Long-term ENSO prediction with echo-state networks

The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices des...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental Research: Climate Vol. 1; no. 1; pp. 11002 - 11019
Main Authors Hassanibesheli, Forough, Kurths, Jürgen, Boers, Niklas
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices despite their relatively high noise levels. To achieve this, we train the ESN model on the low-frequency variability of ENSO indices and estimate the potential future high-frequency variability from specific samples of its past history. Our method reveals the importance of cross-scale interactions in the mechanisms underlying ENSO and skilfully predicts its variability and especially El Niño events at lead times up to 21 months. This study considers forecasts skillful if the correlation coefficients are above 0.5. Our results show that the low-frequency component of ENSO carries substantial predictive power, which can be exploited by training our model on single scalar time series. The proposed machine learning method for data-driven modeling can be readily applied to other time series, e.g. finance and physiology. However, it should be noted that our approach cannot straightforwardly be turned into a real-time operational forecast because of the decomposition of the original time series into the slow and fast components using low-pass filter techniques.
AbstractList The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices despite their relatively high noise levels. To achieve this, we train the ESN model on the low-frequency variability of ENSO indices and estimate the potential future high-frequency variability from specific samples of its past history. Our method reveals the importance of cross-scale interactions in the mechanisms underlying ENSO and skilfully predicts its variability and especially El Niño events at lead times up to 21 months. This study considers forecasts skillful if the correlation coefficients are above 0.5. Our results show that the low-frequency component of ENSO carries substantial predictive power, which can be exploited by training our model on single scalar time series. The proposed machine learning method for data-driven modeling can be readily applied to other time series, e.g. finance and physiology. However, it should be noted that our approach cannot straightforwardly be turned into a real-time operational forecast because of the decomposition of the original time series into the slow and fast components using low-pass filter techniques.
Author Hassanibesheli, Forough
Boers, Niklas
Kurths, Jürgen
Author_xml – sequence: 1
  givenname: Forough
  orcidid: 0000-0001-6919-4358
  surname: Hassanibesheli
  fullname: Hassanibesheli, Forough
  organization: Humboldt University Berlin Department of Physics, Berlin, Germany
– sequence: 2
  givenname: Jürgen
  surname: Kurths
  fullname: Kurths, Jürgen
  organization: Saratov State University , 83, Astrakhanskaya Str., 410012 Saratov, Russia
– sequence: 3
  givenname: Niklas
  orcidid: 0000-0002-1239-9034
  surname: Boers
  fullname: Boers, Niklas
  organization: Department of Mathematics and Global Systems Institute, University of Exeter , Exeter, United Kingdom
BookMark eNp9kEFLAzEQhYNUsNbePe7Ni2uTuNlNjlJqFYo9qOeQTSY2td0sSaT4702piIjKHGYY5s2bb07RoPMdIHRO8BXBnE9ow2jJqGATpRtb6SM0_GoNvtUnaBzjGmNMOauFEENEF757KROEbTF7eFwWfQDjdHK-K3YurQrQK1_GpBIUHaSdD6_xDB1btYkw_swj9Hw7e5relYvl_H56syg15VUqjTA8u1jFiW0wFroVijXcQEM4g7o2Whlb4RawEBoqa1tLuGG0pi1TjPLrEaoPe3XwMQawUrt8SD4tBeU2kmC5h5d7Ormnkwf4LMQ_hH1wWxXe_5NcHCTO93Lt30KXySQEnW1yYELyz2RvbJ68_GXyz8UffnB6TA
CitedBy_id crossref_primary_10_1088_2632_072X_ad2699
crossref_primary_10_1007_s00382_024_07162_w
crossref_primary_10_1007_s00382_024_07174_6
crossref_primary_10_1007_s00704_024_05035_0
crossref_primary_10_3389_fmars_2023_1309609
crossref_primary_10_1063_5_0152311
crossref_primary_10_1029_2023GL105175
crossref_primary_10_1088_2632_072X_acd21c
crossref_primary_10_1038_s41612_024_00763_6
crossref_primary_10_3390_cli13020025
Cites_doi 10.1038/s41586-018-0252-6
10.1175/1520-0442(2004)0172.0.CO;2
10.1198/073500101681019909
10.1029/2007WR006737
10.1175/2009MWR2672.1
10.1002/qj.49711850705
10.1007/s41403-017-0025-9
10.1002/2014JD021908
10.4249/scholarpedia.2330
10.1073/pnas.1309353110
10.1029/97JC01736
10.1029/JC083iC11p05510
10.1016/j.physa.2005.02.020
10.1073/pnas.0710860105
10.1073/pnas.1810286115
10.1016/0167-2789(92)90103-T
10.1029/97JC02905
10.1175/1520-0442(1993)0062.0.CO;2
10.1073/pnas.1917007117
10.1029/2018GL080598
10.1175/2010JCLI3592.1
10.1038/s41586-018-0872-x
10.1088/1367-2630/aabb25
10.1126/science.1091277
10.1016/j.jhydrol.2010.05.040
10.3390/en11030526
10.1175/1520-0434(1992)0070699:CATCRA2.0.CO;2
10.1038/nature14539
10.3389/fphy.2019.00153
10.1038/s41598-019-54090-5
10.1029/2019MS002002
10.1080/00401706.1970.10488635
10.1038/302295a0
10.1175/JCLI3567.1
10.1016/j.neunet.2007.04.016
10.1175/2008BAMS2387.1
10.1038/s41598-020-65070-5
10.1073/pnas.1612002113
10.1073/pnas.1015753108
10.1038/s41586-019-1559-7
10.1103/PhysRevLett.120.024102
10.1175/1520-0442(1995)0082.0.CO;2
10.1016/j.cosrev.2009.03.005
ContentType Journal Article
Copyright 2022 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2022 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/2752-5295/ac7f4c
DatabaseName IOP Open access
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: IOP Open access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2752-5295
ExternalDocumentID 10_1088_2752_5295_ac7f4c
erclac7f4c
GrantInformation_xml – fundername: German Academic Exchange Service (DAAD)
  grantid: 57299294
– fundername: Volkswagen foundation and the European Union’s Horizon 2020 research and innovation programme
  grantid: 820970
– fundername: Marie Sklodowska-Curie grant agreement
  grantid: 956170
– fundername: Federal Ministry of Education and Research under grantFederal Ministry of Education and Research
  grantid: 01LS2001A
GroupedDBID ABHWH
ACHIP
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
N5L
O3W
TSCCA
AAYXX
CITATION
ID FETCH-LOGICAL-c284t-d9d8856fa81f7009cb9a578de7185e66dcadf40be099ce4ffbf18d5262b5a5283
IEDL.DBID O3W
ISSN 2752-5295
IngestDate Tue Jul 01 04:31:08 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Wed Aug 21 03:42:22 EDT 2024
Wed Jul 27 00:18:15 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-d9d8856fa81f7009cb9a578de7185e66dcadf40be099ce4ffbf18d5262b5a5283
Notes ERCL-100034.R1
ORCID 0000-0001-6919-4358
0000-0002-1239-9034
OpenAccessLink https://iopscience.iop.org/article/10.1088/2752-5295/ac7f4c
PageCount 18
ParticipantIDs crossref_citationtrail_10_1088_2752_5295_ac7f4c
crossref_primary_10_1088_2752_5295_ac7f4c
iop_journals_10_1088_2752_5295_ac7f4c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental Research: Climate
PublicationTitleAbbrev ERCL
PublicationTitleAlternate Environ. Res.: Climate
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Meng (erclac7f4cbib20) 2018; 20
Roberts (erclac7f4cbib32) 1978; 83
Jaeger (erclac7f4cbib39) 2007; 20
LeCun (erclac7f4cbib24) 2015; 521
Ding (erclac7f4cbib15) 2019; 46
Jaeger (erclac7f4cbib26) 2004; 304
Chekroun (erclac7f4cbib17) 2011; 108
Dijkstra (erclac7f4cbib11) 2019; 7
Philander (erclac7f4cbib1) 1983; 302
Kaplan (erclac7f4cbib36) 1998; 103
Meng (erclac7f4cbib21) 2020; 117
Penland (erclac7f4cbib9) 1993; 6
Wallace (erclac7f4cbib3) 1998; 103
Gomez (erclac7f4cbib33) 2001; 19
Wu (erclac7f4cbib44) 2010; 389
Pathak (erclac7f4cbib28) 2018; 120
An (erclac7f4cbib16) 2004; 17
Boers (erclac7f4cbib18) 2019; 566
Alvarez-Ramirez (erclac7f4cbib34) 2005; 354
Timmermann (erclac7f4cbib5) 2018; 559
Hoerl (erclac7f4cbib38) 1970; 12
Guilyardi (erclac7f4cbib7) 2009; 90
Lopez (erclac7f4cbib45) 2014; 119
Okumura (erclac7f4cbib2) 2010; 23
Lin (erclac7f4cbib6) 2019; 9
Penland (erclac7f4cbib14) 1995; 8
Rasp (erclac7f4cbib22) 2018; 115
Toms (erclac7f4cbib25) 2020; 12
Kirtman (erclac7f4cbib8) 2009; 137
Yan (erclac7f4cbib13) 2020; 10
Ludescher (erclac7f4cbib19) 2013; 110
Barnston (erclac7f4cbib46) 1992; 7
Latif (erclac7f4cbib4) 2009; 106
Kondrashov (erclac7f4cbib10) 2005; 18
Thual (erclac7f4cbib29) 2016; 113
Lukoševičius (erclac7f4cbib40) 2012
Wu (erclac7f4cbib42) 2009; 45
Lukoševičius (erclac7f4cbib37) 2009; 3
Webster (erclac7f4cbib41) 1992; 118
(erclac7f4cbib35) 2019
Hassani (erclac7f4cbib31) 2007; 5
Ham (erclac7f4cbib12) 2019; 573
Vautard (erclac7f4cbib30) 1992; 58
Kalteh (erclac7f4cbib43) 2017; 2
Jaeger (erclac7f4cbib27) 2007; 2
López (erclac7f4cbib23) 2018; 11
References_xml – volume: 559
  start-page: 535
  year: 2018
  ident: erclac7f4cbib5
  article-title: El Niño–southern oscillation complexity
  publication-title: Nature
  doi: 10.1038/s41586-018-0252-6
– volume: 17
  start-page: 2399
  year: 2004
  ident: erclac7f4cbib16
  article-title: Nonlinearity and asymmetry of ENSO
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2004)0172.0.CO;2
– volume: 19
  start-page: 365
  year: 2001
  ident: erclac7f4cbib33
  article-title: The use of Butterworth filters for trend and cycle estimation in economic time series
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1198/073500101681019909
– volume: 45
  year: 2009
  ident: erclac7f4cbib42
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006737
– volume: 137
  start-page: 2908
  year: 2009
  ident: erclac7f4cbib8
  article-title: Multimodel ensemble ENSO prediction with CCSM and CFS
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2009MWR2672.1
– volume: 118
  start-page: 877
  year: 1992
  ident: erclac7f4cbib41
  article-title: Monsoon and ENSO: Selectively interactive systems
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49711850705
– volume: 2
  start-page: 73
  year: 2017
  ident: erclac7f4cbib43
  article-title: Enhanced monthly precipitation forecasting using artificial neural network and singular spectrum analysis conjunction models
  publication-title: INAE Lett.
  doi: 10.1007/s41403-017-0025-9
– volume: 119
  start-page: 10
  year: 2014
  ident: erclac7f4cbib45
  article-title: WWBS, ENSO predictability, the spring barrier and extreme events
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1002/2014JD021908
– volume: 2
  start-page: 2330
  year: 2007
  ident: erclac7f4cbib27
  article-title: Echo state network
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.2330
– volume: 110
  start-page: 11742
  year: 2013
  ident: erclac7f4cbib19
  article-title: Improved El Niño forecasting by cooperativity detection
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1309353110
– volume: 103
  start-page: 18567
  year: 1998
  ident: erclac7f4cbib36
  article-title: Analyses of global sea surface temperature 1856–1991
  publication-title: J. Geophy. Res.
  doi: 10.1029/97JC01736
– volume: 83
  start-page: 5510
  year: 1978
  ident: erclac7f4cbib32
  article-title: Use of the Butterworth low-pass filter for oceanographic data
  publication-title: J. Geophy. Res.
  doi: 10.1029/JC083iC11p05510
– volume: 354
  start-page: 199
  year: 2005
  ident: erclac7f4cbib34
  article-title: Detrending fluctuation analysis based on moving average filtering
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.02.020
– volume: 106
  start-page: 20578
  year: 2009
  ident: erclac7f4cbib4
  article-title: El Niño/southern oscillation response to global warming
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0710860105
– volume: 115
  start-page: 9684
  year: 2018
  ident: erclac7f4cbib22
  article-title: Deep learning to represent subgrid processes in climate models
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1810286115
– volume: 58
  start-page: 95
  year: 1992
  ident: erclac7f4cbib30
  article-title: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90103-T
– year: 2019
  ident: erclac7f4cbib35
  article-title: Working group on surface pressure
– volume: 103
  start-page: 14241
  year: 1998
  ident: erclac7f4cbib3
  article-title: On the structure and evolution of ENSO-related climate variability in the tropical pacific: lessons from toga
  publication-title: J. Geophy. Res.
  doi: 10.1029/97JC02905
– volume: 6
  start-page: 1067
  year: 1993
  ident: erclac7f4cbib9
  article-title: Prediction of Niño 3 sea surface temperatures using linear inverse modeling
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1993)0062.0.CO;2
– volume: 117
  start-page: 177
  year: 2020
  ident: erclac7f4cbib21
  article-title: Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1917007117
– volume: 46
  start-page: 1721
  year: 2019
  ident: erclac7f4cbib15
  article-title: Diagnosing secular variations in retrospective ENSO seasonal forecast skill using CMIP5 model-analogs
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080598
– volume: 23
  start-page: 5826
  year: 2010
  ident: erclac7f4cbib2
  article-title: Asymmetry in the duration of El Niño and la niña
  publication-title: J. Clim.
  doi: 10.1175/2010JCLI3592.1
– volume: 566
  start-page: 373
  year: 2019
  ident: erclac7f4cbib18
  article-title: Complex networks reveal global pattern of extreme-rainfall teleconnections
  publication-title: Nature
  doi: 10.1038/s41586-018-0872-x
– volume: 20
  year: 2018
  ident: erclac7f4cbib20
  article-title: Forecasting the magnitude and onset of El Niño based on climate network
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aabb25
– volume: 304
  start-page: 78
  year: 2004
  ident: erclac7f4cbib26
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 389
  start-page: 146
  year: 2010
  ident: erclac7f4cbib44
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.05.040
– volume: 11
  start-page: 526
  year: 2018
  ident: erclac7f4cbib23
  article-title: Wind power forecasting based on echo state networks and long short-term memory
  publication-title: Energies
  doi: 10.3390/en11030526
– volume: 7
  start-page: 699
  year: 1992
  ident: erclac7f4cbib46
  article-title: Correspondence among the correlation, RMSE and Heidke forecast verification measures; refinement of the Heidke score
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1992)0070699:CATCRA2.0.CO;2
– volume: 521
  start-page: 436
  year: 2015
  ident: erclac7f4cbib24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 7
  start-page: 153
  year: 2019
  ident: erclac7f4cbib11
  article-title: The application of machine learning techniques to improve El Nino prediction skill
  publication-title: Frontiers Phys.
  doi: 10.3389/fphy.2019.00153
– volume: 9
  start-page: 1
  year: 2019
  ident: erclac7f4cbib6
  article-title: A new picture of the global impacts of El Nino-southern oscillation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54090-5
– volume: 12
  year: 2020
  ident: erclac7f4cbib25
  article-title: Physically interpretable neural networks for the geosciences: applications to earth system variability
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS002002
– volume: 12
  start-page: 69
  year: 1970
  ident: erclac7f4cbib38
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– volume: 302
  start-page: 295
  year: 1983
  ident: erclac7f4cbib1
  article-title: El Nino southern oscillation phenomena
  publication-title: Nature
  doi: 10.1038/302295a0
– volume: 18
  start-page: 4425
  year: 2005
  ident: erclac7f4cbib10
  article-title: A hierarchy of data-based ENSO models
  publication-title: J. Clim.
  doi: 10.1175/JCLI3567.1
– volume: 20
  start-page: 335
  year: 2007
  ident: erclac7f4cbib39
  article-title: Optimization and applications of echo state networks with leaky-integrator neurons
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.04.016
– volume: 90
  start-page: 325
  year: 2009
  ident: erclac7f4cbib7
  article-title: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2008BAMS2387.1
– volume: 10
  start-page: 1
  year: 2020
  ident: erclac7f4cbib13
  article-title: temporal convolutional networks for the advance prediction of ENSO
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65070-5
– volume: 5
  start-page: 239
  year: 2007
  ident: erclac7f4cbib31
  article-title: Singular spectrum analysis: methodology and comparison
– volume: 113
  start-page: 10245
  year: 2016
  ident: erclac7f4cbib29
  article-title: Simple stochastic model for El Niño with westerly wind bursts
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1612002113
– volume: 108
  start-page: 11766
  year: 2011
  ident: erclac7f4cbib17
  article-title: Predicting stochastic systems by noise sampling and application to the El Niño-southern oscillation
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1015753108
– volume: 573
  start-page: 568
  year: 2019
  ident: erclac7f4cbib12
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
  doi: 10.1038/s41586-019-1559-7
– start-page: pp 659
  year: 2012
  ident: erclac7f4cbib40
– volume: 120
  year: 2018
  ident: erclac7f4cbib28
  article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.024102
– volume: 8
  start-page: 1999
  year: 1995
  ident: erclac7f4cbib14
  article-title: The optimal growth of tropical sea surface temperature anomalies
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1995)0082.0.CO;2
– volume: 3
  start-page: 127
  year: 2009
  ident: erclac7f4cbib37
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
SSID ssj0002856999
Score 2.3181143
Snippet The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 11002
SubjectTerms artificial neural networks
echo state network
ENSO
Title Long-term ENSO prediction with echo-state networks
URI https://iopscience.iop.org/article/10.1088/2752-5295/ac7f4c
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXasrAgECBKofIAA4MpdW3HERNCrSoE7QAV3aL441hQGrXl_3N2QkUlVKEsGc6OfXLunn13z4RcDUApC0owZVPPBAIClqcKGO-D1AoxhIm8BS8TNZ6Jp7mcN8j9phZmUdam_xZfK6LgSoV1Qpzu8USG_VMqe7lNQNgm2RtopUM-13Twvjlg4VoqRD91aPKvhluuqImf--VZRofkoIaE9KEawBFp-OKY8OdF8cGC3aTDyeuUlssQUQlapOHolHo0WyxWA9GiyuRenZDZaPj2OGb1_QbMolNYM5c6jYOEXPchQaxjTZrjD-Q8-gvplXI2dyDujEcUZ70AMNDXTnLFjcwDKcspaRWLwp8Rahy3gfcxQd8jwJnQCSQiR3wHCVjbJr2fqWa2Jv8Od1B8ZjEIrXUWlJMF5WSVctrkZtOirIgvdsheo_ayevWvdsjRLTm_tDgAfCJxHc9KB-f_7KpD9nkoRIjZXhektV5--UuEB2vTjdvqblwM3_TytWU
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5ugngRRcXf5qAHD7EuS9L0KLoxdW6CDncLzS8v0pVt_v--tHE4kCG99JCkr1-TvK95yfcQumh7IYwXjAiTOcKAEJA8E57QludSAIfQlW7B80D0RuxxzMcxz2l1FmZSxqn_Gm5roeAawrghTiY05eH_KeNJblLPTFJa30DrvA2uBjr0sP2-WGShkgtgQDE8-VflJXfUgEf-8i7dbbQVaSG-rY3YQWuu2EW0Pyk-SJg7cWfwOsTlNERVApI4LJ9iB1MXqU4E4aLezT3bQ6Nu5-2uR2KOA2LAMcyJzawEI30uWz4FvmN0lsMgsg58BndCWJNbz260AyZnHPNe-5a0nAqqeR6EWfZRs5gU7gBhbakJ2o8p-B_mrQ6N-JTlwPF86o05RMnPqyoTBcBDHopPVQWipVQBHBXAUTU4h-hqUaOsxS9WlL0E9FQcAbMV5fBSOTc1YABclXgdVfAxj_7Z1DnaeLnvqv7D4OkYbdJwLqHa_HWCmvPplzsFtjDXZ1WP-AYAALhf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+ENSO+prediction+with+echo-state+networks&rft.jtitle=Environmental+Research%3A+Climate&rft.au=Hassanibesheli%2C+Forough&rft.au=Kurths%2C+J%C3%BCrgen&rft.au=Boers%2C+Niklas&rft.date=2022-09-01&rft.issn=2752-5295&rft.eissn=2752-5295&rft.volume=1&rft.issue=1&rft.spage=11002&rft_id=info:doi/10.1088%2F2752-5295%2Fac7f4c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2752_5295_ac7f4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5295&client=summon