Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations

Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness o...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 118; no. 19
Main Authors Mehmood, Faisal, Pachter, Ruth, Murphy, Neil R., Johnson, Walter E.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.
AbstractList Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G{sub 0}W{sub 0}, GW{sub 0} to partially self-consistent sc-GW{sub 0}, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW{sub 0}-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.
Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations.
Author Pachter, Ruth
Mehmood, Faisal
Murphy, Neil R.
Johnson, Walter E.
Author_xml – sequence: 1
  givenname: Faisal
  surname: Mehmood
  fullname: Mehmood, Faisal
– sequence: 2
  givenname: Ruth
  surname: Pachter
  fullname: Pachter, Ruth
– sequence: 3
  givenname: Neil R.
  surname: Murphy
  fullname: Murphy, Neil R.
– sequence: 4
  givenname: Walter E.
  surname: Johnson
  fullname: Johnson, Walter E.
BackLink https://www.osti.gov/biblio/22492949$$D View this record in Osti.gov
BookMark eNptkEtLAzEUhYNUsK0u_AcDrlxMm5t5JFlKqQ8ouNF1yGQSTJ0mNcks_PemD1yIqwuX75x7z5mhifNOI3QLeAG4rZawqHnVMKgu0BQw4yVtGjxBU4wJlIxTfoVmMW4xBmAVn6LtetAqBe-sKqTrC79PVsmh2Ae_1yFZHQtvimSTdHbcFc6mYHtddOPweeTjGIxUmTLB7wpjQ0xZa52y-yFvs5UaB5msd_EaXRo5RH1znnP0_rh-Wz2Xm9enl9XDplSENamElslO16Bwxw1tuKkxMQw6yuuKtBx3ihmqm7YBSTmwtu5b01NZKeiblnZdNUd3J18fkxVR2aTVh_LO5aCCkJoTnjv6pXLSr1HHJLZ-DC4_JgiQitWspQfq_kSp4GMM2ogcbifDtwAsDoULEOfCM7v8w-bTx-gpSDv8o_gBvxqEWw
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160900
crossref_primary_10_1109_ACCESS_2020_3017726
crossref_primary_10_1021_acsomega_4c01288
crossref_primary_10_1080_08927022_2017_1393810
crossref_primary_10_1016_j_surfin_2024_105564
crossref_primary_10_1103_PhysRevB_95_115145
crossref_primary_10_1063_1_4972038
crossref_primary_10_1016_j_tsf_2019_05_005
crossref_primary_10_1007_s10853_019_04278_x
crossref_primary_10_1103_PhysRevMaterials_3_115203
crossref_primary_10_1002_admi_202101085
crossref_primary_10_1039_D1TC01490K
crossref_primary_10_1016_j_jpcs_2024_112346
crossref_primary_10_1016_j_commatsci_2023_112060
crossref_primary_10_1016_j_solener_2020_05_017
crossref_primary_10_1016_j_tsf_2021_138896
crossref_primary_10_1016_j_commatsci_2024_113292
crossref_primary_10_1016_j_diamond_2020_108023
crossref_primary_10_3390_coatings13081453
Cites_doi 10.1063/1.1629155
10.1109/TAP.1966.1138693
10.1103/PhysRevB.74.035101
10.1016/S0039-6028(03)00927-0
10.1063/1.3466958
10.1103/PhysRev.136.B864
10.1063/1.1655835
10.1103/PhysRevB.86.155443
10.1364/OME.2.000478
10.1103/PhysRev.139.A796
10.1103/RevModPhys.74.601
10.1016/j.apsusc.2012.09.074
10.1103/PhysRev.84.1232
10.1002/qua.560230435
10.1021/nl4033457
10.1117/12.2040776
10.1103/PhysRevB.62.2899
10.1103/PhysRevB.13.5188
10.1016/0167-5729(94)00005-0
10.1016/S0257-8972(03)00711-4
10.1063/1.3365241
10.1103/PhysRev.140.A1133
10.1039/c2cp41392b
10.1103/PhysRevB.73.045112
10.1088/0953-8984/14/43/320
10.1103/PhysRevLett.80.4510
10.1063/1.2404663
10.1073/pnas.1319446111
10.1103/PhysRevB.75.235102
10.1016/j.tsf.2012.10.016
10.1002/adma.201370156
10.1039/c2nr31266b
10.1016/j.apsusc.2010.10.118
10.1103/PhysRevB.30.1155
10.1103/PhysRevB.59.1758
10.1063/1.3624709
10.1103/PhysRevB.62.4927
10.1063/1.3650264
10.1103/PhysRevB.87.165203
10.1088/0022-3719/10/23/022
10.1016/j.apsusc.2010.11.180
10.1007/s00340-012-4955-3
10.1063/1.1403677
10.1103/PhysRev.137.A1927
10.3891/acta.chem.scand.08-0213
10.1103/PhysRevLett.103.056401
10.1103/PhysRevB.34.5390
10.1016/j.vacuum.2008.01.028
10.1016/0927-0256(96)00008-0
10.1063/1.2187006
10.1103/PhysRevB.76.035436
10.1002/1521-3951(200107)226:1<29::AID-PSSB29>3.0.CO;2-F
10.1016/j.theochem.2006.08.034
10.1016/0040-6090(92)90110-W
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.74.035402
10.1016/j.tsf.2012.06.086
10.1103/PhysRevB.53.3072
10.1063/1.1564060
10.1016/j.apsusc.2011.02.042
10.1016/j.pmatsci.2006.02.002
10.1016/j.ssc.2010.04.034
10.1039/c3cs00007a
10.1063/1.1531812
10.1134/S0020168514010178
10.1016/j.apsusc.2013.11.078
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4935813
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 22492949
10_1063_1_4935813
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
TAF
UCJ
UE8
ID FETCH-LOGICAL-c285t-168abe41c0b9f759f402f81b79432690bc8f7e5651a791864d6fd7a3c1d567bb3
ISSN 0021-8979
IngestDate Thu May 18 22:29:54 EDT 2023
Sun Jun 29 15:48:59 EDT 2025
Tue Jul 01 03:50:15 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-168abe41c0b9f759f402f81b79432690bc8f7e5651a791864d6fd7a3c1d567bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2123848679
PQPubID 2050677
ParticipantIDs osti_scitechconnect_22492949
proquest_journals_2123848679
crossref_primary_10_1063_1_4935813
crossref_citationtrail_10_1063_1_4935813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-21
20151121
PublicationDateYYYYMMDD 2015-11-21
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-21
  day: 21
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023070316410631900_c22) 2014; 292
(2023070316410631900_c33) 2012; 4
2023070316410631900_c57
(2023070316410631900_c45) 1964; 136
(2023070316410631900_c17) 2008; 82
(2023070316410631900_c42) 1996; 6
(2023070316410631900_c3) 1995; 21
(2023070316410631900_c41) 2013; 42
(2023070316410631900_c39) 1998; 80
(2023070316410631900_c9) 2012; 107
(2023070316410631900_c51) 2007; 75
(2023070316410631900_c72) 1998
(2023070316410631900_c7) 2014; 8981
(2023070316410631900_c26) 2000; 62
(2023070316410631900_c27) 2001; 226
(2023070316410631900_c55) 2006; 73
(2023070316410631900_c19) 2011; 257
(2023070316410631900_c58) 2009; 103
(2023070316410631900_c10) 2013; 25
(2023070316410631900_c28) 2002; 14
(2023070316410631900_c1) 1971
(2023070316410631900_c13) 1966; 14
(2023070316410631900_c67) 2014; 50
(2023070316410631900_c48) 1954; 8
(2023070316410631900_c36) 1965; 139
(2023070316410631900_c5) 2006; 51
(2023070316410631900_c52) 2006; 124
(2023070316410631900_c14) 2001; 90
(2023070316410631900_c54) 2011
(2023070316410631900_c59) 2013; 87
(2023070316410631900_c31) 2010; 150
(2023070316410631900_c44) 1996; 77
(2023070316410631900_c65) 1965; 137
(2023070316410631900_c63) 2010; 108
(2023070316410631900_c69) 1968; 39
(2023070316410631900_c53) 2002; 74
(2023070316410631900_c38) 1951; 84
(2023070316410631900_c66) 1977; 10
(2023070316410631900_c61) 2006; 125
(2023070316410631900_c8) 2012; 2
(2023070316410631900_c68) 1992; 207
(2023070316410631900_c18) 2011; 257
2023070316410631900_c64
(2023070316410631900_c37) 1986; 34
(2023070316410631900_c47) 1976; 13
(2023070316410631900_c4) 2003; 174–175
(2023070316410631900_c16) 2006; 777
(2023070316410631900_c56) 2007; 76
(2023070316410631900_c6) 2010; 96
(2023070316410631900_c12) 2014; 111
(2023070316410631900_c46) 1965; 140
(2023070316410631900_c62) 2012; 86
(2023070316410631900_c32) 2011; 257
(2023070316410631900_c21) 2013; 528
(2023070316410631900_c15) 2003; 93
(2023070316410631900_c29) 2003; 541
(2023070316410631900_c24) 1983; 23
(2023070316410631900_c34) 2012; 14
(2023070316410631900_c70) 2011; 110
(2023070316410631900_c11) 2013; 13
(2023070316410631900_c25) 1996; 53
(2023070316410631900_c50) 2006; 74
(2023070316410631900_c71) 2012; 524
(2023070316410631900_c40) 2000; 62
(2023070316410631900_c60) 2003; 118
(2023070316410631900_c23) 2004; 95
(2023070316410631900_c30) 2006; 74
(2023070316410631900_c2) 1996
(2023070316410631900_c35) 2011; 99
(2023070316410631900_c20) 2013; 269
(2023070316410631900_c49) 1984; 30
(2023070316410631900_c43) 1999; 59
References_xml – volume: 95
  start-page: 356
  year: 2004
  ident: 2023070316410631900_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1629155
– volume: 14
  start-page: 302
  year: 1966
  ident: 2023070316410631900_c13
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1966.1138693
– volume: 74
  start-page: 035101/1
  year: 2006
  ident: 2023070316410631900_c50
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.035101
– volume: 541
  start-page: 217
  year: 2003
  ident: 2023070316410631900_c29
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(03)00927-0
– volume: 108
  start-page: 033714
  year: 2010
  ident: 2023070316410631900_c63
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3466958
– volume: 136
  start-page: B864
  year: 1964
  ident: 2023070316410631900_c45
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 39
  start-page: 4757
  year: 1968
  ident: 2023070316410631900_c69
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1655835
– volume: 86
  start-page: 155443
  year: 2012
  ident: 2023070316410631900_c62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.155443
– volume: 2
  start-page: 478
  year: 2012
  ident: 2023070316410631900_c8
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000478
– volume: 139
  start-page: A796
  year: 1965
  ident: 2023070316410631900_c36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.139.A796
– volume: 74
  start-page: 601
  year: 2002
  ident: 2023070316410631900_c53
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.601
– volume: 269
  start-page: 45
  year: 2013
  ident: 2023070316410631900_c20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.09.074
– volume: 84
  start-page: 1232
  year: 1951
  ident: 2023070316410631900_c38
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.84.1232
– volume: 23
  start-page: 1535
  year: 1983
  ident: 2023070316410631900_c24
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560230435
– volume: 13
  start-page: 6078
  year: 2013
  ident: 2023070316410631900_c11
  publication-title: Nano Lett.
  doi: 10.1021/nl4033457
– volume: 8981
  start-page: 89811R
  year: 2014
  ident: 2023070316410631900_c7
  publication-title: Proc. SPIE
  doi: 10.1117/12.2040776
– volume: 62
  start-page: 2899
  year: 2000
  ident: 2023070316410631900_c26
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.2899
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2023070316410631900_c47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– ident: 2023070316410631900_c64
– volume: 21
  start-page: 177
  year: 1995
  ident: 2023070316410631900_c3
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(94)00005-0
– volume: 174–175
  start-page: 375
  year: 2003
  ident: 2023070316410631900_c4
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(03)00711-4
– volume: 96
  start-page: 113510
  year: 2010
  ident: 2023070316410631900_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3365241
– volume: 140
  start-page: A1133
  year: 1965
  ident: 2023070316410631900_c46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 14
  start-page: 16552
  year: 2012
  ident: 2023070316410631900_c34
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41392b
– volume: 73
  start-page: 045112/1
  year: 2006
  ident: 2023070316410631900_c55
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.045112
– volume: 14
  start-page: 10237
  year: 2002
  ident: 2023070316410631900_c28
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/43/320
– volume: 80
  start-page: 4510
  year: 1998
  ident: 2023070316410631900_c39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4510
– volume: 125
  start-page: 224106/1
  year: 2006
  ident: 2023070316410631900_c61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 111
  start-page: 7546
  year: 2014
  ident: 2023070316410631900_c12
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1319446111
– ident: 2023070316410631900_c57
– volume: 75
  start-page: 235102
  year: 2007
  ident: 2023070316410631900_c51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.235102
– volume: 524
  start-page: 272
  year: 2012
  ident: 2023070316410631900_c71
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.10.016
– volume: 25
  start-page: 3258
  year: 2013
  ident: 2023070316410631900_c10
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.201370156
– volume-title: Handbook of Optical Constants of Solids
  year: 1998
  ident: 2023070316410631900_c72
– volume: 4
  start-page: 5183
  year: 2012
  ident: 2023070316410631900_c33
  publication-title: Nanoscale
  doi: 10.1039/c2nr31266b
– volume: 257
  start-page: 3069
  year: 2011
  ident: 2023070316410631900_c19
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.10.118
– volume: 30
  start-page: 1155
  year: 1984
  ident: 2023070316410631900_c49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.30.1155
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2023070316410631900_c43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 99
  start-page: 061906
  year: 2011
  ident: 2023070316410631900_c35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3624709
– volume: 62
  start-page: 4927
  year: 2000
  ident: 2023070316410631900_c40
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.4927
– volume: 110
  start-page: 083501
  year: 2011
  ident: 2023070316410631900_c70
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3650264
– volume: 87
  start-page: 165203/1
  year: 2013
  ident: 2023070316410631900_c59
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.165203
– volume: 10
  start-page: 4889
  year: 1977
  ident: 2023070316410631900_c66
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/10/23/022
– volume: 257
  start-page: 2428
  year: 2011
  ident: 2023070316410631900_c18
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.11.180
– volume: 107
  start-page: 285
  year: 2012
  ident: 2023070316410631900_c9
  publication-title: Appl. Phys. B-Lasers Opt.
  doi: 10.1007/s00340-012-4955-3
– volume: 90
  start-page: 4725
  year: 2001
  ident: 2023070316410631900_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1403677
– volume: 137
  start-page: A1927
  year: 1965
  ident: 2023070316410631900_c65
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.137.A1927
– volume: 8
  start-page: 213
  year: 1954
  ident: 2023070316410631900_c48
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.08-0213
– volume: 103
  start-page: 056401
  year: 2009
  ident: 2023070316410631900_c58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.056401
– volume: 34
  start-page: 5390
  year: 1986
  ident: 2023070316410631900_c37
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.34.5390
– volume: 82
  start-page: 1115
  year: 2008
  ident: 2023070316410631900_c17
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.01.028
– volume: 6
  start-page: 15
  year: 1996
  ident: 2023070316410631900_c42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– start-page: 91
  volume-title: Transition Metal Carbides and Nitrides, Refractory Materials Series
  year: 1971
  ident: 2023070316410631900_c1
– volume: 124
  start-page: 154709
  year: 2006
  ident: 2023070316410631900_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2187006
– volume: 76
  start-page: 035436/1
  year: 2007
  ident: 2023070316410631900_c56
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.035436
– volume: 226
  start-page: 29
  year: 2001
  ident: 2023070316410631900_c27
  publication-title: Phys. Status Solidi B
  doi: 10.1002/1521-3951(200107)226:1<29::AID-PSSB29>3.0.CO;2-F
– volume: 777
  start-page: 41
  year: 2006
  ident: 2023070316410631900_c16
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2006.08.034
– volume: 207
  start-page: 109
  year: 1992
  ident: 2023070316410631900_c68
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(92)90110-W
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023070316410631900_c44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume-title: Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps
  year: 1996
  ident: 2023070316410631900_c2
– volume: 74
  start-page: 035402
  year: 2006
  ident: 2023070316410631900_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.035402
– volume: 528
  start-page: 49
  year: 2013
  ident: 2023070316410631900_c21
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.06.086
– volume: 53
  start-page: 3072
  year: 1996
  ident: 2023070316410631900_c25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.3072
– volume: 118
  start-page: 8207
  year: 2003
  ident: 2023070316410631900_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 257
  start-page: 6462
  year: 2011
  ident: 2023070316410631900_c32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.02.042
– volume: 51
  start-page: 1032
  year: 2006
  ident: 2023070316410631900_c5
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2006.02.002
– volume: 150
  start-page: 1370
  year: 2010
  ident: 2023070316410631900_c31
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2010.04.034
– volume-title: Ab Initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures
  year: 2011
  ident: 2023070316410631900_c54
– volume: 42
  start-page: 2437
  year: 2013
  ident: 2023070316410631900_c41
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs00007a
– volume: 93
  start-page: 989
  year: 2003
  ident: 2023070316410631900_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1531812
– volume: 50
  start-page: 40
  year: 2014
  ident: 2023070316410631900_c67
  publication-title: Inorg. Mater.
  doi: 10.1134/S0020168514010178
– volume: 292
  start-page: 74
  year: 2014
  ident: 2023070316410631900_c22
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.11.078
SSID ssj0011839
Score 2.2912524
Snippet Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
Approximation
BETHE-SALPETER EQUATION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY FUNCTIONAL METHOD
Density functional theory
DIELECTRIC MATERIALS
Dielectrics
ELLIPSOMETRY
Energy dissipation
ENERGY-LOSS SPECTROSCOPY
Feasibility studies
First principles
FREQUENCY DEPENDENCE
LANGMUIR FREQUENCY
MANY-BODY PROBLEM
Mathematical analysis
MORPHOLOGY
NANOSTRUCTURES
Noble metals
Optical properties
Plasma frequencies
REFLECTIVITY
Spectroellipsometry
Spectroscopy
STOICHIOMETRY
SUBSTRATES
SURFACES
Thickness
THIN FILMS
TIME DEPENDENCE
Titanium nitride
TITANIUM NITRIDES
Title Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations
URI https://www.proquest.com/docview/2123848679
https://www.osti.gov/biblio/22492949
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCKiQ4ICggSguyEAek1S777fWxglQVIqiCVvS2Wju2mpImUbK59Nd3xvZ-QIJUuKyijZON8p7H4_HMG0LeS8ZywTLtY38rP5Va-pyFzE-VYJWewPSTWI08_pafXqRfLrPLweC2X11Si0De7qwr-R9U4R7gilWy_4Bs-6VwA14DvnAFhOF6L4xHXQ8bjH8vljYwvcQA-wqVUk0GAOz-59PNjQeTdzWdKE9sZr_M-PVmpU1Glqkx0VNwBL1lE3xH0eqZdM291n_xYSvnw9r4SOuej9XVjUvlOamm66rN4jir5JXrBIKp9dtoY0za-x7083pcSdhPc67vjYJ-nCLKsGDPFj-3dQORX3DbOiZQ1tyGBfdZZqVnW3vcGWQkHt9p6MGzwphDkBoBt6RbzZoT_D8WuTb10By650kZle6jD8heDFsMsJF7x5_HX3-0Z1DoO9oEIfu7G12qPPnYPvc3b2a4AKu8taYbR-X8KXni0KHHli7PyEDN98njnu7kPnl4ZvF6Tq47ClGgBHUUoh2F6ELThkLUUYgihcz4hkIUKUQNhWhHIdqn0AtycTI6_3Tqu_YbvoyLrPajvKiESiMZCq5ZxnUaxhp2OSgpGOc8FLLQTMGGIKoYj4o8neQwuatERpMsZ0IkL8lwvpirV4SGqogTFWvOlUhFIass0RhsE1wyGYnsgHxo_sZSOm16bJEyK7fgOiDv2qFLK8iya9ARYlGCF4lSyBJzxmRdxiiPyVMObzcYlW46r0v04QqjP_n6Po84JI86lh-RYb3aqDfgn9birSPSHb3ak2A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+optical+properties+of+titanium+nitride+bulk+and+surfaces+from+first+principles+calculations&rft.jtitle=Journal+of+applied+physics&rft.au=Mehmood%2C+Faisal&rft.au=Pachter%2C+Ruth&rft.au=Murphy%2C+Neil+R.&rft.au=Johnson%2C+Walter+E.&rft.date=2015-11-21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=19&rft_id=info:doi/10.1063%2F1.4935813&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4935813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon