N6-methyladenosine (m6A) dysregulation contributes to network excitability in temporal lobe epilepsy

Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 10; no. 14
Main Authors Mathoux, Justine, Wilson, Marc-Michel, Srinivas, Sujithra, Litovskich, Gabrielle, Villalba Benito, Leticia, Tran, Cindy, Kesavan, Jaideep, Harnett, Aileen, Auer, Theresa, Sanz-Rodriguez, Amaya, Kh. A.E. Alkhayyat, Mohammad, Sullivan, Mairéad, Liu, Zining, Huang, Yifan, Lacey, Austin, Delanty, Norman, Cryan, Jane, Brett, Francesca M., Farrell, Michael A., O’Brien, Donncha F., Casillas-Espinosa, Pablo M., Jimenez-Mateos, Eva M., Glennon, Jeffrey C., Canavan, Mary, Henshall, David C., Brennan, Gary P.
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 22.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.
AbstractList Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.
Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N 6 -methyladenosine (m 6 A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m 6 A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m 6 A arrays to obtain a detailed analysis of the hippocampal m 6 A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m 6 A processing. Specifically, our results suggest that m 6 A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m 6 A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m 6 A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks. This study reveals dysregulated m6A patterning in temporal lobe epilepsy, and links altered m6A to changes in protein expression, neuronal structure and seizure susceptibility across models.
Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.
Author Villalba Benito, Leticia
Brett, Francesca M.
Jimenez-Mateos, Eva M.
Kh. A.E. Alkhayyat, Mohammad
Huang, Yifan
Cryan, Jane
Sullivan, Mairéad
Casillas-Espinosa, Pablo M.
Harnett, Aileen
Tran, Cindy
Srinivas, Sujithra
Henshall, David C.
Mathoux, Justine
Auer, Theresa
Glennon, Jeffrey C.
Farrell, Michael A.
Kesavan, Jaideep
Delanty, Norman
Wilson, Marc-Michel
Litovskich, Gabrielle
Sanz-Rodriguez, Amaya
Lacey, Austin
O’Brien, Donncha F.
Brennan, Gary P.
Liu, Zining
Canavan, Mary
AuthorAffiliation 5 Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
13 Translational Immunopathology, School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, Dublin, Ireland
6 UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
1 Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
8 Department of Neurology
10 Department of Neurosurgery, Beaumont Hospital Dublin, Dublin, Ireland
3 UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
9 Department of Neuropathology, and
11 Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
12 Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
2 FutureNeuro Research Ireland Centre for Translational Brain Science, and
7 School of Pharmacy and Biomolecular Sciences,
AuthorAffiliation_xml – name: 4 UCD Conway Institute, University College Dublin, Dublin, Ireland
– name: 3 UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
– name: 2 FutureNeuro Research Ireland Centre for Translational Brain Science, and
– name: 6 UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
– name: 7 School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
– name: 11 Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, Australia
– name: 5 Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
– name: 13 Translational Immunopathology, School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, Dublin, Ireland
– name: 9 Department of Neuropathology, and
– name: 10 Department of Neurosurgery, Beaumont Hospital Dublin, Dublin, Ireland
– name: 12 Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
– name: 1 Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
– name: 8 Department of Neurology
Author_xml – sequence: 1
  givenname: Justine
  surname: Mathoux
  fullname: Mathoux, Justine
– sequence: 2
  givenname: Marc-Michel
  surname: Wilson
  fullname: Wilson, Marc-Michel
– sequence: 3
  givenname: Sujithra
  surname: Srinivas
  fullname: Srinivas, Sujithra
– sequence: 4
  givenname: Gabrielle
  surname: Litovskich
  fullname: Litovskich, Gabrielle
– sequence: 5
  givenname: Leticia
  surname: Villalba Benito
  fullname: Villalba Benito, Leticia
– sequence: 6
  givenname: Cindy
  surname: Tran
  fullname: Tran, Cindy
– sequence: 7
  givenname: Jaideep
  surname: Kesavan
  fullname: Kesavan, Jaideep
– sequence: 8
  givenname: Aileen
  surname: Harnett
  fullname: Harnett, Aileen
– sequence: 9
  givenname: Theresa
  surname: Auer
  fullname: Auer, Theresa
– sequence: 10
  givenname: Amaya
  surname: Sanz-Rodriguez
  fullname: Sanz-Rodriguez, Amaya
– sequence: 11
  givenname: Mohammad
  surname: Kh. A.E. Alkhayyat
  fullname: Kh. A.E. Alkhayyat, Mohammad
– sequence: 12
  givenname: Mairéad
  surname: Sullivan
  fullname: Sullivan, Mairéad
– sequence: 13
  givenname: Zining
  surname: Liu
  fullname: Liu, Zining
– sequence: 14
  givenname: Yifan
  surname: Huang
  fullname: Huang, Yifan
– sequence: 15
  givenname: Austin
  surname: Lacey
  fullname: Lacey, Austin
– sequence: 16
  givenname: Norman
  surname: Delanty
  fullname: Delanty, Norman
– sequence: 17
  givenname: Jane
  surname: Cryan
  fullname: Cryan, Jane
– sequence: 18
  givenname: Francesca M.
  surname: Brett
  fullname: Brett, Francesca M.
– sequence: 19
  givenname: Michael A.
  surname: Farrell
  fullname: Farrell, Michael A.
– sequence: 20
  givenname: Donncha F.
  surname: O’Brien
  fullname: O’Brien, Donncha F.
– sequence: 21
  givenname: Pablo M.
  surname: Casillas-Espinosa
  fullname: Casillas-Espinosa, Pablo M.
– sequence: 22
  givenname: Eva M.
  surname: Jimenez-Mateos
  fullname: Jimenez-Mateos, Eva M.
– sequence: 23
  givenname: Jeffrey C.
  surname: Glennon
  fullname: Glennon, Jeffrey C.
– sequence: 24
  givenname: Mary
  orcidid: 0000-0003-2310-2563
  surname: Canavan
  fullname: Canavan, Mary
– sequence: 25
  givenname: David C.
  orcidid: 0000-0001-6237-9632
  surname: Henshall
  fullname: Henshall, David C.
– sequence: 26
  givenname: Gary P.
  surname: Brennan
  fullname: Brennan, Gary P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40693462$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9P3DAQxa0KVOiWL9BD5SMcsvW_JM4JIUQLEiqX9mzZ8WTX1LFD7AD59g3aBcFpRpqn90bv9wUdhBgAoW-UrCmt2Y_71q1dSG6zzWsqZUXZJ3TMeN0UvCby4N1-hE5SuieE0FowUsrP6EiQquGiYsfI_q6KHvJ29tpCiMkFwKd9dXGG7ZxG2ExeZxcDbmPIozNThoRzxAHyUxz_YXhuXdbGeZdn7ALO0A9x1B77aADD4DwMaf6KDjvtE5zs5wr9_Xn15_K6uL37dXN5cVu0TIpcWMFs2Rhta9GamjAQXQm6YWVTS0Kt6YQ1Wnel5RXRmnMNpDacAXSE6LKq-Aqd73yHyfRgW1h-1l4No-v1OKuonfp4CW6rNvFRUcakbJZOVuh07zDGhwlSVr1LLXivA8QpKc44E7Ik4iXs-_uwt5TXbhcB2wnaMaaly-5NQol6YagWhmrPUO0Y8v98BpUv
Cites_doi 10.1016/j.molcel.2022.12.019
10.7150/thno.100703
10.1038/s41380-021-01282-z
10.1016/1357-2725(96)00014-3
10.1016/S1474-4422(15)00248-3
10.1016/j.ccell.2019.03.006
10.1038/nature11112
10.1111/epi.13965
10.3389/fncel.2021.671932
10.1002/epi4.12851
10.1016/j.celrep.2019.06.072
10.3389/fgene.2022.1042543
10.1016/j.neulet.2020.135315
10.1038/s41419-021-03992-2
10.1021/acschemneuro.8b00657
10.1186/s13024-021-00484-x
10.1161/STROKEAHA.122.040401
10.1038/s41380-023-02083-2
10.1016/j.cell.2015.05.014
10.1038/nbt.1511
10.2217/epi-2019-0002
10.1038/s41582-022-00693-y
10.1038/nature04689
10.1007/s00401-022-02511-7
10.1016/j.neuron.2018.07.009
10.1038/s41582-020-0369-8
10.1002/advs.202105731
10.1038/s41593-024-01850-w
10.1016/j.cell.2012.05.003
10.1038/nm.2834
10.4103/1673-5374.385858
10.1161/STROKEAHA.119.026433
10.1016/j.bbagrm.2018.10.014
10.1523/JNEUROSCI.4053-15.2016
10.7554/eLife.01267
10.1038/s41583-019-0244-z
10.1002/1873-3468.12621
10.1038/s41467-020-18752-7
10.1096/fj.202400664R
10.1038/nature12730
10.1007/s00401-024-02683-4
10.15252/embj.2020105977
10.1016/j.nbd.2019.104612
10.1261/rna.079988.124
10.1038/s41582-024-00954-y
10.7554/eLife.79994
10.7554/eLife.87283.3
10.1038/s41380-024-02574-w
10.1093/nar/gkae1011
10.1101/cshperspect.a022822
10.1016/j.nlm.2024.107903
10.1523/JNEUROSCI.21-13-04789.2001
10.1093/nar/2.7.1043
10.1093/hmg/ddae029
10.1073/pnas.2216658120
10.1016/j.cell.2017.09.003
10.1038/s41467-024-47953-7
10.1684/epd.2020.1159
10.1002/syn.22270
10.1038/nprot.2016.136
10.1038/s41593-018-0173-6
10.1101/gr.278424.123
ContentType Journal Article
Copyright 2025 Mathoux et al. 2025 Mathoux et al.
Copyright_xml – notice: 2025 Mathoux et al. 2025 Mathoux et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1172/jci.insight.188612
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2379-3708
ExternalDocumentID PMC12288969
40693462
10_1172_jci_insight_188612
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: SIRG/19/5646
– fundername: ;
  grantid: 16/RC/3948
– fundername: ;
  grantid: ILP-POR-2024-034
– fundername: CURE Epilepsy
  grantid: Taking Flight Award
– fundername: ;
  grantid: 21/RC/10294
– fundername: ;
  grantid: MSCA-IF-101062165
GroupedDBID 53G
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
CITATION
GROUPED_DOAJ
HYE
M~E
OK1
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c284t-d42d59bad74cb702e4f5ea92597801dbf4dbaaf5d360aa33ae07b32eef00a5663
ISSN 2379-3708
IngestDate Thu Aug 21 18:24:47 EDT 2025
Thu Jul 24 01:48:48 EDT 2025
Tue Jul 29 01:38:27 EDT 2025
Thu Jul 24 02:18:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Cell biology
Epigenetics
Neuroscience
Mouse models
Epilepsy
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-d42d59bad74cb702e4f5ea92597801dbf4dbaaf5d360aa33ae07b32eef00a5663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authorship note: JM, MMW, and SS have been designated as co–first authors.
ORCID 0000-0001-6237-9632
0000-0003-2310-2563
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12288969
PMID 40693462
PQID 3232485046
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12288969
proquest_miscellaneous_3232485046
pubmed_primary_40693462
crossref_primary_10_1172_jci_insight_188612
PublicationCentury 2000
PublicationDate 2025-7-22
2025-Jul-22
20250722
PublicationDateYYYYMMDD 2025-07-22
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-7-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JCI insight
PublicationTitleAlternate JCI Insight
PublicationYear 2025
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
References_xml – ident: B50
  doi: 10.1016/j.molcel.2022.12.019
– ident: B40
  doi: 10.7150/thno.100703
– ident: B14
  doi: 10.1038/s41380-021-01282-z
– ident: B21
  doi: 10.1016/1357-2725(96)00014-3
– ident: B4
  doi: 10.1016/S1474-4422(15)00248-3
– ident: B37
  doi: 10.1016/j.ccell.2019.03.006
– ident: B17
  doi: 10.1038/nature11112
– ident: B2
  doi: 10.1111/epi.13965
– ident: B24
  doi: 10.3389/fncel.2021.671932
– ident: B6
  doi: 10.1002/epi4.12851
– ident: B19
  doi: 10.1016/j.celrep.2019.06.072
– ident: B39
  doi: 10.3389/fgene.2022.1042543
– ident: B33
  doi: 10.1016/j.neulet.2020.135315
– ident: B43
  doi: 10.1038/s41419-021-03992-2
– ident: B34
  doi: 10.1021/acschemneuro.8b00657
– ident: B48
  doi: 10.1186/s13024-021-00484-x
– ident: B51
  doi: 10.1161/STROKEAHA.122.040401
– ident: B16
  doi: 10.1038/s41380-023-02083-2
– ident: B22
  doi: 10.1016/j.cell.2015.05.014
– ident: B60
  doi: 10.1038/nbt.1511
– ident: B35
  doi: 10.2217/epi-2019-0002
– ident: B7
  doi: 10.1038/s41582-022-00693-y
– ident: B36
  doi: 10.1038/nature04689
– ident: B49
  doi: 10.1007/s00401-022-02511-7
– ident: B30
  doi: 10.1016/j.neuron.2018.07.009
– ident: B10
  doi: 10.1038/s41582-020-0369-8
– ident: B41
  doi: 10.1002/advs.202105731
– ident: B44
  doi: 10.1038/s41593-024-01850-w
– ident: B18
  doi: 10.1016/j.cell.2012.05.003
– ident: B58
  doi: 10.1038/nm.2834
– ident: B32
  doi: 10.4103/1673-5374.385858
– ident: B52
  doi: 10.1161/STROKEAHA.119.026433
– ident: B26
  doi: 10.1016/j.bbagrm.2018.10.014
– ident: B29
  doi: 10.1523/JNEUROSCI.4053-15.2016
– ident: B8
  doi: 10.7554/eLife.01267
– ident: B12
  doi: 10.1038/s41583-019-0244-z
– ident: B47
  doi: 10.1002/1873-3468.12621
– ident: B9
  doi: 10.1038/s41467-020-18752-7
– ident: B45
  doi: 10.1096/fj.202400664R
– ident: B20
  doi: 10.1038/nature12730
– ident: B11
  doi: 10.1007/s00401-024-02683-4
– ident: B25
  doi: 10.15252/embj.2020105977
– ident: B56
  doi: 10.1016/j.nbd.2019.104612
– ident: B27
  doi: 10.1261/rna.079988.124
– ident: B1
  doi: 10.1038/s41582-024-00954-y
– ident: B42
  doi: 10.7554/eLife.79994
– ident: B54
  doi: 10.7554/eLife.87283.3
– ident: B31
  doi: 10.1038/s41380-024-02574-w
– ident: B62
  doi: 10.1093/nar/gkae1011
– ident: B5
  doi: 10.1101/cshperspect.a022822
– ident: B46
  doi: 10.1016/j.nlm.2024.107903
– ident: B59
  doi: 10.1523/JNEUROSCI.21-13-04789.2001
– ident: B23
  doi: 10.1093/nar/2.7.1043
– ident: B53
  doi: 10.1093/hmg/ddae029
– ident: B55
  doi: 10.1073/pnas.2216658120
– ident: B28
  doi: 10.1016/j.cell.2017.09.003
– ident: B13
  doi: 10.1038/s41467-024-47953-7
– ident: B3
  doi: 10.1684/epd.2020.1159
– ident: B38
  doi: 10.1002/syn.22270
– ident: B61
  doi: 10.1038/nprot.2016.136
– ident: B15
  doi: 10.1038/s41593-018-0173-6
– ident: B57
  doi: 10.1101/gr.278424.123
SSID ssj0001742058
Score 2.2980359
Snippet Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification....
Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N 6...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Adenosine - analogs & derivatives
Adenosine - genetics
Adenosine - metabolism
Animals
Disease Models, Animal
Epilepsy, Temporal Lobe - genetics
Epilepsy, Temporal Lobe - metabolism
Epilepsy, Temporal Lobe - physiopathology
Female
Gene Expression Regulation
Hippocampus - metabolism
Humans
Male
Mice
Mice, Inbred C57BL
Proteomics
Transcriptome
Title N6-methyladenosine (m6A) dysregulation contributes to network excitability in temporal lobe epilepsy
URI https://www.ncbi.nlm.nih.gov/pubmed/40693462
https://www.proquest.com/docview/3232485046
https://pubmed.ncbi.nlm.nih.gov/PMC12288969
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkNBeEIiv8iUj8QCqUlLHjp3HqQLGRCckNmlvkRM7a0aXVmsybTzwt_Cnco6dNKF7gL1EVto4yt3P5_vZd2eE3vIwIyITmZdIqjxKWQotSaCVRIZfZFqYfOfZYbh_TA9O2Mlg8LsTtVSVyTj9eWNeyW20CvdAryZL9j8023YKN6AN-oUraBiu_6Tjw9AzJ0BfL6QyNb-dw3ge7hmur65h9jt1p3PZkHRztpUt6VDY6O-Rvkrz0pbqrhMAXaWqxagOwtArsBmrdW_n92D6xQSwG06_Wc0u58vqyiZ5gMnY7NRvikHOYEB5Nu60XdQxm0eXNqHse3WWl_OLdo74Cobmcv0jtwdVfZYJMPqF-3i3RkGYWfwkG0bbbj51I1GnTeZnp6CIQ6Ku7R8JeAT2zxc9Y-13QUlvngS4KSp7luZjJ47xRIjQRmt3ULE6r2FhUn8D6qaEfuntb7PphBAhojC6g-4SICLmjIzZr84qHqfEZ6LJxuLkw_Zrd9G95h1952eL0fwdmNvxdI4eoPuOouA9i7eHaKCLR0htYw2_A6S9xz2c4Q7OcLnEDme4izOcF7jBGTY4ww3OHqPjTx-PpvueO6HDS8GtKT1FiWJRIhWnacJ9omnGtIyAUnPwfJQJAoWRnzEVhL6UQSC1z5OAaJ35vgQiETxBO8Wy0M8QFjLymSRqEpmnoPt0wpQiMuWJBppAh2jUiC5e2UIscU1gOYlB5rGTeWxlPkRvGunGYC_NJpgs9LJax4GhEIL5NByip1babX-NmoZI9PTQ_sHUYu__UuTzuiZ7g5Pnt3_0BdrdjJ2XaKe8qPQr8HjL5HUNuj8gqLtR
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-methyladenosine+%28m6A%29+dysregulation+contributes+to+network+excitability+in+temporal+lobe+epilepsy&rft.jtitle=JCI+insight&rft.au=Mathoux%2C+Justine&rft.au=Wilson%2C+Marc-Michel&rft.au=Srinivas%2C+Sujithra&rft.au=Litovskich%2C+Gabrielle&rft.date=2025-07-22&rft.pub=American+Society+for+Clinical+Investigation&rft.eissn=2379-3708&rft.volume=10&rft.issue=14&rft_id=info:doi/10.1172%2Fjci.insight.188612&rft_id=info%3Apmid%2F40693462&rft.externalDocID=PMC12288969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3708&client=summon