Fully nonparametric inverse probability weighting estimation with nonignorable missing data and its extension to missing quantile regression
In practical data analysis, the not-missing-at-random (NMAR) mechanism is typically more aligned with the natural causes of missing data. The NMAR mechanism is complicated and adaptable, surpassing the capabilities of classical methods in addressing this missing data challenge. A comprehensive analy...
Saved in:
Published in | Computational statistics & data analysis Vol. 206; p. 108127 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In practical data analysis, the not-missing-at-random (NMAR) mechanism is typically more aligned with the natural causes of missing data. The NMAR mechanism is complicated and adaptable, surpassing the capabilities of classical methods in addressing this missing data challenge. A comprehensive analysis framework for the NMAR problem is established, and a novel inverse probability weighting method based on the fully nonparametric exponential tilting model and sieve minimum distance is constructed. Additionally, given the broad field of applications for the quantile regression model, fully nonparametric inverse probability weighting and augmented inverse probability weighting for estimating quantile regression under NMAR are introduced. Simulation studies demonstrate that the proposed methods are better suited for various flexible propensity score functions. In practical applications, our methods are applied to the AIDS Clinical Trials Group Study 175 data to examine the effectiveness of treatments on HIV-infected subjects. |
---|---|
AbstractList | In practical data analysis, the not-missing-at-random (NMAR) mechanism is typically more aligned with the natural causes of missing data. The NMAR mechanism is complicated and adaptable, surpassing the capabilities of classical methods in addressing this missing data challenge. A comprehensive analysis framework for the NMAR problem is established, and a novel inverse probability weighting method based on the fully nonparametric exponential tilting model and sieve minimum distance is constructed. Additionally, given the broad field of applications for the quantile regression model, fully nonparametric inverse probability weighting and augmented inverse probability weighting for estimating quantile regression under NMAR are introduced. Simulation studies demonstrate that the proposed methods are better suited for various flexible propensity score functions. In practical applications, our methods are applied to the AIDS Clinical Trials Group Study 175 data to examine the effectiveness of treatments on HIV-infected subjects. |
ArticleNumber | 108127 |
Author | Tao, Li Tian, Maozai Tang, Man-lai Pan, Jianxin Yu, Keming Härdle, Wolfgang Karl Tai, Lingnan |
Author_xml | – sequence: 1 givenname: Lingnan surname: Tai fullname: Tai, Lingnan organization: School of Economics and Management, The Open University of China, Beijing, China – sequence: 2 givenname: Li surname: Tao fullname: Tao, Li organization: School of Information, Beijing Wuzi University, Beijing, China – sequence: 3 givenname: Jianxin surname: Pan fullname: Pan, Jianxin organization: School of Mathematics, University of Manchester, Manchester, United Kingdom – sequence: 4 givenname: Man-lai surname: Tang fullname: Tang, Man-lai organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom – sequence: 5 givenname: Keming surname: Yu fullname: Yu, Keming organization: Mathematical Sciences, Brunel University, Uxbridge, United Kingdom – sequence: 6 givenname: Wolfgang Karl surname: Härdle fullname: Härdle, Wolfgang Karl organization: Business and Economics, Humboldt-Universität zu Berlin, Berlin, Germany – sequence: 7 givenname: Maozai orcidid: 0000-0002-0515-4477 surname: Tian fullname: Tian, Maozai email: mztian@ruc.edu.cn organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, China |
BookMark | eNp9kM1OQjEQhbvAREBfwFWXbsC23D8SN4aImpi40XXTnykMufRCW1DewYe2NxiXriYzc77JnDMiA995IOSGsylnvLrbTE20aiqYKPOg4aIekGFe1JN5Uc8uySjGDWNMFHUzJN_LQ9ueaD6xU0FtIQU0FP0RQgS6C51WGltMJ_oJuFon9CsKMeFWJew8_cS07llc-S4o3QLdYoy9yKqkqPKWYooUvhL42AOp-1PsD8onzEiAVYDYr6_IhVNthOvfOiYfy8f3xfPk9e3pZfHwOjGiKdLEGbAlcyJXXevSCVtwbhrLat7Mm8KU2fncQlUVs7LhxjrQ3NXa2dxocHo2Jrfnu9ng_pD9yPyUgbZVHrpDlDNelU0lCsayVJylJnQxBnByF7L7cJKcyT5uuZF93LKPW57jztD9GYJs4ogQZDQIPr-NAUyStsP_8B-4QZKL |
Cites_doi | 10.2307/2938259 10.1198/jasa.2010.tm09016 10.2307/1913622 10.1111/j.1541-0420.2009.01269.x 10.1017/S0266466618000014 10.1111/rssb.12309 10.1097/MLR.0000000000000011 10.1016/j.jeconom.2014.05.016 10.1214/21-AOS2070 10.1080/10618600.2000.10474866 10.1214/19-AOAS1239 10.1214/20-AOAS1328 10.1016/S0304-4076(97)00011-0 10.1007/s42952-021-00148-y 10.1111/1467-9868.00170 10.1056/NEJM199610103351501 10.1093/jssam/smv047 10.1080/02331888.2016.1268615 10.2307/1913643 10.1198/016214504000001844 10.1111/1468-0262.00470 10.1080/01621459.2014.928219 10.1214/aos/1030741085 10.1080/01621459.2014.983234 10.1016/j.jeconom.2014.04.009 10.1080/01621459.1982.10477793 10.1093/biomet/90.4.747 10.1016/j.jeconom.2013.10.002 10.2307/2951752 10.1093/biomet/63.3.581 10.1198/jasa.2011.tm10104 10.1093/biomet/asn022 10.1002/cjs.11340 10.4310/SII.2013.v6.n3.a2 10.1093/biomet/asv071 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2025.108127 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_csda_2025_108127 S0167947325000039 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABTAH ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c284t-fced50f2fceb7b5f2d411c8d0718984c50259de6643581cdfeb1f7bfd81cbefb3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri Aug 22 20:22:33 EDT 2025 Tue Jul 01 05:27:57 EDT 2025 Sat Mar 08 15:42:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inverse probability weighting Quantile regression Nonparametric propensity score Sieve minimum distance Not missing at random |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-fced50f2fceb7b5f2d411c8d0718984c50259de6643581cdfeb1f7bfd81cbefb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0515-4477 |
PQID | 3165862400 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3165862400 crossref_primary_10_1016_j_csda_2025_108127 elsevier_sciencedirect_doi_10_1016_j_csda_2025_108127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yu, Zhong, Feng, Wei (br0280) 2022 Andrews (br0420) 1991 Hahn, Liao, Ridder (br0450) 2018; 34 Newey, Mcfadden (br0430) 1994; 4 Ramsay, Silvermann (br0350) 1998 Sun, Liu, Miao, Wirth, Robins, Tchetgen (br0190) 2018; 28 Kim, Yu (br0140) 2011; 106 Chen, Liao (br0380) 2014; 182 Zhao, Tang, Jiang (br0270) 2017; 51 Van der Vaart (br0480) 2000 Yuan, Yin (br0410) 2010; 66 Shen, Wong (br0460) 1994 Liu, Qiu, Natarajan, Messer (br0020) 2019; 13 Hunter, Lange (br0400) 2000; 9 Wang, Shao, Kim (br0180) 2014 Greenlees, Reece, Zieschang (br0100) 1982; 77 Han, Kong, Zhao, Zhou (br0260) 2019; 81 Shen (br0360) 1997; 25 Rubin (br0030) 1976; 63 Chen (br0370) 2007; 6 Menzel (br0300) 2014; 182 Zhang, Wang (br0290) 2022; 51 Ai, Linton, Zhang (br0200) 2020; 30 McKennan, Ober, Nicolae (br0050) 2020; 14 O'Brien, Gunawardena, Paulo, Chen, Ibrahim, Gygi, Qaqish (br0010) 2018; 12 Hammer, Katzenstein, Hughes, Gundacker, Schooley, Haubrich, Henry, Lederman, Phair, Niu (br0040) 1996; 335 Newey (br0310) 1997; 79 Grenander (br0340) 1981 Little (br0070) 1992; 87 Tang, Little, Raghunathan (br0120) 2003; 90 Chen, Ibrahim (br0090) 2014; 6 Chen, Liao, Sun (br0330) 2014; 178 Zhao, Shao (br0130) 2015; 110 Koenker, Bassett (br0390) 1978 Ibrahim, Lipsitz, Chen (br0110) 1999; 61 Ai, Chen (br0320) 2003; 71 Pakes, Pollard (br0470) 1989 Riddles, Kim, Im (br0220) 2016; 4 Shao, Wang (br0210) 2016; 103 Tang, Zhao, Zhu (br0150) 2014; 24 Morikawa, Kim (br0240) 2021; 49 Haneuse (br0060) 2016; 54 Chen, Wan, Zhou (br0250) 2015; 110 Newey (br0440) 1994 Chang, Kott (br0160) 2008; 95 Ibrahim, Chen, Lipsitz, Herring (br0080) 2005; 100 Morikawa, Kim, Kano (br0230) 2017; 45 Kott, Chang (br0170) 2010; 105 Chen (10.1016/j.csda.2025.108127_br0090) 2014; 6 Newey (10.1016/j.csda.2025.108127_br0440) 1994 Shen (10.1016/j.csda.2025.108127_br0460) 1994 McKennan (10.1016/j.csda.2025.108127_br0050) 2020; 14 Chen (10.1016/j.csda.2025.108127_br0380) 2014; 182 Andrews (10.1016/j.csda.2025.108127_br0420) 1991 Greenlees (10.1016/j.csda.2025.108127_br0100) 1982; 77 Ai (10.1016/j.csda.2025.108127_br0320) 2003; 71 Morikawa (10.1016/j.csda.2025.108127_br0230) 2017; 45 Ibrahim (10.1016/j.csda.2025.108127_br0110) 1999; 61 Liu (10.1016/j.csda.2025.108127_br0020) 2019; 13 Hammer (10.1016/j.csda.2025.108127_br0040) 1996; 335 Little (10.1016/j.csda.2025.108127_br0070) 1992; 87 Ai (10.1016/j.csda.2025.108127_br0200) 2020; 30 Haneuse (10.1016/j.csda.2025.108127_br0060) 2016; 54 Menzel (10.1016/j.csda.2025.108127_br0300) 2014; 182 Chen (10.1016/j.csda.2025.108127_br0370) 2007; 6 O'Brien (10.1016/j.csda.2025.108127_br0010) 2018; 12 Yuan (10.1016/j.csda.2025.108127_br0410) 2010; 66 Chen (10.1016/j.csda.2025.108127_br0330) 2014; 178 Morikawa (10.1016/j.csda.2025.108127_br0240) 2021; 49 Hahn (10.1016/j.csda.2025.108127_br0450) 2018; 34 Newey (10.1016/j.csda.2025.108127_br0430) 1994; 4 Hunter (10.1016/j.csda.2025.108127_br0400) 2000; 9 Rubin (10.1016/j.csda.2025.108127_br0030) 1976; 63 Chang (10.1016/j.csda.2025.108127_br0160) 2008; 95 Kim (10.1016/j.csda.2025.108127_br0140) 2011; 106 Han (10.1016/j.csda.2025.108127_br0260) 2019; 81 Shen (10.1016/j.csda.2025.108127_br0360) 1997; 25 Koenker (10.1016/j.csda.2025.108127_br0390) 1978 Ibrahim (10.1016/j.csda.2025.108127_br0080) 2005; 100 Van der Vaart (10.1016/j.csda.2025.108127_br0480) 2000 Kott (10.1016/j.csda.2025.108127_br0170) 2010; 105 Yu (10.1016/j.csda.2025.108127_br0280) 2022 Zhao (10.1016/j.csda.2025.108127_br0130) 2015; 110 Wang (10.1016/j.csda.2025.108127_br0180) 2014 Chen (10.1016/j.csda.2025.108127_br0250) 2015; 110 Zhang (10.1016/j.csda.2025.108127_br0290) 2022; 51 Shao (10.1016/j.csda.2025.108127_br0210) 2016; 103 Pakes (10.1016/j.csda.2025.108127_br0470) 1989 Tang (10.1016/j.csda.2025.108127_br0120) 2003; 90 Tang (10.1016/j.csda.2025.108127_br0150) 2014; 24 Sun (10.1016/j.csda.2025.108127_br0190) 2018; 28 Newey (10.1016/j.csda.2025.108127_br0310) 1997; 79 Riddles (10.1016/j.csda.2025.108127_br0220) 2016; 4 Grenander (10.1016/j.csda.2025.108127_br0340) 1981 Ramsay (10.1016/j.csda.2025.108127_br0350) 1998 Zhao (10.1016/j.csda.2025.108127_br0270) 2017; 51 |
References_xml | – start-page: 1349 year: 1994 end-page: 1382 ident: br0440 article-title: The asymptotic variance of semiparametric estimators publication-title: Econometrica – volume: 24 start-page: 723 year: 2014 ident: br0150 article-title: Empirical likelihood for estimating equations with nonignorably missing data publication-title: Stat. Sin. – volume: 14 start-page: 789 year: 2020 ident: br0050 article-title: Estimation and inference in metabolomics with non-random missing data and latent factors publication-title: Ann. Appl. Stat. – start-page: 1027 year: 1989 end-page: 1057 ident: br0470 article-title: Simulation and the asymptotics of optimization estimators publication-title: Econometrica – volume: 25 start-page: 2555 year: 1997 end-page: 2591 ident: br0360 article-title: On methods of sieves and penalization publication-title: Ann. Stat. – volume: 81 start-page: 305 year: 2019 end-page: 333 ident: br0260 article-title: A general framework for quantile estimation with incomplete data publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 4 start-page: 215 year: 2016 end-page: 245 ident: br0220 article-title: A propensity-score-adjustment method for nonignorable nonresponse publication-title: J. Surv. Stat. Methodol. – start-page: 1097 year: 2014 end-page: 1116 ident: br0180 article-title: An instrumental variable approach for identification and estimation with nonignorable nonresponse publication-title: Stat. Sin. – start-page: 33 year: 1978 end-page: 50 ident: br0390 article-title: Regression quantiles publication-title: Econometrica – volume: 105 start-page: 1265 year: 2010 end-page: 1275 ident: br0170 article-title: Using calibration weighting to adjust for nonignorable unit nonresponse publication-title: J. Am. Stat. Assoc. – volume: 49 start-page: 2991 year: 2021 end-page: 3014 ident: br0240 article-title: Semiparametric optimal estimation with nonignorable nonresponse data publication-title: Ann. Stat. – volume: 71 start-page: 1795 year: 2003 end-page: 1843 ident: br0320 article-title: Efficient estimation of models with conditional moment restrictions containing unknown functions publication-title: Econometrica – volume: 9 start-page: 60 year: 2000 end-page: 77 ident: br0400 article-title: Quantile regression via an mm algorithm publication-title: J. Comput. Graph. Stat. – volume: 28 start-page: 1965 year: 2018 ident: br0190 article-title: Semiparametric estimation with data missing not at random using an instrumental variable publication-title: Stat. Sin. – start-page: 580 year: 1994 end-page: 615 ident: br0460 article-title: Convergence rate of sieve estimates publication-title: Ann. Stat. – volume: 66 start-page: 105 year: 2010 end-page: 114 ident: br0410 article-title: Bayesian quantile regression for longitudinal studies with nonignorable missing data publication-title: Biometrics – start-page: 307 year: 1991 end-page: 345 ident: br0420 article-title: Asymptotic normality of series estimators for nonparametric and semiparametric regression models publication-title: Econometrica – volume: 106 start-page: 157 year: 2011 end-page: 165 ident: br0140 article-title: A semiparametric estimation of mean functionals with nonignorable missing data publication-title: J. Am. Stat. Assoc. – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: br0030 article-title: Inference and missing data publication-title: Biometrika – volume: 182 start-page: 329 year: 2014 end-page: 350 ident: br0300 article-title: Consistent estimation with many moment inequalities publication-title: J. Econom. – volume: 182 start-page: 70 year: 2014 end-page: 86 ident: br0380 article-title: Sieve m inference on irregular parameters publication-title: J. Econom. – volume: 95 start-page: 555 year: 2008 end-page: 571 ident: br0160 article-title: Using calibration weighting to adjust for nonresponse under a plausible model publication-title: Biometrika – volume: 87 start-page: 1227 year: 1992 end-page: 1237 ident: br0070 article-title: Regression with missing x's: a review publication-title: J. Am. Stat. Assoc. – volume: 103 start-page: 175 year: 2016 end-page: 187 ident: br0210 article-title: Semiparametric inverse propensity weighting for nonignorable missing data publication-title: Biometrika – year: 1981 ident: br0340 article-title: Abstract Inference – volume: 51 start-page: 441 year: 2022 end-page: 479 ident: br0290 article-title: Smoothed partially linear quantile regression with nonignorable missing response publication-title: J. Korean Stat. Soc. – volume: 6 start-page: 5549 year: 2007 end-page: 5632 ident: br0370 article-title: Large sample sieve estimation of semi-nonparametric models publication-title: Handb. Econom. – volume: 6 start-page: 315 year: 2014 ident: br0090 article-title: A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models publication-title: Stat. Interface – volume: 335 start-page: 1081 year: 1996 end-page: 1090 ident: br0040 article-title: A trial comparing nucleoside monotherapy with combination therapy in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter publication-title: N. Engl. J. Med. – volume: 54 year: 2016 ident: br0060 article-title: Distinguishing selection bias and confounding bias in comparative effectiveness research publication-title: Med. Care – volume: 12 start-page: 2075 year: 2018 ident: br0010 article-title: The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments publication-title: Ann. Appl. Stat. – volume: 34 start-page: 1281 year: 2018 end-page: 1324 ident: br0450 article-title: Nonparametric two-step sieve m estimation and inference publication-title: Econom. Theory – volume: 61 start-page: 173 year: 1999 end-page: 190 ident: br0110 article-title: Missing covariates in generalized linear models when the missing data mechanism is non-ignorable publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – year: 2022 ident: br0280 article-title: Quantile regression for nonignorable missing data with its application of analyzing electronic medical records publication-title: Biometrics – volume: 30 start-page: 1949 year: 2020 end-page: 1970 ident: br0200 article-title: A simple and efficient estimation method for models with non-ignorable missing data publication-title: Stat. Sin. – year: 2000 ident: br0480 article-title: Asymptotic Statistics – volume: 90 start-page: 747 year: 2003 end-page: 764 ident: br0120 article-title: Analysis of multivariate missing data with nonignorable nonresponse publication-title: Biometrika – volume: 100 start-page: 332 year: 2005 end-page: 346 ident: br0080 article-title: Missing-data methods for generalized linear models: a comparative review publication-title: J. Am. Stat. Assoc. – volume: 45 start-page: 393 year: 2017 end-page: 409 ident: br0230 article-title: Semiparametric maximum likelihood estimation with data missing not at random publication-title: Can. J. Stat. – volume: 51 start-page: 363 year: 2017 end-page: 386 ident: br0270 article-title: Efficient inverse probability weighting method for quantile regression with nonignorable missing data publication-title: Statistics – volume: 110 start-page: 1577 year: 2015 end-page: 1590 ident: br0130 article-title: Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data publication-title: J. Am. Stat. Assoc. – volume: 178 start-page: 639 year: 2014 end-page: 658 ident: br0330 article-title: Sieve inference on possibly misspecified semi-nonparametric time series models publication-title: J. Econom. – volume: 79 start-page: 147 year: 1997 end-page: 168 ident: br0310 article-title: Convergence rates and asymptotic normality for series estimators publication-title: J. Econom. – volume: 13 start-page: 1370 year: 2019 end-page: 1396 ident: br0020 article-title: Imputation and post-selection inference in models with missing data: an application to colorectal cancer surveillance guidelines publication-title: Ann. Appl. Stat. – volume: 4 start-page: 2111 year: 1994 end-page: 2245 ident: br0430 article-title: Large sample estimation and hypothesis testing publication-title: Handb. Econom. – volume: 110 start-page: 723 year: 2015 end-page: 741 ident: br0250 article-title: Efficient quantile regression analysis with missing observations publication-title: J. Am. Stat. Assoc. – year: 1998 ident: br0350 article-title: Functional Data Analysis publication-title: Springer Series in Statistics – volume: 77 start-page: 251 year: 1982 end-page: 261 ident: br0100 article-title: Imputation of missing values when the probability of response depends on the variable being imputed publication-title: J. Am. Stat. Assoc. – volume: 30 start-page: 1949 year: 2020 ident: 10.1016/j.csda.2025.108127_br0200 article-title: A simple and efficient estimation method for models with non-ignorable missing data publication-title: Stat. Sin. – start-page: 307 year: 1991 ident: 10.1016/j.csda.2025.108127_br0420 article-title: Asymptotic normality of series estimators for nonparametric and semiparametric regression models publication-title: Econometrica doi: 10.2307/2938259 – volume: 105 start-page: 1265 year: 2010 ident: 10.1016/j.csda.2025.108127_br0170 article-title: Using calibration weighting to adjust for nonignorable unit nonresponse publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09016 – start-page: 1027 year: 1989 ident: 10.1016/j.csda.2025.108127_br0470 article-title: Simulation and the asymptotics of optimization estimators publication-title: Econometrica doi: 10.2307/1913622 – volume: 66 start-page: 105 year: 2010 ident: 10.1016/j.csda.2025.108127_br0410 article-title: Bayesian quantile regression for longitudinal studies with nonignorable missing data publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01269.x – volume: 12 start-page: 2075 year: 2018 ident: 10.1016/j.csda.2025.108127_br0010 article-title: The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments publication-title: Ann. Appl. Stat. – year: 2000 ident: 10.1016/j.csda.2025.108127_br0480 – volume: 28 start-page: 1965 year: 2018 ident: 10.1016/j.csda.2025.108127_br0190 article-title: Semiparametric estimation with data missing not at random using an instrumental variable publication-title: Stat. Sin. – volume: 34 start-page: 1281 year: 2018 ident: 10.1016/j.csda.2025.108127_br0450 article-title: Nonparametric two-step sieve m estimation and inference publication-title: Econom. Theory doi: 10.1017/S0266466618000014 – volume: 81 start-page: 305 year: 2019 ident: 10.1016/j.csda.2025.108127_br0260 article-title: A general framework for quantile estimation with incomplete data publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/rssb.12309 – volume: 54 year: 2016 ident: 10.1016/j.csda.2025.108127_br0060 article-title: Distinguishing selection bias and confounding bias in comparative effectiveness research publication-title: Med. Care doi: 10.1097/MLR.0000000000000011 – volume: 182 start-page: 329 year: 2014 ident: 10.1016/j.csda.2025.108127_br0300 article-title: Consistent estimation with many moment inequalities publication-title: J. Econom. doi: 10.1016/j.jeconom.2014.05.016 – volume: 49 start-page: 2991 year: 2021 ident: 10.1016/j.csda.2025.108127_br0240 article-title: Semiparametric optimal estimation with nonignorable nonresponse data publication-title: Ann. Stat. doi: 10.1214/21-AOS2070 – volume: 24 start-page: 723 year: 2014 ident: 10.1016/j.csda.2025.108127_br0150 article-title: Empirical likelihood for estimating equations with nonignorably missing data publication-title: Stat. Sin. – volume: 9 start-page: 60 year: 2000 ident: 10.1016/j.csda.2025.108127_br0400 article-title: Quantile regression via an mm algorithm publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2000.10474866 – volume: 13 start-page: 1370 year: 2019 ident: 10.1016/j.csda.2025.108127_br0020 article-title: Imputation and post-selection inference in models with missing data: an application to colorectal cancer surveillance guidelines publication-title: Ann. Appl. Stat. doi: 10.1214/19-AOAS1239 – volume: 14 start-page: 789 year: 2020 ident: 10.1016/j.csda.2025.108127_br0050 article-title: Estimation and inference in metabolomics with non-random missing data and latent factors publication-title: Ann. Appl. Stat. doi: 10.1214/20-AOAS1328 – start-page: 580 year: 1994 ident: 10.1016/j.csda.2025.108127_br0460 article-title: Convergence rate of sieve estimates publication-title: Ann. Stat. – volume: 79 start-page: 147 year: 1997 ident: 10.1016/j.csda.2025.108127_br0310 article-title: Convergence rates and asymptotic normality for series estimators publication-title: J. Econom. doi: 10.1016/S0304-4076(97)00011-0 – volume: 51 start-page: 441 year: 2022 ident: 10.1016/j.csda.2025.108127_br0290 article-title: Smoothed partially linear quantile regression with nonignorable missing response publication-title: J. Korean Stat. Soc. doi: 10.1007/s42952-021-00148-y – start-page: 1097 year: 2014 ident: 10.1016/j.csda.2025.108127_br0180 article-title: An instrumental variable approach for identification and estimation with nonignorable nonresponse publication-title: Stat. Sin. – volume: 61 start-page: 173 year: 1999 ident: 10.1016/j.csda.2025.108127_br0110 article-title: Missing covariates in generalized linear models when the missing data mechanism is non-ignorable publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/1467-9868.00170 – volume: 335 start-page: 1081 year: 1996 ident: 10.1016/j.csda.2025.108127_br0040 article-title: A trial comparing nucleoside monotherapy with combination therapy in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199610103351501 – volume: 4 start-page: 215 year: 2016 ident: 10.1016/j.csda.2025.108127_br0220 article-title: A propensity-score-adjustment method for nonignorable nonresponse publication-title: J. Surv. Stat. Methodol. doi: 10.1093/jssam/smv047 – volume: 51 start-page: 363 year: 2017 ident: 10.1016/j.csda.2025.108127_br0270 article-title: Efficient inverse probability weighting method for quantile regression with nonignorable missing data publication-title: Statistics doi: 10.1080/02331888.2016.1268615 – start-page: 33 year: 1978 ident: 10.1016/j.csda.2025.108127_br0390 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 100 start-page: 332 year: 2005 ident: 10.1016/j.csda.2025.108127_br0080 article-title: Missing-data methods for generalized linear models: a comparative review publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001844 – volume: 4 start-page: 2111 year: 1994 ident: 10.1016/j.csda.2025.108127_br0430 article-title: Large sample estimation and hypothesis testing publication-title: Handb. Econom. – volume: 71 start-page: 1795 year: 2003 ident: 10.1016/j.csda.2025.108127_br0320 article-title: Efficient estimation of models with conditional moment restrictions containing unknown functions publication-title: Econometrica doi: 10.1111/1468-0262.00470 – volume: 110 start-page: 723 year: 2015 ident: 10.1016/j.csda.2025.108127_br0250 article-title: Efficient quantile regression analysis with missing observations publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.928219 – volume: 25 start-page: 2555 year: 1997 ident: 10.1016/j.csda.2025.108127_br0360 article-title: On methods of sieves and penalization publication-title: Ann. Stat. doi: 10.1214/aos/1030741085 – year: 2022 ident: 10.1016/j.csda.2025.108127_br0280 article-title: Quantile regression for nonignorable missing data with its application of analyzing electronic medical records publication-title: Biometrics – volume: 110 start-page: 1577 year: 2015 ident: 10.1016/j.csda.2025.108127_br0130 article-title: Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.983234 – volume: 182 start-page: 70 year: 2014 ident: 10.1016/j.csda.2025.108127_br0380 article-title: Sieve m inference on irregular parameters publication-title: J. Econom. doi: 10.1016/j.jeconom.2014.04.009 – year: 1981 ident: 10.1016/j.csda.2025.108127_br0340 – volume: 77 start-page: 251 year: 1982 ident: 10.1016/j.csda.2025.108127_br0100 article-title: Imputation of missing values when the probability of response depends on the variable being imputed publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1982.10477793 – volume: 90 start-page: 747 year: 2003 ident: 10.1016/j.csda.2025.108127_br0120 article-title: Analysis of multivariate missing data with nonignorable nonresponse publication-title: Biometrika doi: 10.1093/biomet/90.4.747 – volume: 178 start-page: 639 year: 2014 ident: 10.1016/j.csda.2025.108127_br0330 article-title: Sieve inference on possibly misspecified semi-nonparametric time series models publication-title: J. Econom. doi: 10.1016/j.jeconom.2013.10.002 – start-page: 1349 year: 1994 ident: 10.1016/j.csda.2025.108127_br0440 article-title: The asymptotic variance of semiparametric estimators publication-title: Econometrica doi: 10.2307/2951752 – volume: 6 start-page: 5549 year: 2007 ident: 10.1016/j.csda.2025.108127_br0370 article-title: Large sample sieve estimation of semi-nonparametric models publication-title: Handb. Econom. – volume: 63 start-page: 581 year: 1976 ident: 10.1016/j.csda.2025.108127_br0030 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 106 start-page: 157 year: 2011 ident: 10.1016/j.csda.2025.108127_br0140 article-title: A semiparametric estimation of mean functionals with nonignorable missing data publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.tm10104 – volume: 95 start-page: 555 year: 2008 ident: 10.1016/j.csda.2025.108127_br0160 article-title: Using calibration weighting to adjust for nonresponse under a plausible model publication-title: Biometrika doi: 10.1093/biomet/asn022 – volume: 45 start-page: 393 year: 2017 ident: 10.1016/j.csda.2025.108127_br0230 article-title: Semiparametric maximum likelihood estimation with data missing not at random publication-title: Can. J. Stat. doi: 10.1002/cjs.11340 – volume: 6 start-page: 315 year: 2014 ident: 10.1016/j.csda.2025.108127_br0090 article-title: A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models publication-title: Stat. Interface doi: 10.4310/SII.2013.v6.n3.a2 – volume: 87 start-page: 1227 year: 1992 ident: 10.1016/j.csda.2025.108127_br0070 article-title: Regression with missing x's: a review publication-title: J. Am. Stat. Assoc. – year: 1998 ident: 10.1016/j.csda.2025.108127_br0350 article-title: Functional Data Analysis – volume: 103 start-page: 175 year: 2016 ident: 10.1016/j.csda.2025.108127_br0210 article-title: Semiparametric inverse propensity weighting for nonignorable missing data publication-title: Biometrika doi: 10.1093/biomet/asv071 |
SSID | ssj0002478 |
Score | 2.4278085 |
Snippet | In practical data analysis, the not-missing-at-random (NMAR) mechanism is typically more aligned with the natural causes of missing data. The NMAR mechanism is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 108127 |
SubjectTerms | data analysis HIV infections Inverse probability weighting Nonparametric propensity score Not missing at random probability Quantile regression regression analysis Sieve minimum distance |
Title | Fully nonparametric inverse probability weighting estimation with nonignorable missing data and its extension to missing quantile regression |
URI | https://dx.doi.org/10.1016/j.csda.2025.108127 https://www.proquest.com/docview/3165862400 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsEbzJ2nY32U2PUpRqaQ9q0VtINoms6FbtFvHiL_BHO7PZVRTx4ClkSZYwE2Ymk2--EHLAmErRDQbdNI7ggGKjQLVjGygTMW6EUqzkLRiO4v6Ynd_wmwbp1bUwCKusbL-36aW1rr60Kmm2HrOsdYkA-i5LohA5_dsRFvExluAuP3r7gnmEzFtj5PfG0VXhjMd4pVOD3EMhR6hd-bLM787ph5kufc_pMlmqgkZ67Ne1Qho2XyWLw0_G1ekaecez5CuFwzySeT_gO1kpzXIEXViKr8Z4Pu5X-lLmQsFhUeTX8IWLFLOxODe7zWFL6HtLQf2YRaCIIKUqNzQrprTMmGN6jRaTzxFPM1AO2Bb6bG89qDZfJ-PTk6teP6heWghScE9F4EDavO1CaHWiuQsN63RSYSD-EF3BUg4i6hobQ_jCRSc1Diy8S7Qz0NHW6WiDzMEi7SahzGmruRVGiJhZrVQEJ5LQxXhfKnicbJHDWsTy0RNqyBppdidRIRIVIr1CtgivtSC_bQsJFv_Pefu1yiSIAy9BVG4ns6mMOhBzxYic3f7nv3fIAvY8XmyXzBXPM7sHkUmhm-XWa5L547NBf4Tt4OJ68AGD5elX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3RmJDoW1ip86IEFV5lIVW6mbZsY2CIAWaCrHwC_jR3MUJCIQYmKIkdmTdOXfn8-fvCDlkTKXoBoMkjSNYoNgoUM3YBspEjBuhFCt5C3rXcXfALoZ8OEVO67MwCKusbL-36aW1rp40Kmk2HrOscYMA-oS1oxA5_ZtRMk1mGfy-WMbg-O0L5xEyb46R4BubVydnPMgrHRskHwo5Yu3K0jK_e6cfdrp0Pp0lslhFjfTED2yZTNl8hSz0PilXx6vkHReTrxRW88jm_YCFslKa5Yi6sBTLxnhC7lf6UiZDwWNRJNjwJxcppmOxb3abw5zQ95aC_jGNQBFCSlVuaFaMaZkyx_waLUafLZ4moB0wLvTZ3npUbb5GBp2z_mk3qEotBCn4pyJwIG7edCFcdVtzFxrWaqXCQAAiEsFSDiJKjI0hfuGilRoHJt61tTNwo63T0TqZgUHaDUKZ01ZzK4wQMbNaqQiWJKGLccNU8Li9SY5qEctHz6gha6jZnUSFSFSI9ArZJLzWgvw2LySY_D_7HdQqkyAO3AVRuR1NxjJqQdAVI3R265_f3idz3X7vSl6dX19uk3l848FjO2SmeJ7YXQhTCr1XTsMPmF7pQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+nonparametric+inverse+probability+weighting+estimation+with+nonignorable+missing+data+and+its+extension+to+missing+quantile+regression&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Tai%2C+Lingnan&rft.au=Tao%2C+Li&rft.au=Pan%2C+Jianxin&rft.au=Tang%2C+Man-lai&rft.date=2025-06-01&rft.issn=0167-9473&rft.volume=206&rft.spage=108127&rft_id=info:doi/10.1016%2Fj.csda.2025.108127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2025_108127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |