Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations
Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness o...
Saved in:
Published in | Journal of applied physics Vol. 118; no. 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations. |
---|---|
AbstractList | Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G{sub 0}W{sub 0}, GW{sub 0} to partially self-consistent sc-GW{sub 0}, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW{sub 0}-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations. Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by spectroscopic ellipsometry remains difficult to interpret because of changes in stoichiometry and surface morphology, temperature, thickness of the film, or substrate. In this work, we report calculations for titanium nitride (TiN), a promising material for plasmonic applications because of less loss and other practical advantages compared to noble metals. We investigated structural, electronic, and optical properties of stoichiometric bulk TiN, as well as of the TiN(100), TiN(110), and TiN(111) outermost surfaces. Density functional theory (DFT) and many-body GW methods (Green's (G) function-based approximation with screened Coulomb interaction (W)) were used, ranging from G0W0, GW0 to partially self-consistent sc-GW0, as well as the GW-BSE (Bethe-Salpeter equation) and time-dependent DFT (TDDFT) methods for prediction of the optical properties. Structural parameters and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity, and the electron energy loss spectrum demonstrated consistency with experiment at the GW0-BSE level. Deviations from experimental data are expected due to varying experimental conditions. Comparison of our results to spectroscopic ellipsometry data for realistic nanostructures has shown that although TDDFT may provide a computationally feasible level of theory in evaluation of the dielectric function, application is subject to validation with GW-BSE calculations. |
Author | Pachter, Ruth Mehmood, Faisal Murphy, Neil R. Johnson, Walter E. |
Author_xml | – sequence: 1 givenname: Faisal surname: Mehmood fullname: Mehmood, Faisal – sequence: 2 givenname: Ruth surname: Pachter fullname: Pachter, Ruth – sequence: 3 givenname: Neil R. surname: Murphy fullname: Murphy, Neil R. – sequence: 4 givenname: Walter E. surname: Johnson fullname: Johnson, Walter E. |
BackLink | https://www.osti.gov/biblio/22492949$$D View this record in Osti.gov |
BookMark | eNptkEtLAzEUhYNUsK0u_AcDrlxMm5t5JFlKqQ8ouNF1yGQSTJ0mNcks_PemD1yIqwuX75x7z5mhifNOI3QLeAG4rZawqHnVMKgu0BQw4yVtGjxBU4wJlIxTfoVmMW4xBmAVn6LtetAqBe-sKqTrC79PVsmh2Ae_1yFZHQtvimSTdHbcFc6mYHtddOPweeTjGIxUmTLB7wpjQ0xZa52y-yFvs5UaB5msd_EaXRo5RH1znnP0_rh-Wz2Xm9enl9XDplSENamElslO16Bwxw1tuKkxMQw6yuuKtBx3ihmqm7YBSTmwtu5b01NZKeiblnZdNUd3J18fkxVR2aTVh_LO5aCCkJoTnjv6pXLSr1HHJLZ-DC4_JgiQitWspQfq_kSp4GMM2ogcbifDtwAsDoULEOfCM7v8w-bTx-gpSDv8o_gBvxqEWw |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160900 crossref_primary_10_1109_ACCESS_2020_3017726 crossref_primary_10_1021_acsomega_4c01288 crossref_primary_10_1080_08927022_2017_1393810 crossref_primary_10_1016_j_surfin_2024_105564 crossref_primary_10_1103_PhysRevB_95_115145 crossref_primary_10_1063_1_4972038 crossref_primary_10_1016_j_tsf_2019_05_005 crossref_primary_10_1007_s10853_019_04278_x crossref_primary_10_1103_PhysRevMaterials_3_115203 crossref_primary_10_1002_admi_202101085 crossref_primary_10_1039_D1TC01490K crossref_primary_10_1016_j_jpcs_2024_112346 crossref_primary_10_1016_j_commatsci_2023_112060 crossref_primary_10_1016_j_solener_2020_05_017 crossref_primary_10_1016_j_tsf_2021_138896 crossref_primary_10_1016_j_commatsci_2024_113292 crossref_primary_10_1016_j_diamond_2020_108023 crossref_primary_10_3390_coatings13081453 |
Cites_doi | 10.1063/1.1629155 10.1109/TAP.1966.1138693 10.1103/PhysRevB.74.035101 10.1016/S0039-6028(03)00927-0 10.1063/1.3466958 10.1103/PhysRev.136.B864 10.1063/1.1655835 10.1103/PhysRevB.86.155443 10.1364/OME.2.000478 10.1103/PhysRev.139.A796 10.1103/RevModPhys.74.601 10.1016/j.apsusc.2012.09.074 10.1103/PhysRev.84.1232 10.1002/qua.560230435 10.1021/nl4033457 10.1117/12.2040776 10.1103/PhysRevB.62.2899 10.1103/PhysRevB.13.5188 10.1016/0167-5729(94)00005-0 10.1016/S0257-8972(03)00711-4 10.1063/1.3365241 10.1103/PhysRev.140.A1133 10.1039/c2cp41392b 10.1103/PhysRevB.73.045112 10.1088/0953-8984/14/43/320 10.1103/PhysRevLett.80.4510 10.1063/1.2404663 10.1073/pnas.1319446111 10.1103/PhysRevB.75.235102 10.1016/j.tsf.2012.10.016 10.1002/adma.201370156 10.1039/c2nr31266b 10.1016/j.apsusc.2010.10.118 10.1103/PhysRevB.30.1155 10.1103/PhysRevB.59.1758 10.1063/1.3624709 10.1103/PhysRevB.62.4927 10.1063/1.3650264 10.1103/PhysRevB.87.165203 10.1088/0022-3719/10/23/022 10.1016/j.apsusc.2010.11.180 10.1007/s00340-012-4955-3 10.1063/1.1403677 10.1103/PhysRev.137.A1927 10.3891/acta.chem.scand.08-0213 10.1103/PhysRevLett.103.056401 10.1103/PhysRevB.34.5390 10.1016/j.vacuum.2008.01.028 10.1016/0927-0256(96)00008-0 10.1063/1.2187006 10.1103/PhysRevB.76.035436 10.1002/1521-3951(200107)226:1<29::AID-PSSB29>3.0.CO;2-F 10.1016/j.theochem.2006.08.034 10.1016/0040-6090(92)90110-W 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.74.035402 10.1016/j.tsf.2012.06.086 10.1103/PhysRevB.53.3072 10.1063/1.1564060 10.1016/j.apsusc.2011.02.042 10.1016/j.pmatsci.2006.02.002 10.1016/j.ssc.2010.04.034 10.1039/c3cs00007a 10.1063/1.1531812 10.1134/S0020168514010178 10.1016/j.apsusc.2013.11.078 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4935813 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 22492949 10_1063_1_4935813 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M 0ZJ AAEUA ABPTK AGIHO ESX OTOTI TAF UCJ UE8 |
ID | FETCH-LOGICAL-c285t-168abe41c0b9f759f402f81b79432690bc8f7e5651a791864d6fd7a3c1d567bb3 |
ISSN | 0021-8979 |
IngestDate | Thu May 18 22:29:54 EDT 2023 Sun Jun 29 15:48:59 EDT 2025 Tue Jul 01 03:50:15 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c285t-168abe41c0b9f759f402f81b79432690bc8f7e5651a791864d6fd7a3c1d567bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2123848679 |
PQPubID | 2050677 |
ParticipantIDs | osti_scitechconnect_22492949 proquest_journals_2123848679 crossref_primary_10_1063_1_4935813 crossref_citationtrail_10_1063_1_4935813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-21 20151121 |
PublicationDateYYYYMMDD | 2015-11-21 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023070316410631900_c22) 2014; 292 (2023070316410631900_c33) 2012; 4 2023070316410631900_c57 (2023070316410631900_c45) 1964; 136 (2023070316410631900_c17) 2008; 82 (2023070316410631900_c42) 1996; 6 (2023070316410631900_c3) 1995; 21 (2023070316410631900_c41) 2013; 42 (2023070316410631900_c39) 1998; 80 (2023070316410631900_c9) 2012; 107 (2023070316410631900_c51) 2007; 75 (2023070316410631900_c72) 1998 (2023070316410631900_c7) 2014; 8981 (2023070316410631900_c26) 2000; 62 (2023070316410631900_c27) 2001; 226 (2023070316410631900_c55) 2006; 73 (2023070316410631900_c19) 2011; 257 (2023070316410631900_c58) 2009; 103 (2023070316410631900_c10) 2013; 25 (2023070316410631900_c28) 2002; 14 (2023070316410631900_c1) 1971 (2023070316410631900_c13) 1966; 14 (2023070316410631900_c67) 2014; 50 (2023070316410631900_c48) 1954; 8 (2023070316410631900_c36) 1965; 139 (2023070316410631900_c5) 2006; 51 (2023070316410631900_c52) 2006; 124 (2023070316410631900_c14) 2001; 90 (2023070316410631900_c54) 2011 (2023070316410631900_c59) 2013; 87 (2023070316410631900_c31) 2010; 150 (2023070316410631900_c44) 1996; 77 (2023070316410631900_c65) 1965; 137 (2023070316410631900_c63) 2010; 108 (2023070316410631900_c69) 1968; 39 (2023070316410631900_c53) 2002; 74 (2023070316410631900_c38) 1951; 84 (2023070316410631900_c66) 1977; 10 (2023070316410631900_c61) 2006; 125 (2023070316410631900_c8) 2012; 2 (2023070316410631900_c68) 1992; 207 (2023070316410631900_c18) 2011; 257 2023070316410631900_c64 (2023070316410631900_c37) 1986; 34 (2023070316410631900_c47) 1976; 13 (2023070316410631900_c4) 2003; 174–175 (2023070316410631900_c16) 2006; 777 (2023070316410631900_c56) 2007; 76 (2023070316410631900_c6) 2010; 96 (2023070316410631900_c12) 2014; 111 (2023070316410631900_c46) 1965; 140 (2023070316410631900_c62) 2012; 86 (2023070316410631900_c32) 2011; 257 (2023070316410631900_c21) 2013; 528 (2023070316410631900_c15) 2003; 93 (2023070316410631900_c29) 2003; 541 (2023070316410631900_c24) 1983; 23 (2023070316410631900_c34) 2012; 14 (2023070316410631900_c70) 2011; 110 (2023070316410631900_c11) 2013; 13 (2023070316410631900_c25) 1996; 53 (2023070316410631900_c50) 2006; 74 (2023070316410631900_c71) 2012; 524 (2023070316410631900_c40) 2000; 62 (2023070316410631900_c60) 2003; 118 (2023070316410631900_c23) 2004; 95 (2023070316410631900_c30) 2006; 74 (2023070316410631900_c2) 1996 (2023070316410631900_c35) 2011; 99 (2023070316410631900_c20) 2013; 269 (2023070316410631900_c49) 1984; 30 (2023070316410631900_c43) 1999; 59 |
References_xml | – volume: 95 start-page: 356 year: 2004 ident: 2023070316410631900_c23 publication-title: J. Appl. Phys. doi: 10.1063/1.1629155 – volume: 14 start-page: 302 year: 1966 ident: 2023070316410631900_c13 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1966.1138693 – volume: 74 start-page: 035101/1 year: 2006 ident: 2023070316410631900_c50 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.035101 – volume: 541 start-page: 217 year: 2003 ident: 2023070316410631900_c29 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(03)00927-0 – volume: 108 start-page: 033714 year: 2010 ident: 2023070316410631900_c63 publication-title: J. Appl. Phys. doi: 10.1063/1.3466958 – volume: 136 start-page: B864 year: 1964 ident: 2023070316410631900_c45 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 39 start-page: 4757 year: 1968 ident: 2023070316410631900_c69 publication-title: J. Appl. Phys. doi: 10.1063/1.1655835 – volume: 86 start-page: 155443 year: 2012 ident: 2023070316410631900_c62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.155443 – volume: 2 start-page: 478 year: 2012 ident: 2023070316410631900_c8 publication-title: Opt. Mater. Express doi: 10.1364/OME.2.000478 – volume: 139 start-page: A796 year: 1965 ident: 2023070316410631900_c36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.139.A796 – volume: 74 start-page: 601 year: 2002 ident: 2023070316410631900_c53 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.601 – volume: 269 start-page: 45 year: 2013 ident: 2023070316410631900_c20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.09.074 – volume: 84 start-page: 1232 year: 1951 ident: 2023070316410631900_c38 publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.1232 – volume: 23 start-page: 1535 year: 1983 ident: 2023070316410631900_c24 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560230435 – volume: 13 start-page: 6078 year: 2013 ident: 2023070316410631900_c11 publication-title: Nano Lett. doi: 10.1021/nl4033457 – volume: 8981 start-page: 89811R year: 2014 ident: 2023070316410631900_c7 publication-title: Proc. SPIE doi: 10.1117/12.2040776 – volume: 62 start-page: 2899 year: 2000 ident: 2023070316410631900_c26 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.2899 – volume: 13 start-page: 5188 year: 1976 ident: 2023070316410631900_c47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – ident: 2023070316410631900_c64 – volume: 21 start-page: 177 year: 1995 ident: 2023070316410631900_c3 publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(94)00005-0 – volume: 174–175 start-page: 375 year: 2003 ident: 2023070316410631900_c4 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(03)00711-4 – volume: 96 start-page: 113510 year: 2010 ident: 2023070316410631900_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3365241 – volume: 140 start-page: A1133 year: 1965 ident: 2023070316410631900_c46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 14 start-page: 16552 year: 2012 ident: 2023070316410631900_c34 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41392b – volume: 73 start-page: 045112/1 year: 2006 ident: 2023070316410631900_c55 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.045112 – volume: 14 start-page: 10237 year: 2002 ident: 2023070316410631900_c28 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/43/320 – volume: 80 start-page: 4510 year: 1998 ident: 2023070316410631900_c39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4510 – volume: 125 start-page: 224106/1 year: 2006 ident: 2023070316410631900_c61 publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 111 start-page: 7546 year: 2014 ident: 2023070316410631900_c12 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1319446111 – ident: 2023070316410631900_c57 – volume: 75 start-page: 235102 year: 2007 ident: 2023070316410631900_c51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.235102 – volume: 524 start-page: 272 year: 2012 ident: 2023070316410631900_c71 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.10.016 – volume: 25 start-page: 3258 year: 2013 ident: 2023070316410631900_c10 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.201370156 – volume-title: Handbook of Optical Constants of Solids year: 1998 ident: 2023070316410631900_c72 – volume: 4 start-page: 5183 year: 2012 ident: 2023070316410631900_c33 publication-title: Nanoscale doi: 10.1039/c2nr31266b – volume: 257 start-page: 3069 year: 2011 ident: 2023070316410631900_c19 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.118 – volume: 30 start-page: 1155 year: 1984 ident: 2023070316410631900_c49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.30.1155 – volume: 59 start-page: 1758 year: 1999 ident: 2023070316410631900_c43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 99 start-page: 061906 year: 2011 ident: 2023070316410631900_c35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3624709 – volume: 62 start-page: 4927 year: 2000 ident: 2023070316410631900_c40 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.4927 – volume: 110 start-page: 083501 year: 2011 ident: 2023070316410631900_c70 publication-title: J. Appl. Phys. doi: 10.1063/1.3650264 – volume: 87 start-page: 165203/1 year: 2013 ident: 2023070316410631900_c59 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.165203 – volume: 10 start-page: 4889 year: 1977 ident: 2023070316410631900_c66 publication-title: J. Phys. C doi: 10.1088/0022-3719/10/23/022 – volume: 257 start-page: 2428 year: 2011 ident: 2023070316410631900_c18 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.11.180 – volume: 107 start-page: 285 year: 2012 ident: 2023070316410631900_c9 publication-title: Appl. Phys. B-Lasers Opt. doi: 10.1007/s00340-012-4955-3 – volume: 90 start-page: 4725 year: 2001 ident: 2023070316410631900_c14 publication-title: J. Appl. Phys. doi: 10.1063/1.1403677 – volume: 137 start-page: A1927 year: 1965 ident: 2023070316410631900_c65 publication-title: Phys. Rev. doi: 10.1103/PhysRev.137.A1927 – volume: 8 start-page: 213 year: 1954 ident: 2023070316410631900_c48 publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.08-0213 – volume: 103 start-page: 056401 year: 2009 ident: 2023070316410631900_c58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.056401 – volume: 34 start-page: 5390 year: 1986 ident: 2023070316410631900_c37 publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.34.5390 – volume: 82 start-page: 1115 year: 2008 ident: 2023070316410631900_c17 publication-title: Vacuum doi: 10.1016/j.vacuum.2008.01.028 – volume: 6 start-page: 15 year: 1996 ident: 2023070316410631900_c42 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – start-page: 91 volume-title: Transition Metal Carbides and Nitrides, Refractory Materials Series year: 1971 ident: 2023070316410631900_c1 – volume: 124 start-page: 154709 year: 2006 ident: 2023070316410631900_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.2187006 – volume: 76 start-page: 035436/1 year: 2007 ident: 2023070316410631900_c56 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.035436 – volume: 226 start-page: 29 year: 2001 ident: 2023070316410631900_c27 publication-title: Phys. Status Solidi B doi: 10.1002/1521-3951(200107)226:1<29::AID-PSSB29>3.0.CO;2-F – volume: 777 start-page: 41 year: 2006 ident: 2023070316410631900_c16 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2006.08.034 – volume: 207 start-page: 109 year: 1992 ident: 2023070316410631900_c68 publication-title: Thin Solid Films doi: 10.1016/0040-6090(92)90110-W – volume: 77 start-page: 3865 year: 1996 ident: 2023070316410631900_c44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume-title: Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps year: 1996 ident: 2023070316410631900_c2 – volume: 74 start-page: 035402 year: 2006 ident: 2023070316410631900_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.035402 – volume: 528 start-page: 49 year: 2013 ident: 2023070316410631900_c21 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.06.086 – volume: 53 start-page: 3072 year: 1996 ident: 2023070316410631900_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.3072 – volume: 118 start-page: 8207 year: 2003 ident: 2023070316410631900_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 257 start-page: 6462 year: 2011 ident: 2023070316410631900_c32 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.02.042 – volume: 51 start-page: 1032 year: 2006 ident: 2023070316410631900_c5 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2006.02.002 – volume: 150 start-page: 1370 year: 2010 ident: 2023070316410631900_c31 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2010.04.034 – volume-title: Ab Initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures year: 2011 ident: 2023070316410631900_c54 – volume: 42 start-page: 2437 year: 2013 ident: 2023070316410631900_c41 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs00007a – volume: 93 start-page: 989 year: 2003 ident: 2023070316410631900_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.1531812 – volume: 50 start-page: 40 year: 2014 ident: 2023070316410631900_c67 publication-title: Inorg. Mater. doi: 10.1134/S0020168514010178 – volume: 292 start-page: 74 year: 2014 ident: 2023070316410631900_c22 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.11.078 |
SSID | ssj0011839 |
Score | 2.2912524 |
Snippet | Prediction of the frequency-dependent dielectric function of thin films poses computational challenges, and at the same time experimental characterization by... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Approximation BETHE-SALPETER EQUATION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY FUNCTIONAL METHOD Density functional theory DIELECTRIC MATERIALS Dielectrics ELLIPSOMETRY Energy dissipation ENERGY-LOSS SPECTROSCOPY Feasibility studies First principles FREQUENCY DEPENDENCE LANGMUIR FREQUENCY MANY-BODY PROBLEM Mathematical analysis MORPHOLOGY NANOSTRUCTURES Noble metals Optical properties Plasma frequencies REFLECTIVITY Spectroellipsometry Spectroscopy STOICHIOMETRY SUBSTRATES SURFACES Thickness THIN FILMS TIME DEPENDENCE Titanium nitride TITANIUM NITRIDES |
Title | Electronic and optical properties of titanium nitride bulk and surfaces from first principles calculations |
URI | https://www.proquest.com/docview/2123848679 https://www.osti.gov/biblio/22492949 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCKiQ4ICggSguyEAek1S777fWxglQVIqiCVvS2Wju2mpImUbK59Nd3xvZ-QIJUuKyijZON8p7H4_HMG0LeS8ZywTLtY38rP5Va-pyFzE-VYJWewPSTWI08_pafXqRfLrPLweC2X11Si0De7qwr-R9U4R7gilWy_4Bs-6VwA14DvnAFhOF6L4xHXQ8bjH8vljYwvcQA-wqVUk0GAOz-59PNjQeTdzWdKE9sZr_M-PVmpU1Glqkx0VNwBL1lE3xH0eqZdM291n_xYSvnw9r4SOuej9XVjUvlOamm66rN4jir5JXrBIKp9dtoY0za-x7083pcSdhPc67vjYJ-nCLKsGDPFj-3dQORX3DbOiZQ1tyGBfdZZqVnW3vcGWQkHt9p6MGzwphDkBoBt6RbzZoT_D8WuTb10By650kZle6jD8heDFsMsJF7x5_HX3-0Z1DoO9oEIfu7G12qPPnYPvc3b2a4AKu8taYbR-X8KXni0KHHli7PyEDN98njnu7kPnl4ZvF6Tq47ClGgBHUUoh2F6ELThkLUUYgihcz4hkIUKUQNhWhHIdqn0AtycTI6_3Tqu_YbvoyLrPajvKiESiMZCq5ZxnUaxhp2OSgpGOc8FLLQTMGGIKoYj4o8neQwuatERpMsZ0IkL8lwvpirV4SGqogTFWvOlUhFIass0RhsE1wyGYnsgHxo_sZSOm16bJEyK7fgOiDv2qFLK8iya9ARYlGCF4lSyBJzxmRdxiiPyVMObzcYlW46r0v04QqjP_n6Po84JI86lh-RYb3aqDfgn9birSPSHb3ak2A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+optical+properties+of+titanium+nitride+bulk+and+surfaces+from+first+principles+calculations&rft.jtitle=Journal+of+applied+physics&rft.au=Mehmood%2C+Faisal&rft.au=Pachter%2C+Ruth&rft.au=Murphy%2C+Neil+R.&rft.au=Johnson%2C+Walter+E.&rft.date=2015-11-21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=19&rft_id=info:doi/10.1063%2F1.4935813&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4935813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |