Long-term ENSO prediction with echo-state networks
The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices des...
Saved in:
Published in | Environmental Research: Climate Vol. 1; no. 1; pp. 11002 - 11019 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices despite their relatively high noise levels. To achieve this, we train the ESN model on the low-frequency variability of ENSO indices and estimate the potential future high-frequency variability from specific samples of its past history. Our method reveals the importance of cross-scale interactions in the mechanisms underlying ENSO and skilfully predicts its variability and especially El Niño events at lead times up to 21 months. This study considers forecasts skillful if the correlation coefficients are above 0.5. Our results show that the low-frequency component of ENSO carries substantial predictive power, which can be exploited by training our model on single scalar time series. The proposed machine learning method for data-driven modeling can be readily applied to other time series, e.g. finance and physiology. However, it should be noted that our approach cannot straightforwardly be turned into a real-time operational forecast because of the decomposition of the original time series into the slow and fast components using low-pass filter techniques. |
---|---|
AbstractList | The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method based on a recurrent neural network, called echo state network (ESN), which can be trained efficiently to predict different ENSO indices despite their relatively high noise levels. To achieve this, we train the ESN model on the low-frequency variability of ENSO indices and estimate the potential future high-frequency variability from specific samples of its past history. Our method reveals the importance of cross-scale interactions in the mechanisms underlying ENSO and skilfully predicts its variability and especially El Niño events at lead times up to 21 months. This study considers forecasts skillful if the correlation coefficients are above 0.5. Our results show that the low-frequency component of ENSO carries substantial predictive power, which can be exploited by training our model on single scalar time series. The proposed machine learning method for data-driven modeling can be readily applied to other time series, e.g. finance and physiology. However, it should be noted that our approach cannot straightforwardly be turned into a real-time operational forecast because of the decomposition of the original time series into the slow and fast components using low-pass filter techniques. |
Author | Hassanibesheli, Forough Boers, Niklas Kurths, Jürgen |
Author_xml | – sequence: 1 givenname: Forough orcidid: 0000-0001-6919-4358 surname: Hassanibesheli fullname: Hassanibesheli, Forough organization: Humboldt University Berlin Department of Physics, Berlin, Germany – sequence: 2 givenname: Jürgen surname: Kurths fullname: Kurths, Jürgen organization: Saratov State University , 83, Astrakhanskaya Str., 410012 Saratov, Russia – sequence: 3 givenname: Niklas orcidid: 0000-0002-1239-9034 surname: Boers fullname: Boers, Niklas organization: Department of Mathematics and Global Systems Institute, University of Exeter , Exeter, United Kingdom |
BookMark | eNp9kEFLAzEQhYNUsNbePe7Ni2uTuNlNjlJqFYo9qOeQTSY2td0sSaT4702piIjKHGYY5s2bb07RoPMdIHRO8BXBnE9ow2jJqGATpRtb6SM0_GoNvtUnaBzjGmNMOauFEENEF757KROEbTF7eFwWfQDjdHK-K3YurQrQK1_GpBIUHaSdD6_xDB1btYkw_swj9Hw7e5relYvl_H56syg15VUqjTA8u1jFiW0wFroVijXcQEM4g7o2Whlb4RawEBoqa1tLuGG0pi1TjPLrEaoPe3XwMQawUrt8SD4tBeU2kmC5h5d7Ormnkwf4LMQ_hH1wWxXe_5NcHCTO93Lt30KXySQEnW1yYELyz2RvbJ68_GXyz8UffnB6TA |
CitedBy_id | crossref_primary_10_1088_2632_072X_ad2699 crossref_primary_10_1007_s00382_024_07162_w crossref_primary_10_1007_s00382_024_07174_6 crossref_primary_10_1007_s00704_024_05035_0 crossref_primary_10_3389_fmars_2023_1309609 crossref_primary_10_1063_5_0152311 crossref_primary_10_1029_2023GL105175 crossref_primary_10_1088_2632_072X_acd21c crossref_primary_10_1038_s41612_024_00763_6 crossref_primary_10_3390_cli13020025 |
Cites_doi | 10.1038/s41586-018-0252-6 10.1175/1520-0442(2004)0172.0.CO;2 10.1198/073500101681019909 10.1029/2007WR006737 10.1175/2009MWR2672.1 10.1002/qj.49711850705 10.1007/s41403-017-0025-9 10.1002/2014JD021908 10.4249/scholarpedia.2330 10.1073/pnas.1309353110 10.1029/97JC01736 10.1029/JC083iC11p05510 10.1016/j.physa.2005.02.020 10.1073/pnas.0710860105 10.1073/pnas.1810286115 10.1016/0167-2789(92)90103-T 10.1029/97JC02905 10.1175/1520-0442(1993)0062.0.CO;2 10.1073/pnas.1917007117 10.1029/2018GL080598 10.1175/2010JCLI3592.1 10.1038/s41586-018-0872-x 10.1088/1367-2630/aabb25 10.1126/science.1091277 10.1016/j.jhydrol.2010.05.040 10.3390/en11030526 10.1175/1520-0434(1992)0070699:CATCRA2.0.CO;2 10.1038/nature14539 10.3389/fphy.2019.00153 10.1038/s41598-019-54090-5 10.1029/2019MS002002 10.1080/00401706.1970.10488635 10.1038/302295a0 10.1175/JCLI3567.1 10.1016/j.neunet.2007.04.016 10.1175/2008BAMS2387.1 10.1038/s41598-020-65070-5 10.1073/pnas.1612002113 10.1073/pnas.1015753108 10.1038/s41586-019-1559-7 10.1103/PhysRevLett.120.024102 10.1175/1520-0442(1995)0082.0.CO;2 10.1016/j.cosrev.2009.03.005 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/2752-5295/ac7f4c |
DatabaseName | IOP Open access IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: IOP Open access url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2752-5295 |
ExternalDocumentID | 10_1088_2752_5295_ac7f4c erclac7f4c |
GrantInformation_xml | – fundername: German Academic Exchange Service (DAAD) grantid: 57299294 – fundername: Volkswagen foundation and the European Union’s Horizon 2020 research and innovation programme grantid: 820970 – fundername: Marie Sklodowska-Curie grant agreement grantid: 956170 – fundername: Federal Ministry of Education and Research under grantFederal Ministry of Education and Research grantid: 01LS2001A |
GroupedDBID | ABHWH ACHIP AKPSB ALMA_UNASSIGNED_HOLDINGS CJUJL GROUPED_DOAJ N5L O3W TSCCA AAYXX CITATION |
ID | FETCH-LOGICAL-c284t-d9d8856fa81f7009cb9a578de7185e66dcadf40be099ce4ffbf18d5262b5a5283 |
IEDL.DBID | O3W |
ISSN | 2752-5295 |
IngestDate | Tue Jul 01 04:31:08 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Wed Aug 21 03:42:22 EDT 2024 Wed Jul 27 00:18:15 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-d9d8856fa81f7009cb9a578de7185e66dcadf40be099ce4ffbf18d5262b5a5283 |
Notes | ERCL-100034.R1 |
ORCID | 0000-0001-6919-4358 0000-0002-1239-9034 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2752-5295/ac7f4c |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1088_2752_5295_ac7f4c crossref_primary_10_1088_2752_5295_ac7f4c iop_journals_10_1088_2752_5295_ac7f4c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Environmental Research: Climate |
PublicationTitleAbbrev | ERCL |
PublicationTitleAlternate | Environ. Res.: Climate |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Meng (erclac7f4cbib20) 2018; 20 Roberts (erclac7f4cbib32) 1978; 83 Jaeger (erclac7f4cbib39) 2007; 20 LeCun (erclac7f4cbib24) 2015; 521 Ding (erclac7f4cbib15) 2019; 46 Jaeger (erclac7f4cbib26) 2004; 304 Chekroun (erclac7f4cbib17) 2011; 108 Dijkstra (erclac7f4cbib11) 2019; 7 Philander (erclac7f4cbib1) 1983; 302 Kaplan (erclac7f4cbib36) 1998; 103 Meng (erclac7f4cbib21) 2020; 117 Penland (erclac7f4cbib9) 1993; 6 Wallace (erclac7f4cbib3) 1998; 103 Gomez (erclac7f4cbib33) 2001; 19 Wu (erclac7f4cbib44) 2010; 389 Pathak (erclac7f4cbib28) 2018; 120 An (erclac7f4cbib16) 2004; 17 Boers (erclac7f4cbib18) 2019; 566 Alvarez-Ramirez (erclac7f4cbib34) 2005; 354 Timmermann (erclac7f4cbib5) 2018; 559 Hoerl (erclac7f4cbib38) 1970; 12 Guilyardi (erclac7f4cbib7) 2009; 90 Lopez (erclac7f4cbib45) 2014; 119 Okumura (erclac7f4cbib2) 2010; 23 Lin (erclac7f4cbib6) 2019; 9 Penland (erclac7f4cbib14) 1995; 8 Rasp (erclac7f4cbib22) 2018; 115 Toms (erclac7f4cbib25) 2020; 12 Kirtman (erclac7f4cbib8) 2009; 137 Yan (erclac7f4cbib13) 2020; 10 Ludescher (erclac7f4cbib19) 2013; 110 Barnston (erclac7f4cbib46) 1992; 7 Latif (erclac7f4cbib4) 2009; 106 Kondrashov (erclac7f4cbib10) 2005; 18 Thual (erclac7f4cbib29) 2016; 113 Lukoševičius (erclac7f4cbib40) 2012 Wu (erclac7f4cbib42) 2009; 45 Lukoševičius (erclac7f4cbib37) 2009; 3 Webster (erclac7f4cbib41) 1992; 118 (erclac7f4cbib35) 2019 Hassani (erclac7f4cbib31) 2007; 5 Ham (erclac7f4cbib12) 2019; 573 Vautard (erclac7f4cbib30) 1992; 58 Kalteh (erclac7f4cbib43) 2017; 2 Jaeger (erclac7f4cbib27) 2007; 2 López (erclac7f4cbib23) 2018; 11 |
References_xml | – volume: 559 start-page: 535 year: 2018 ident: erclac7f4cbib5 article-title: El Niño–southern oscillation complexity publication-title: Nature doi: 10.1038/s41586-018-0252-6 – volume: 17 start-page: 2399 year: 2004 ident: erclac7f4cbib16 article-title: Nonlinearity and asymmetry of ENSO publication-title: J. Clim. doi: 10.1175/1520-0442(2004)0172.0.CO;2 – volume: 19 start-page: 365 year: 2001 ident: erclac7f4cbib33 article-title: The use of Butterworth filters for trend and cycle estimation in economic time series publication-title: J. Bus. Econ. Stat. doi: 10.1198/073500101681019909 – volume: 45 year: 2009 ident: erclac7f4cbib42 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. doi: 10.1029/2007WR006737 – volume: 137 start-page: 2908 year: 2009 ident: erclac7f4cbib8 article-title: Multimodel ensemble ENSO prediction with CCSM and CFS publication-title: Mon. Weather Rev. doi: 10.1175/2009MWR2672.1 – volume: 118 start-page: 877 year: 1992 ident: erclac7f4cbib41 article-title: Monsoon and ENSO: Selectively interactive systems publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49711850705 – volume: 2 start-page: 73 year: 2017 ident: erclac7f4cbib43 article-title: Enhanced monthly precipitation forecasting using artificial neural network and singular spectrum analysis conjunction models publication-title: INAE Lett. doi: 10.1007/s41403-017-0025-9 – volume: 119 start-page: 10 year: 2014 ident: erclac7f4cbib45 article-title: WWBS, ENSO predictability, the spring barrier and extreme events publication-title: J. Geophys. Res.: Atmos. doi: 10.1002/2014JD021908 – volume: 2 start-page: 2330 year: 2007 ident: erclac7f4cbib27 article-title: Echo state network publication-title: Scholarpedia doi: 10.4249/scholarpedia.2330 – volume: 110 start-page: 11742 year: 2013 ident: erclac7f4cbib19 article-title: Improved El Niño forecasting by cooperativity detection publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1309353110 – volume: 103 start-page: 18567 year: 1998 ident: erclac7f4cbib36 article-title: Analyses of global sea surface temperature 1856–1991 publication-title: J. Geophy. Res. doi: 10.1029/97JC01736 – volume: 83 start-page: 5510 year: 1978 ident: erclac7f4cbib32 article-title: Use of the Butterworth low-pass filter for oceanographic data publication-title: J. Geophy. Res. doi: 10.1029/JC083iC11p05510 – volume: 354 start-page: 199 year: 2005 ident: erclac7f4cbib34 article-title: Detrending fluctuation analysis based on moving average filtering publication-title: Physica A doi: 10.1016/j.physa.2005.02.020 – volume: 106 start-page: 20578 year: 2009 ident: erclac7f4cbib4 article-title: El Niño/southern oscillation response to global warming publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0710860105 – volume: 115 start-page: 9684 year: 2018 ident: erclac7f4cbib22 article-title: Deep learning to represent subgrid processes in climate models publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1810286115 – volume: 58 start-page: 95 year: 1992 ident: erclac7f4cbib30 article-title: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals publication-title: Physica D doi: 10.1016/0167-2789(92)90103-T – year: 2019 ident: erclac7f4cbib35 article-title: Working group on surface pressure – volume: 103 start-page: 14241 year: 1998 ident: erclac7f4cbib3 article-title: On the structure and evolution of ENSO-related climate variability in the tropical pacific: lessons from toga publication-title: J. Geophy. Res. doi: 10.1029/97JC02905 – volume: 6 start-page: 1067 year: 1993 ident: erclac7f4cbib9 article-title: Prediction of Niño 3 sea surface temperatures using linear inverse modeling publication-title: J. Clim. doi: 10.1175/1520-0442(1993)0062.0.CO;2 – volume: 117 start-page: 177 year: 2020 ident: erclac7f4cbib21 article-title: Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1917007117 – volume: 46 start-page: 1721 year: 2019 ident: erclac7f4cbib15 article-title: Diagnosing secular variations in retrospective ENSO seasonal forecast skill using CMIP5 model-analogs publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080598 – volume: 23 start-page: 5826 year: 2010 ident: erclac7f4cbib2 article-title: Asymmetry in the duration of El Niño and la niña publication-title: J. Clim. doi: 10.1175/2010JCLI3592.1 – volume: 566 start-page: 373 year: 2019 ident: erclac7f4cbib18 article-title: Complex networks reveal global pattern of extreme-rainfall teleconnections publication-title: Nature doi: 10.1038/s41586-018-0872-x – volume: 20 year: 2018 ident: erclac7f4cbib20 article-title: Forecasting the magnitude and onset of El Niño based on climate network publication-title: New J. Phys. doi: 10.1088/1367-2630/aabb25 – volume: 304 start-page: 78 year: 2004 ident: erclac7f4cbib26 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 389 start-page: 146 year: 2010 ident: erclac7f4cbib44 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.05.040 – volume: 11 start-page: 526 year: 2018 ident: erclac7f4cbib23 article-title: Wind power forecasting based on echo state networks and long short-term memory publication-title: Energies doi: 10.3390/en11030526 – volume: 7 start-page: 699 year: 1992 ident: erclac7f4cbib46 article-title: Correspondence among the correlation, RMSE and Heidke forecast verification measures; refinement of the Heidke score publication-title: Weather Forecast. doi: 10.1175/1520-0434(1992)0070699:CATCRA2.0.CO;2 – volume: 521 start-page: 436 year: 2015 ident: erclac7f4cbib24 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 7 start-page: 153 year: 2019 ident: erclac7f4cbib11 article-title: The application of machine learning techniques to improve El Nino prediction skill publication-title: Frontiers Phys. doi: 10.3389/fphy.2019.00153 – volume: 9 start-page: 1 year: 2019 ident: erclac7f4cbib6 article-title: A new picture of the global impacts of El Nino-southern oscillation publication-title: Sci. Rep. doi: 10.1038/s41598-019-54090-5 – volume: 12 year: 2020 ident: erclac7f4cbib25 article-title: Physically interpretable neural networks for the geosciences: applications to earth system variability publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS002002 – volume: 12 start-page: 69 year: 1970 ident: erclac7f4cbib38 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 302 start-page: 295 year: 1983 ident: erclac7f4cbib1 article-title: El Nino southern oscillation phenomena publication-title: Nature doi: 10.1038/302295a0 – volume: 18 start-page: 4425 year: 2005 ident: erclac7f4cbib10 article-title: A hierarchy of data-based ENSO models publication-title: J. Clim. doi: 10.1175/JCLI3567.1 – volume: 20 start-page: 335 year: 2007 ident: erclac7f4cbib39 article-title: Optimization and applications of echo state networks with leaky-integrator neurons publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.04.016 – volume: 90 start-page: 325 year: 2009 ident: erclac7f4cbib7 article-title: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2008BAMS2387.1 – volume: 10 start-page: 1 year: 2020 ident: erclac7f4cbib13 article-title: temporal convolutional networks for the advance prediction of ENSO publication-title: Sci. Rep. doi: 10.1038/s41598-020-65070-5 – volume: 5 start-page: 239 year: 2007 ident: erclac7f4cbib31 article-title: Singular spectrum analysis: methodology and comparison – volume: 113 start-page: 10245 year: 2016 ident: erclac7f4cbib29 article-title: Simple stochastic model for El Niño with westerly wind bursts publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1612002113 – volume: 108 start-page: 11766 year: 2011 ident: erclac7f4cbib17 article-title: Predicting stochastic systems by noise sampling and application to the El Niño-southern oscillation publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1015753108 – volume: 573 start-page: 568 year: 2019 ident: erclac7f4cbib12 article-title: Deep learning for multi-year ENSO forecasts publication-title: Nature doi: 10.1038/s41586-019-1559-7 – start-page: pp 659 year: 2012 ident: erclac7f4cbib40 – volume: 120 year: 2018 ident: erclac7f4cbib28 article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.024102 – volume: 8 start-page: 1999 year: 1995 ident: erclac7f4cbib14 article-title: The optimal growth of tropical sea surface temperature anomalies publication-title: J. Clim. doi: 10.1175/1520-0442(1995)0082.0.CO;2 – volume: 3 start-page: 127 year: 2009 ident: erclac7f4cbib37 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 |
SSID | ssj0002856999 |
Score | 2.3181143 |
Snippet | The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts weather patterns and extreme events worldwide. Here we develop a method... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 11002 |
SubjectTerms | artificial neural networks echo state network ENSO |
Title | Long-term ENSO prediction with echo-state networks |
URI | https://iopscience.iop.org/article/10.1088/2752-5295/ac7f4c |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXasrAgECBKofIAA4MpdW3HERNCrSoE7QAV3aL441hQGrXl_3N2QkUlVKEsGc6OfXLunn13z4RcDUApC0owZVPPBAIClqcKGO-D1AoxhIm8BS8TNZ6Jp7mcN8j9phZmUdam_xZfK6LgSoV1Qpzu8USG_VMqe7lNQNgm2RtopUM-13Twvjlg4VoqRD91aPKvhluuqImf--VZRofkoIaE9KEawBFp-OKY8OdF8cGC3aTDyeuUlssQUQlapOHolHo0WyxWA9GiyuRenZDZaPj2OGb1_QbMolNYM5c6jYOEXPchQaxjTZrjD-Q8-gvplXI2dyDujEcUZ70AMNDXTnLFjcwDKcspaRWLwp8Rahy3gfcxQd8jwJnQCSQiR3wHCVjbJr2fqWa2Jv8Od1B8ZjEIrXUWlJMF5WSVctrkZtOirIgvdsheo_ayevWvdsjRLTm_tDgAfCJxHc9KB-f_7KpD9nkoRIjZXhektV5--UuEB2vTjdvqblwM3_TytWU |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5ugngRRcXf5qAHD7EuS9L0KLoxdW6CDncLzS8v0pVt_v--tHE4kCG99JCkr1-TvK95yfcQumh7IYwXjAiTOcKAEJA8E57QludSAIfQlW7B80D0RuxxzMcxz2l1FmZSxqn_Gm5roeAawrghTiY05eH_KeNJblLPTFJa30DrvA2uBjr0sP2-WGShkgtgQDE8-VflJXfUgEf-8i7dbbQVaSG-rY3YQWuu2EW0Pyk-SJg7cWfwOsTlNERVApI4LJ9iB1MXqU4E4aLezT3bQ6Nu5-2uR2KOA2LAMcyJzawEI30uWz4FvmN0lsMgsg58BndCWJNbz260AyZnHPNe-5a0nAqqeR6EWfZRs5gU7gBhbakJ2o8p-B_mrQ6N-JTlwPF86o05RMnPqyoTBcBDHopPVQWipVQBHBXAUTU4h-hqUaOsxS9WlL0E9FQcAbMV5fBSOTc1YABclXgdVfAxj_7Z1DnaeLnvqv7D4OkYbdJwLqHa_HWCmvPplzsFtjDXZ1WP-AYAALhf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+ENSO+prediction+with+echo-state+networks&rft.jtitle=Environmental+Research%3A+Climate&rft.au=Hassanibesheli%2C+Forough&rft.au=Kurths%2C+J%C3%BCrgen&rft.au=Boers%2C+Niklas&rft.date=2022-09-01&rft.issn=2752-5295&rft.eissn=2752-5295&rft.volume=1&rft.issue=1&rft.spage=11002&rft_id=info:doi/10.1088%2F2752-5295%2Fac7f4c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2752_5295_ac7f4c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5295&client=summon |