbIUdcoc5oNQGRlVO22UCrARxCLd23NXTnYm1i0y9U9ZFfFsNm_1eua4AXa-d9Mag_Sx_Q0Z9ho-q0gFXRrqw2MOEHmkVBBvXX7ziNWA9vTPdGKpm6LLFVZ5XRwl6kg6dWMXdq2gs38Ui36n8wuHQo4iCIwY0zydnjGtvnr9Pj-XSazo4Ws6toh4BzQSZo5_DV2fTdBjWI0u6kRd21riIVo8_7V4_smEkNn_jbat6aKLNb6Kb1LfChAcptdEVVu-jGRsXJXXTNjswdlPfgwQY82IAH1zkGjOABPNiAB_OmbfgFPHgADy4q3IEHW_DcRfPjo9nLE9ceuuFmJA4bl_g5VT4FKyULk4QI4ZFcBirhARGhHymprTwSKV9xEScqTEQYUhapQOSUMsrpPTSp6krdR5hQ6cHfcklzEuScJ9RTinkyluCkQs_30LNuCNPMVqTXB6OUacuMYDT1Uzvae-hJ_-hnU4Zl20P7Wg4p2I66AHKmmWJZk4IBDE5PHEFzJ5_UTuJVCpYb0046JQ_-3PwQXR9Avo8mzXKtHoE92ojHFj4_AW5JkDc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+driven+analog+of+the+Barkhausen+effect+at+the+metal-insulator+transition+in+vanadium+dioxide&rft.jtitle=Applied+physics+letters&rft.au=Huber-Rodriguez%2C+Benjamin&rft.au=Kwang+Siu+Yi&rft.au=Hardy%2C+Will+J&rft.au=Ji+Heng&rft.date=2014-09-29&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=105&rft.issue=13&rft_id=info:doi/10.1063%2F1.4896624&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |