Typical advances of artificial intelligence in civil engineering
Artificial intelligence (AI) provides advanced mathematical frameworks and algorithms for further innovation and vitality of classical civil engineering (CE). Plenty of complex, time-consuming, and laborious workloads of design, construction, and inspection can be enhanced and upgraded by emerging A...
Saved in:
Published in | Advances in structural engineering Vol. 25; no. 16; pp. 3405 - 3424 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) provides advanced mathematical frameworks and algorithms for further innovation and vitality of classical civil engineering (CE). Plenty of complex, time-consuming, and laborious workloads of design, construction, and inspection can be enhanced and upgraded by emerging AI techniques. In addition, many unsolved issues and unknown laws in the field of CE can be addressed and discovered by physical machine learning via merging the data paradigm with physical laws. Intelligent science and technology in CE profoundly promote the current level of informatization, digitalization, autonomation, and intellectualization. To this end, this paper provides a systematic review and summarizes the state-of-the-art progress of AI in CE for the entire life cycle of civil structures and infrastructure, including intelligent architectural design, intelligent structural health diagnosis, intelligent disaster prevention and reduction. A series of examples for intelligent architectural art shape design, structural topology optimization, computer-vision-based structural damage recognition, correlation-pattern-based structural condition assessment, machine-learning-enhanced reliability analysis, vision-based earthquake disaster evaluation, and dense displacement monitoring of structures under wind and earthquake, are given. Finally, the prospects of intelligent science and technology in future CE are discussed. |
---|---|
AbstractList | Artificial intelligence (AI) provides advanced mathematical frameworks and algorithms for further innovation and vitality of classical civil engineering (CE). Plenty of complex, time-consuming, and laborious workloads of design, construction, and inspection can be enhanced and upgraded by emerging AI techniques. In addition, many unsolved issues and unknown laws in the field of CE can be addressed and discovered by physical machine learning via merging the data paradigm with physical laws. Intelligent science and technology in CE profoundly promote the current level of informatization, digitalization, autonomation, and intellectualization. To this end, this paper provides a systematic review and summarizes the state-of-the-art progress of AI in CE for the entire life cycle of civil structures and infrastructure, including intelligent architectural design, intelligent structural health diagnosis, intelligent disaster prevention and reduction. A series of examples for intelligent architectural art shape design, structural topology optimization, computer-vision-based structural damage recognition, correlation-pattern-based structural condition assessment, machine-learning-enhanced reliability analysis, vision-based earthquake disaster evaluation, and dense displacement monitoring of structures under wind and earthquake, are given. Finally, the prospects of intelligent science and technology in future CE are discussed. |
Author | Xu, Yang Li, Na Li, Hui Qian, Wenliang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-8394-9224 surname: Xu fullname: Xu, Yang organization: , Beijing, China – sequence: 2 givenname: Wenliang orcidid: 0000-0003-0744-9436 surname: Qian fullname: Qian, Wenliang email: wl.qian@outlook.com organization: , Beijing, China – sequence: 3 givenname: Na surname: Li fullname: Li, Na organization: , Beijing, China – sequence: 4 givenname: Hui orcidid: 0000-0001-9198-3951 surname: Li fullname: Li, Hui organization: , Beijing, China |
BookMark | eNp9kM1qwzAQhEVpoUnaB-jNL-BUK6mWfGsJ_YNAL-nZrNdro-DKQXIDefs6pKcWclp2Z76Fmbm4DENgIe5ALgGsvQddlEZrpRSAstrICzFT0rjcSIBLMTvq-dFwLeYpbaWcXBZm4nFz2HnCPsNmj4E4ZUObYRx968lPZx9G7nvf8aRNS0Z-7_uMQ-cDc_ShuxFXLfaJb3_nQny-PG9Wb_n64_V99bTOSTkz5lyWNRUaW1CutDVqMnWtmbQmSc4ZbRrXKASkwjTkUJmaQMJDUWPJbKxeCHv6S3FIKXJbkR9x9EMYI_q-Alkdi6j-FTGR8IfcRf-F8XCWWZ6YhB1X2-E7hincGeAHOgRu1Q |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105142 crossref_primary_10_1016_j_istruc_2023_05_151 crossref_primary_10_1080_17452007_2023_2270549 crossref_primary_10_1109_ACCESS_2024_3379009 crossref_primary_10_3390_buildings14113461 crossref_primary_10_1016_j_eswa_2024_123314 crossref_primary_10_1016_j_tust_2024_105978 crossref_primary_10_1177_13694332241242975 crossref_primary_10_1016_j_istruc_2025_108598 crossref_primary_10_3390_buildings14051454 crossref_primary_10_1142_S0219455424501608 crossref_primary_10_3390_app13052965 crossref_primary_10_1016_j_aei_2024_102498 crossref_primary_10_1016_j_engstruct_2024_118918 crossref_primary_10_1016_j_aei_2024_102650 crossref_primary_10_1155_2023_2430011 crossref_primary_10_1177_13694332231213460 crossref_primary_10_3390_s24010197 crossref_primary_10_3390_s23177349 crossref_primary_10_3390_s25051291 crossref_primary_10_3390_sym15061243 crossref_primary_10_1016_j_jobe_2023_106563 crossref_primary_10_1111_mice_13118 crossref_primary_10_1177_13694332241307721 crossref_primary_10_1002_stco_202400029 crossref_primary_10_1016_j_jobe_2023_108063 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_1016_j_eqs_2024_04_003 crossref_primary_10_1155_2024_7857012 crossref_primary_10_3390_su16062403 crossref_primary_10_1016_j_engappai_2025_110097 crossref_primary_10_1080_10589759_2023_2291429 crossref_primary_10_3390_machines12020093 crossref_primary_10_1016_j_autcon_2024_105606 crossref_primary_10_1016_j_engstruct_2023_116773 crossref_primary_10_3390_math11234782 crossref_primary_10_1016_j_ymssp_2023_110892 crossref_primary_10_1007_s11709_024_1107_x crossref_primary_10_1016_j_ymssp_2024_111583 |
Cites_doi | 10.1016/j.eng.2018.11.027 10.1016/j.eng.2018.11.030 10.1142/S0219455422501619 10.3390/rs14041012 10.1111/mice.12568 10.1016/j.jcp.2018.10.045 10.1016/S0266-8920(01)00019-4 10.1016/j.ymssp.2022.108991 10.1177/1475921720921135 10.1007/s00158-016-1513-3 10.1177/1369433219856171 10.1177/1369433219852565 10.1177/1475921720972416 10.4324/9781315237473 10.1145/3355089.3356556 10.1038/s41467-020-16599-6 10.1111/mice.12458 10.1002/nme.2724 10.5194/isprs-annals-IV-2-89-2018 10.1016/j.jsv.2015.04.026 10.1016/j.strusafe.2004.09.001 10.1016/j.strusafe.2011.01.002 10.1177/14759217211006485 10.1016/j.cma.2014.04.005 10.1061/JSDEAG.0003870 10.1016/0167-4730(89)90003-9 10.1177/14759217221103016 10.3390/rs12101670 10.1177/1369433219836292 10.1109/TPAMI.2014.2345390 10.1080/03052150214021 10.1007/s00158-006-0035-9 10.1016/j.cma.2020.113453 10.1016/j.autcon.2016.09.009 10.1162/neco.2006.18.7.1527 10.1007/s00163-002-0028-7 10.1002/stc.2667 10.1098/rsta.2006.1927 10.1016/j.ress.2021.107737 10.1109/CVPR.2017.632 10.1007/BF01650949 10.1145/3422622 10.1002/stc.2313 10.1016/S0022-5096(96)00114-7 10.1038/s41586-020-2939-8 10.1016/0004-3702(73)90008-8 10.1016/j.ymssp.2021.107850 10.1016/j.engstruct.2017.10.070 10.1007/s00158-001-0165-z 10.1007/s00158-013-0999-1 10.1061/(ASCE)ST.1943-541X.0002535 10.1002/stc.1850 10.1016/j.autcon.2019.102994 10.1038/nature23911 10.1007/s10999-005-0221-8 10.1016/S0926-5805(00)00099-6 10.1109/CVPR.2016.90 10.1111/mice.12761 10.1016/j.engstruct.2013.10.032 10.1002/stc.1852 10.1080/01431161.2017.1294780 10.1002/nme.3343 10.1007/s001580100129 10.1007/s00466-008-0312-0 10.1016/j.cma.2021.113674 10.1007/978-981-15-6568-7_8 10.1007/BF01744703 10.1061/(ASCE)0733-9399(1990)116:6(1183) 10.3390/s20102778 10.1016/j.engstruct.2017.11.018 10.1177/1475921718764873 10.1016/0045-7949(93)90035-C 10.1002/stc.2314 10.1007/978-3-319-46484-8_16 10.1177/1369433220986637 10.1007/s00158-020-02774-2 10.3390/s22020532 10.1111/mice.12759 10.1007/s00158-009-0443-8 10.1016/S0045-7949(98)00132-1 10.1177/1369433220986638 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 |
Copyright_xml | – notice: The Author(s) 2022 |
DBID | AAYXX CITATION |
DOI | 10.1177/13694332221127340 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4011 |
EndPage | 3424 |
ExternalDocumentID | 10_1177_13694332221127340 10.1177_13694332221127340 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51921006; 52008138; 52192661 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2019M661286; BX20190102 funderid: https://doi.org/10.13039/501100002858 – fundername: National Key R&D Program of China grantid: 2021YFF0501003 – fundername: Heilongjiang Province Postdoctoral Science Foundation grantid: LBH-TZ2016; LBH-Z19064 |
GroupedDBID | -TN 0R~ 23M 4.4 54M 5GY 6KP AABPG AAGLT AAJPV AANSI AAPEO AAQXI AATAA AATZT ABAWP ABCCA ABCJG ABDBF ABGWC ABIDT ABJNI ABLUO ABPNF ABQKF ABQXT ABUJY ACDXX ACGFS ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADEBD ADMLS ADRRZ ADVBO AEDFJ AENEX AEPTA AESZF AEWDL AEWHI AFKRG AFMOU AFQAA AGKLV AGWFA AHDMH AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CS3 DH. DV7 EBS ESX FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F J8X K.F MET MV1 O9- Q1R ROL SASJQ SAUOL SCNPE SFC SPV TUS -TM AADUE AAGGD AAOTM AAOVH AARIX AAYXX ABDWY ABEIX ABFNE ABFWQ ABHKI ABKRH ABRHV ABUBZ ABYTW ACGBL ACOFE ADEIA ADGDL ADTBJ ADUKL AEQLS AEXNY AFEET AFGYO AFUIA AGNHF AIZZC AJEFB AJGYC CBRKF CFDXU CITATION CKLRP CORYS DOPDO EJD IL9 ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c284t-e99bc63af12897ba3c4bb3ec33c0c88434d8d2a1ac64dc8a24bc10156ba9ee473 |
ISSN | 1369-4332 |
IngestDate | Tue Jul 01 05:19:24 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Tue Jun 17 22:29:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | architectural design seismic disaster evaluation machine learning structural health diagnosis artificial intelligence computer vision |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-e99bc63af12897ba3c4bb3ec33c0c88434d8d2a1ac64dc8a24bc10156ba9ee473 |
ORCID | 0000-0003-0744-9436 0000-0001-9198-3951 0000-0002-8394-9224 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1177_13694332221127340 crossref_primary_10_1177_13694332221127340 sage_journals_10_1177_13694332221127340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Advances in structural engineering |
PublicationYear | 2022 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Ding, Hou, Xia 2022 Henriques, Caseiro, Martins 2014; 37 Bao, Li 2021; 20 Wang, Cui, Zhang 2022; 14 Hinton, Osindero, Teh 2006; 18 Xu, Liu, Zou 2021; 373 Rafiei, Adeli 2018; 156 Wang, Li, Tian 2022; 29 Wu, Fu, Tang 2019; 38 Kakooei, Baleghi 2017; 38 Baqersad, Niezrecki, Avitabile 2015; 352 Zhou, Wang 2007; 33 Feng, Feng 2018; 156 Tavakoli, Mohseni 2014; 49 Tvedt 1990; 116 Michalek, Papalambros 2002; 34 Guest, Smith Genut 2010; 81 Bendsøe 1989; 1 Hu, Zhao, Huang 2021; 36 Spencer, Hoskere, Narazaki 2019; 5 Wang, Mei, Wang 2004; 1 Bellemare, Candido, Castro 2020; 588 Hoskere, Narazaki, Spencer 2022; 22 Huang, Xie 2009; 43 Sigmund, Torquato 1997; 45 Gao, Kong, Mosalam 2019; 34 Ang, Cornell 1974; 100 Xu, Wei, Bao 2019; 26 Au, Beck 2001; 16 Wang, Xia 2022; 172 Eastman 1973; 4 Xu, Bao, Zhang 2021; 20 Andrushia, Lubloy 2021; 24 Farrar, Lieven 2007; 365 Zhang, Zhao, Sun 2019; 22 Zhao, Hu, Xu 2022; 37 Du, Li, Hou 2022; 29 Hua 2016; 72 Khuc, Catbas 2017; 24 Schütze, Sachse, Römer 2003; 14 Qian, Xu, Li 2022; 37 Echard, Gayton, Lemaire 2011; 33 Xiong, Li, Lu 2020; 109 Nguyen, Paulino, Song 2010; 41 Zhao, Bao, Guan 2019; 26 Xu, Bao, Chen 2019; 18 Shao, Tang, Liu 2020; 12 Bao, Li, Nagayama 2021; 20 Ye, Jin, Chen 2019; 22 Yoo, Jang, Lee 2021; 63 Sha, Xiao, Gao 2021; 377 Xie, Steven 1993; 49 Narazaki, Hoskere, Yoshida 2021; 160 Beghini, Beghini, Katz 2014; 59 Kim, Kim, Mechefske 2012; 90 Tavakoli 2014; 276 Azimi, Eslamlou, Pekcan 2020; 20 Yin, Ananthasuresh 2001; 23 He, Zhang, Ren 2016 Duarte, Nex, Kerle 2018; 4 Xu, Tian, Li 2022 Melchers 1989; 6 Thomsen 1992; 5 Kaymaz 2005; 27 Zuo, Saitou 2017; 55 Goodfellow, Pouget-Abadie, Mirza 2020; 63 Zhao, Hu, Qiao 2022; 29 Tian, Xu, Zhang 2021; 28 Arvin, House 2002; 11 Hassani, Hinton 1998; 69 Stolpe, Svanberg 2001; 22 Sun, Shang, Xia 2020; 146 Aage, Andreassen, Lazarov 2017; 550 Raissi, Perdikaris, Karniadakis 2019; 378 Cui, Wang, Dai 2021; 24 Baandrup, Sigmund, Polk 2020; 11 Bao, Chen, Wei 2019; 5 Dong, Catbas 2019; 22 Isola, Zhu, Zhou 2017 Zhai, Narazaki, Wang 2022; 29 Yoon, Elanwar, Choi 2016; 23 Chen, Chen, Xu 2021; 214 bibr32-13694332221127340 bibr45-13694332221127340 bibr78-13694332221127340 bibr7-13694332221127340 bibr58-13694332221127340 bibr1-13694332221127340 bibr60-13694332221127340 Bendsøe MP (bibr15-13694332221127340) 2013 bibr86-13694332221127340 bibr80-13694332221127340 bibr73-13694332221127340 bibr18-13694332221127340 bibr79-13694332221127340 bibr38-13694332221127340 bibr25-13694332221127340 bibr52-13694332221127340 bibr72-13694332221127340 bibr2-13694332221127340 bibr8-13694332221127340 bibr12-13694332221127340 bibr74-13694332221127340 bibr84-13694332221127340 bibr13-13694332221127340 Du Y (bibr22-13694332221127340) 2022; 29 bibr3-13694332221127340 bibr64-13694332221127340 bibr59-13694332221127340 bibr23-13694332221127340 bibr69-13694332221127340 bibr33-13694332221127340 bibr19-13694332221127340 bibr43-13694332221127340 bibr49-13694332221127340 bibr9-13694332221127340 bibr39-13694332221127340 bibr29-13694332221127340 bibr24-13694332221127340 bibr53-13694332221127340 bibr14-13694332221127340 bibr44-13694332221127340 bibr54-13694332221127340 Zhai G (bibr81-13694332221127340) 2022; 29 bibr55-13694332221127340 bibr48-13694332221127340 bibr88-13694332221127340 bibr68-13694332221127340 bibr83-13694332221127340 bibr70-13694332221127340 bibr4-13694332221127340 Brock A (bibr16-13694332221127340) 2018 bibr63-13694332221127340 bibr5-13694332221127340 bibr89-13694332221127340 bibr76-13694332221127340 bibr82-13694332221127340 bibr62-13694332221127340 bibr75-13694332221127340 bibr28-13694332221127340 bibr35-13694332221127340 bibr42-13694332221127340 bibr51-13694332221127340 bibr71-13694332221127340 bibr61-13694332221127340 bibr10-13694332221127340 bibr31-13694332221127340 bibr41-13694332221127340 bibr6-13694332221127340 bibr26-13694332221127340 bibr36-13694332221127340 bibr66-13694332221127340 bibr56-13694332221127340 bibr40-13694332221127340 bibr37-13694332221127340 bibr47-13694332221127340 bibr11-13694332221127340 bibr50-13694332221127340 bibr21-13694332221127340 bibr27-13694332221127340 bibr30-13694332221127340 bibr20-13694332221127340 bibr17-13694332221127340 Zhao J (bibr85-13694332221127340) 2022; 29 Minar MR (bibr46-13694332221127340) 2018 bibr77-13694332221127340 bibr57-13694332221127340 bibr67-13694332221127340 bibr87-13694332221127340 Wang X (bibr65-13694332221127340) 2022; 29 |
References_xml | – volume: 4 start-page: 89 issue: 2 year: 2018 end-page: 96 article-title: Satellite image classification of building damages using airborne and satellite image samples in a deep learning approach publication-title: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences – volume: 29 start-page: 1 issue: 1 year: 2022 end-page: 16 article-title: A modified U-net for crack segmentation by self-attention-self-adaption neuron and random elastic deformation publication-title: Smart Structures and Systems – volume: 18 start-page: 1527 year: 2006 end-page: 1554 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 36 start-page: 89 issue: 1 year: 2021 end-page: 108 article-title: Structure‐aware 3D reconstruction for cable‐stayed bridges: a learning‐based method publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 12 start-page: 1670 issue: 10 year: 2020 article-title: BDD-Net: a general protocol for mapping buildings damaged by a wide range of disasters based on satellite imagery publication-title: Remote Sensing – volume: 160 start-page: 107850 year: 2021 article-title: Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts publication-title: Mechanical Systems and Signal Processing – volume: 63 start-page: 1743 year: 2021 end-page: 1766 article-title: Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency publication-title: Structural and Multidisciplinary Optimization – volume: 11 start-page: 213 year: 2002 end-page: 225 article-title: Modeling architectural design objectives in physically based space planning publication-title: Automation in Construction – volume: 16 start-page: 263 issue: 4 year: 2001 end-page: 277 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probabilistic Engineering Mechanics – volume: 22 start-page: 532 issue: 2 year: 2022 article-title: Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds publication-title: Sensors – volume: 156 start-page: 598 year: 2018 end-page: 607 article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures publication-title: Engineering Structures – volume: 23 start-page: 49 year: 2001 end-page: 62 article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme publication-title: Structural and Multidisciplinary Optimization – volume: 109 start-page: 102994 year: 2020 article-title: Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network publication-title: Automation in Construction – volume: 69 start-page: 719 year: 1998 end-page: 738 article-title: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations publication-title: Computers & Structures – volume: 5 start-page: 234 issue: 2 year: 2019 end-page: 242 article-title: The state of the art of data science and engineering in structural health monitoring publication-title: Engineering – volume: 156 start-page: 105 year: 2018 end-page: 117 article-title: Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection–A review publication-title: Engineering Structures – volume: 26 start-page: e2314 issue: 3 year: 2019 article-title: Video‐based multi-scale identification approach for tower vibration of a cable‐stayed bridge model under earthquake ground motions publication-title: Structural Control and Health Monitoring – volume: 49 start-page: 885 year: 1993 end-page: 896 article-title: A simple evolutionary procedure for structural optimization publication-title: Computers & Structures – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative adversarial networks publication-title: Communications of the ACM – volume: 146 start-page: 04020073 issue: 5 year: 2020 article-title: Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection publication-title: Journal of Structural Engineering – volume: 365 start-page: 623 issue: 1851 year: 2007 end-page: 632 article-title: Damage prognosis: the future of structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical publication-title: Physical and Engineering Sciences – volume: 214 start-page: 107737 year: 2021 article-title: Efficient Reliability Analysis Combining Kriging and Subset Simulation with Two-Stage Convergence Criterion publication-title: Reliability Engineering & System Safety – volume: 1 start-page: 213 year: 2004 end-page: 239 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: International Journal of Mechanics and Materials in Design – volume: 37 start-page: 583 issue: 3 year: 2014 end-page: 596 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 276 start-page: 534 year: 2014 end-page: 565 article-title: Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 172 start-page: 108991 year: 2022 article-title: Knowledge transfer for structural damage detection through re-weighted adversarial domain adaptation publication-title: Mechanical Systems and Signal Processing – volume: 29 start-page: 237 issue: 1 year: 2022 end-page: 250 article-title: Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks publication-title: Smart Structures and Systems – volume: 29 start-page: 41 issue: 1 year: 2022 end-page: 51 article-title: Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis publication-title: Smart Structures and Systems – volume: 14 start-page: 1012 issue: 4 year: 2022 article-title: A two-stage seismic damage assessment method for small, dense, and imbalanced buildings in remote sensing images publication-title: Remote Sensing – volume: 20 start-page: 2229 issue: 4 year: 2021 end-page: 2239 article-title: The 1st international project competition for structural health monitoring (IPC-SHM, 2020): a summary and benchmark problem publication-title: Structural Health Monitoring – volume: 59 start-page: 716 year: 2014 end-page: 726 article-title: Connecting architecture and engineering through structural topology optimization publication-title: Engineering Structures – year: 2022 article-title: Jaya-based long short-term memory neural network for structural damage identification with consideration of measurement uncertainties publication-title: International Journal of Structural Stability and Dynamics – volume: 26 start-page: e2313 year: 2019 article-title: Automatic seismic damage identification of reinforced concrete columns from images by a region‐based deep convolutional neural network publication-title: Structural Control and Health Monitoring – volume: 24 start-page: e1852 issue: 1 year: 2017 article-title: Completely contactless structural health monitoring of real‐life structures using cameras and computer vision publication-title: Structural Control and Health Monitoring – volume: 41 start-page: 525 year: 2010 end-page: 539 article-title: A computational paradigm for multi-resolution topology optimization (MTOP) publication-title: Structural and Multidisciplinary Optimization – volume: 18 start-page: 653 year: 2019 end-page: 674 article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images publication-title: Structural Health Monitoring – volume: 352 start-page: 16 year: 2015 end-page: 29 article-title: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique publication-title: Journal of Sound and Vibration – volume: 116 start-page: 1183 issue: 6 year: 1990 end-page: 1197 article-title: Distribution of quadratic forms in normal space—application to structural reliability publication-title: Journal of Engineering Mechanics – volume: 37 start-page: 704 issue: 6 year: 2022 end-page: 725 article-title: Structure‐PoseNet for identification of dense dynamic displacement and three‐dimensional poses of structures using a monocular camera publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 22 start-page: 2882 issue: 13 year: 2019 end-page: 2891 article-title: Bolt loosening detection based on audio classification publication-title: Advances in Structural Engineering – volume: 22 start-page: 116 year: 2001 end-page: 124 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Structural and Multidisciplinary Optimization – volume: 24 start-page: 1859 issue: 9 year: 2021 end-page: 1868 article-title: Intelligent crack detection based on attention mechanism in convolution neural network publication-title: Advances in Structural Engineering – volume: 5 start-page: 199 year: 2019 end-page: 222 article-title: Advances in computer vision-based civil infrastructure inspection and monitoring publication-title: Engineering – volume: 45 start-page: 1037 year: 1997 end-page: 1067 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: Journal of the Mechanics and Physics of Solids – volume: 5 start-page: 108 year: 1992 end-page: 115 article-title: Topology optimization of structures composed of one or two materials publication-title: Structural Optimization – volume: 24 start-page: 1896 issue: 9 year: 2021 end-page: 1909 article-title: Deep learning based thermal crack detection on structural concrete exposed to elevated temperature publication-title: Advances in Structural Engineering – volume: 28 start-page: e2667 issue: 2 year: 2021 article-title: Relationship modeling between vehicle‐induced girder vertical deflection and cable tension by BiLSTM using field monitoring data of a cable‐stayed bridge publication-title: Structural Control and Health Monitoring – volume: 55 start-page: 477 year: 2017 end-page: 491 article-title: Multi-material topology optimization using ordered SIMP interpolation publication-title: Structural and Multidisciplinary Optimization – volume: 34 start-page: 485 year: 2002 end-page: 501 article-title: Interactive design optimization of architectural layouts publication-title: Engineering Optimization – volume: 4 start-page: 41 year: 1973 end-page: 64 article-title: Automated space planning publication-title: Artificial Intelligence – volume: 20 start-page: 1494 year: 2021 end-page: 1517 article-title: Attribute-based structural damage identification by few-shot meta learning with inter-class knowledge transfer publication-title: Structural Health Monitoring – volume: 6 start-page: 3 issue: 1 year: 1989 end-page: 10 article-title: Importance sampling in structural systems publication-title: Structural Safety – volume: 90 start-page: 752 year: 2012 end-page: 783 article-title: A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method publication-title: International Journal for Numerical Methods in Engineering – volume: 378 start-page: 686 year: 2019 end-page: 707 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics – volume: 550 start-page: 84 year: 2017 end-page: 86 article-title: Giga-voxel computational morphogenesis for structural design publication-title: Nature – volume: 37 start-page: 612 issue: 5 year: 2022 end-page: 628 article-title: A self‐sparse generative adversarial network for autonomous early‐stage design of architectural sketches publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 14 start-page: 89 year: 2003 end-page: 97 article-title: Support value of sketching in the design process publication-title: Research in Engineering Design – volume: 11 start-page: 1 year: 2020 end-page: 7 article-title: Closing the gap towards super-long suspension bridges using computational morphogenesis publication-title: Nature Communications – volume: 1 start-page: 193 year: 1989 end-page: 202 article-title: Optimal shape design as a material distribution problem publication-title: Structural Optimization – volume: 373 start-page: 113453 year: 2021 article-title: Stress constrained multi-material topology optimization with the ordered SIMP method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 23 start-page: 1405 issue: 12 year: 2016 end-page: 1416 article-title: Target‐free approach for vision‐based structural system identification using consumer‐grade cameras publication-title: Structural Control and Health Monitoring – volume: 33 start-page: 89 year: 2007 article-title: Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multi-phase transition publication-title: Structural and Multidisciplinary Optimization – volume: 588 start-page: 77 year: 2020 end-page: 82 article-title: Autonomous navigation of stratospheric balloons using reinforcement learning publication-title: Nature – volume: 43 start-page: 393 year: 2009 end-page: 401 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Computational Mechanics – volume: 22 start-page: 3412 issue: 16 year: 2019 end-page: 3419 article-title: Structural crack detection using deep learning–based fully convolutional networks publication-title: Advances in Structural Engineering – start-page: 14759217221103016 year: 2022 article-title: Unsupervised deep learning method for bridge condition assessment based on intra-and inter-class probabilistic correlations of quasi-static responses publication-title: Structural Health Monitoring – volume: 20 issue: 10 year: 2020 article-title: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review publication-title: Sensors – volume: 33 start-page: 145 issue: 2 year: 2011 end-page: 154 article-title: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation publication-title: Structural Safety – volume: 81 start-page: 1019 year: 2010 end-page: 1045 article-title: Reducing dimensionality in topology optimization using adaptive design variable fields publication-title: International Journal for Numerical Methods in Engineering – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: Data-driven interior plan generation for residential buildings publication-title: ACM Transactions on Graphics – volume: 22 start-page: 3461 issue: 16 year: 2019 end-page: 3472 article-title: A non-target structural displacement measurement method using advanced feature matching strategy publication-title: Advances in Structural Engineering – volume: 27 start-page: 133 issue: 2 year: 2005 end-page: 151 article-title: Application of kriging method to structural reliability problems publication-title: Structural Safety – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 49 start-page: 621 issue: 4 year: 2014 end-page: 642 article-title: Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation publication-title: Structural & Multidisciplinary Optimization – volume: 34 start-page: 755 year: 2019 end-page: 773 article-title: Deep leaf-bootstrapping generative adversarial network for structural image data augmentation publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 38 start-page: 2511 issue: 8–10 year: 2017 end-page: 2534 article-title: Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment publication-title: International Journal of Remote Sensing – volume: 377 start-page: 113674 year: 2021 article-title: A new level set based multi-material topology optimization method using alternating active-phase algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 72 start-page: 388 year: 2016 end-page: 396 article-title: Irregular architectural layout synthesis with graphical inputs publication-title: Automation in Construction – volume: 100 start-page: 1755 issue: 9 year: 1974 end-page: 1769 article-title: Reliability bases of structural safety and design publication-title: Journal of the Structural Division – volume: 20 start-page: 1353 issue: 4 year: 2021 end-page: 1372 article-title: Machine learning paradigm for structural health monitoring publication-title: Structural Health Monitoring – volume: 29 start-page: 63 issue: 1 year: 2022 end-page: 75 article-title: Convolutional neural network-based data anomaly detection considering class imbalance with limited data publication-title: Smart Structures and Systems – start-page: 1125 year: 2017 end-page: 1134 article-title: Image-to-image translation with conditional adversarial networks – ident: bibr8-13694332221127340 doi: 10.1016/j.eng.2018.11.027 – volume-title: Topology Optimization: Theory, Methods, and Applications year: 2013 ident: bibr15-13694332221127340 – ident: bibr57-13694332221127340 doi: 10.1016/j.eng.2018.11.030 – ident: bibr20-13694332221127340 doi: 10.1142/S0219455422501619 – ident: bibr66-13694332221127340 doi: 10.3390/rs14041012 – volume-title: Large Scale GAN Training for High Fidelity Natural Image Synthesis year: 2018 ident: bibr16-13694332221127340 – ident: bibr36-13694332221127340 doi: 10.1111/mice.12568 – ident: bibr51-13694332221127340 doi: 10.1016/j.jcp.2018.10.045 – ident: bibr5-13694332221127340 doi: 10.1016/S0266-8920(01)00019-4 – ident: bibr68-13694332221127340 doi: 10.1016/j.ymssp.2022.108991 – ident: bibr75-13694332221127340 doi: 10.1177/1475921720921135 – ident: bibr88-13694332221127340 doi: 10.1007/s00158-016-1513-3 – ident: bibr21-13694332221127340 doi: 10.1177/1369433219856171 – ident: bibr82-13694332221127340 doi: 10.1177/1369433219852565 – ident: bibr9-13694332221127340 doi: 10.1177/1475921720972416 – ident: bibr52-13694332221127340 doi: 10.4324/9781315237473 – ident: bibr69-13694332221127340 doi: 10.1145/3355089.3356556 – ident: bibr7-13694332221127340 doi: 10.1038/s41467-020-16599-6 – ident: bibr27-13694332221127340 doi: 10.1111/mice.12458 – ident: bibr29-13694332221127340 doi: 10.1002/nme.2724 – volume: 29 start-page: 1 issue: 1 year: 2022 ident: bibr85-13694332221127340 publication-title: Smart Structures and Systems – ident: bibr23-13694332221127340 doi: 10.5194/isprs-annals-IV-2-89-2018 – ident: bibr11-13694332221127340 doi: 10.1016/j.jsv.2015.04.026 – ident: bibr41-13694332221127340 doi: 10.1016/j.strusafe.2004.09.001 – ident: bibr25-13694332221127340 doi: 10.1016/j.strusafe.2011.01.002 – ident: bibr10-13694332221127340 doi: 10.1177/14759217211006485 – ident: bibr60-13694332221127340 doi: 10.1016/j.cma.2014.04.005 – ident: bibr3-13694332221127340 doi: 10.1061/JSDEAG.0003870 – ident: bibr44-13694332221127340 doi: 10.1016/0167-4730(89)90003-9 – ident: bibr76-13694332221127340 doi: 10.1177/14759217221103016 – ident: bibr55-13694332221127340 doi: 10.3390/rs12101670 – ident: bibr77-13694332221127340 doi: 10.1177/1369433219836292 – ident: bibr32-13694332221127340 doi: 10.1109/TPAMI.2014.2345390 – ident: bibr45-13694332221127340 doi: 10.1080/03052150214021 – ident: bibr86-13694332221127340 doi: 10.1007/s00158-006-0035-9 – ident: bibr74-13694332221127340 doi: 10.1016/j.cma.2020.113453 – ident: bibr37-13694332221127340 doi: 10.1016/j.autcon.2016.09.009 – volume: 29 start-page: 41 issue: 1 year: 2022 ident: bibr65-13694332221127340 publication-title: Smart Structures and Systems – ident: bibr33-13694332221127340 doi: 10.1162/neco.2006.18.7.1527 – ident: bibr53-13694332221127340 doi: 10.1007/s00163-002-0028-7 – ident: bibr63-13694332221127340 doi: 10.1002/stc.2667 – ident: bibr89-13694332221127340 doi: 10.1098/rsta.2006.1927 – volume-title: Recent Advances in Deep Learning: An Overview year: 2018 ident: bibr46-13694332221127340 – ident: bibr18-13694332221127340 doi: 10.1016/j.ress.2021.107737 – ident: bibr39-13694332221127340 doi: 10.1109/CVPR.2017.632 – ident: bibr14-13694332221127340 doi: 10.1007/BF01650949 – volume: 29 start-page: 63 issue: 1 year: 2022 ident: bibr22-13694332221127340 publication-title: Smart Structures and Systems – ident: bibr28-13694332221127340 doi: 10.1145/3422622 – ident: bibr73-13694332221127340 doi: 10.1002/stc.2313 – ident: bibr56-13694332221127340 doi: 10.1016/S0022-5096(96)00114-7 – ident: bibr13-13694332221127340 doi: 10.1038/s41586-020-2939-8 – ident: bibr24-13694332221127340 doi: 10.1016/0004-3702(73)90008-8 – ident: bibr47-13694332221127340 doi: 10.1016/j.ymssp.2021.107850 – ident: bibr50-13694332221127340 doi: 10.1016/j.engstruct.2017.10.070 – ident: bibr78-13694332221127340 doi: 10.1007/s00158-001-0165-z – ident: bibr61-13694332221127340 doi: 10.1007/s00158-013-0999-1 – ident: bibr59-13694332221127340 doi: 10.1061/(ASCE)ST.1943-541X.0002535 – ident: bibr80-13694332221127340 doi: 10.1002/stc.1850 – volume: 29 start-page: 237 issue: 1 year: 2022 ident: bibr81-13694332221127340 publication-title: Smart Structures and Systems – ident: bibr71-13694332221127340 doi: 10.1016/j.autcon.2019.102994 – ident: bibr1-13694332221127340 doi: 10.1038/nature23911 – ident: bibr67-13694332221127340 doi: 10.1007/s10999-005-0221-8 – ident: bibr4-13694332221127340 doi: 10.1016/S0926-5805(00)00099-6 – ident: bibr31-13694332221127340 doi: 10.1109/CVPR.2016.90 – ident: bibr84-13694332221127340 doi: 10.1111/mice.12761 – ident: bibr12-13694332221127340 doi: 10.1016/j.engstruct.2013.10.032 – ident: bibr42-13694332221127340 doi: 10.1002/stc.1852 – ident: bibr40-13694332221127340 doi: 10.1080/01431161.2017.1294780 – ident: bibr43-13694332221127340 doi: 10.1002/nme.3343 – ident: bibr58-13694332221127340 doi: 10.1007/s001580100129 – ident: bibr38-13694332221127340 doi: 10.1007/s00466-008-0312-0 – ident: bibr54-13694332221127340 doi: 10.1016/j.cma.2021.113674 – ident: bibr17-13694332221127340 doi: 10.1007/978-981-15-6568-7_8 – ident: bibr62-13694332221127340 doi: 10.1007/BF01744703 – ident: bibr64-13694332221127340 doi: 10.1061/(ASCE)0733-9399(1990)116:6(1183) – ident: bibr6-13694332221127340 doi: 10.3390/s20102778 – ident: bibr26-13694332221127340 doi: 10.1016/j.engstruct.2017.11.018 – ident: bibr72-13694332221127340 doi: 10.1177/1475921718764873 – ident: bibr70-13694332221127340 doi: 10.1016/0045-7949(93)90035-C – ident: bibr83-13694332221127340 doi: 10.1002/stc.2314 – ident: bibr87-13694332221127340 doi: 10.1007/978-3-319-46484-8_16 – ident: bibr2-13694332221127340 doi: 10.1177/1369433220986637 – ident: bibr79-13694332221127340 doi: 10.1007/s00158-020-02774-2 – ident: bibr35-13694332221127340 doi: 10.3390/s22020532 – ident: bibr49-13694332221127340 doi: 10.1111/mice.12759 – ident: bibr48-13694332221127340 doi: 10.1007/s00158-009-0443-8 – ident: bibr30-13694332221127340 doi: 10.1016/S0045-7949(98)00132-1 – ident: bibr19-13694332221127340 doi: 10.1177/1369433220986638 |
SSID | ssj0012771 |
Score | 2.4666784 |
Snippet | Artificial intelligence (AI) provides advanced mathematical frameworks and algorithms for further innovation and vitality of classical civil engineering (CE).... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3405 |
Title | Typical advances of artificial intelligence in civil engineering |
URI | https://journals.sagepub.com/doi/full/10.1177/13694332221127340 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6veiD-Inziz4IglJpm6xr39zUMUQFYcO9jSRNoTC2gZugf713TdbWdcr0JbS3Sxj5tdfLXe4XQs4jzGr6qo6Re24zJriNnCA2hdaJVRDFMcY7np79To899Ov9_KTCtLpkKq7l59K6kv-gCjLAFatk_4BsNigI4BrwhRYQhnY1jD8muthfJ_LTXRmoZlghkiLdJu43T96T4ZXKGQiLnmlzPgYoalLZlJBjURuw6c9Su81zyUuiw6ivGBopyB8TbcC_33dmSTHW4HkL-zZ0kmtpONGlfojVV9qyqlSGnMCwPtXGtGyq02Qx9sNuHixEkWnHyb9L2W5Boz0o6a6TqgerAzBv1WbrrtXO0kcgNQV3-k-ZdDYybZUG-eaQFHbzpQ5Gd5tsmZWB1dQw75A1NdolmwW-yD1yYwC35oBb49jKAbeKgMONlQJuFSDcJ732ffe2Y5sjMGwJfsPUVmEopE95DG5E2BCcSiYEVZJS6cggYJRFQeRxl0ufRTLgHhPSxep4wUOlWIMekMpoPFKHxIpFLOtRGPAGl7hKhd_diHKpqKOoCoIacebzMJCGHx6PKRkOXEMJX5q6GrnMukw0Ocpvyhc4uQPz_rz9rHm0suYx2cgf0xNSgbdDnYKTOBVn5pH4Aq2WXGI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Typical+advances+of+artificial+intelligence+in+civil+engineering&rft.jtitle=Advances+in+structural+engineering&rft.au=Xu%2C+Yang&rft.au=Qian%2C+Wenliang&rft.au=Li%2C+Na&rft.au=Li%2C+Hui&rft.date=2022-12-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft_id=info:doi/10.1177%2F13694332221127340&rft.externalDocID=10.1177_13694332221127340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon |