Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures
Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts hav...
Saved in:
Published in | Nano letters Vol. 23; no. 22; pp. 10103 - 10109 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
22.11.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures. |
---|---|
AbstractList | Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures. |
Author | Yomogida, Yohei Nagano, Mai Nishidome, Hiroyuki Yanagi, Kazuhiro Ahad, Abdul Rahman, Md. Ashiqur Nakanishi, Yusuke Ueji, Kan Ihara, Akane Miyata, Yasumitsu Liu, Zheng Yagi, Takashi |
Author_xml | – sequence: 1 givenname: Yohei orcidid: 0000-0002-8569-6179 surname: Yomogida fullname: Yomogida, Yohei organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 2 givenname: Mai surname: Nagano fullname: Nagano, Mai organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 3 givenname: Zheng orcidid: 0000-0001-9095-7647 surname: Liu fullname: Liu, Zheng organization: National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan – sequence: 4 givenname: Kan orcidid: 0000-0003-1254-0699 surname: Ueji fullname: Ueji, Kan organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 5 givenname: Md. Ashiqur surname: Rahman fullname: Rahman, Md. Ashiqur organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan, Department of Physics, Comilla University, Cumilla 3506, Bangladesh – sequence: 6 givenname: Abdul surname: Ahad fullname: Ahad, Abdul organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan, Department of Physics, Comilla University, Cumilla 3506, Bangladesh – sequence: 7 givenname: Akane surname: Ihara fullname: Ihara, Akane organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 8 givenname: Hiroyuki surname: Nishidome fullname: Nishidome, Hiroyuki organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 9 givenname: Takashi surname: Yagi fullname: Yagi, Takashi organization: National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8563, Japan – sequence: 10 givenname: Yusuke orcidid: 0000-0001-8782-9556 surname: Nakanishi fullname: Nakanishi, Yusuke organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 11 givenname: Yasumitsu orcidid: 0000-0002-9733-5119 surname: Miyata fullname: Miyata, Yasumitsu organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan – sequence: 12 givenname: Kazuhiro orcidid: 0000-0002-7609-1493 surname: Yanagi fullname: Yanagi, Kazuhiro organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan |
BookMark | eNp9kD1PwzAQhi0EEm3hHzB4ZEmx8-EkbKh8FKmoQ4sYLdu5tEauXWxHiH9PohYGBqY76d73vbtnjE6ts4DQFSVTSlJ6I1SYWmGdgRinmSK0ZPQEjWiRkYTVdXr621f5ORqH8E4IqbOCjFCzgp1Wzjaditpu8NoLG3TUzuIXiMLge622wii3AasbwHOI4N2wLHYSAv7UcYtnzkbvjIEGL7t-nrwJY_Aq-j608xAu0FkrTIDLY52g18eH9WyeLJZPz7O7RaLSKo-JULLMyropJZWVymRFRE4K2QjZDuc3Rcqglk1NWyILSYCoKoWcUcUKWactySbo-pC79-6jgxD5TgcFxggLrgs8rcqKUJYx1ktvD1LlXQgeWq50FMPf0QttOCV8QMt7tPwHLT-i7c35H_Pe653wX__bvgEjvYey |
CitedBy_id | crossref_primary_10_1021_acsanm_4c03433 crossref_primary_10_1002_smll_202400503 crossref_primary_10_1002_smll_202407271 crossref_primary_10_1039_D4TC01102C |
Cites_doi | 10.1038/srep01755 10.1021/acsnano.9b07866 10.1038/s41467-019-12128-2 10.1038/srep42146 10.1021/acsomega.8b00745 10.1039/C7RA12791J 10.1021/nl401675k 10.1021/acscatal.6b01927 10.1038/360444a0 10.1080/1536383X.2010.488594 10.1080/21663831.2017.1337050 10.35848/1347-4065/ac2013 10.1002/zaac.202200128 10.1016/j.matlet.2017.12.022 10.1063/1.4774090 10.1063/5.0005314 10.1002/adfm.202270226 10.1038/s41467-022-31018-8 10.1021/jacs.2c03187 10.7567/1882-0786/ab2acb 10.1063/1.2734175 10.1038/nmat4091 10.1021/acs.jpcc.0c10784 10.1103/PhysRevLett.85.146 10.1038/nature12385 10.1021/acsomega.8b03121 10.1002/smll.201904390 10.1002/adfm.201000490 10.7567/APEX.9.075001 10.1021/acsnano.2c06067 10.1002/adfm.201102111 10.1063/PT.3.4547 10.1002/(SICI)1521-4095(200006)12:11<814::AID-ADMA814>3.0.CO;2-0 10.1021/acsnano.8b06515 10.1126/science.aaz2570 10.1021/acs.nanolett.6b01007 10.1016/S0167-2738(01)01035-9 10.1002/adma.202306631 10.1039/C8CP02245C 10.1116/1.4930161 10.1021/nl2020476 10.1021/nn1003937 10.1088/0957-4484/19/8/085604 10.1039/C0JM01099E 10.1021/nn503027k 10.1021/acsnano.0c10586 10.1016/S0038-1098(00)00047-8 10.1016/j.nanoen.2020.105608 10.1038/s41586-019-1303-3 10.1038/ncomms12512 10.1039/D1NR00455G 10.1142/S1793292009001551 10.1038/ncomms14465 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.3c01761 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 10109 |
ExternalDocumentID | 10_1021_acs_nanolett_3c01761 |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F 7X8 |
ID | FETCH-LOGICAL-c284t-acb7379d7b1b8c3b80a405bdabf1530d526e9bd91f0b5b0e0c82e461c65b92f03 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 14:47:03 EDT 2025 Tue Jul 01 03:00:48 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-acb7379d7b1b8c3b80a405bdabf1530d526e9bd91f0b5b0e0c82e461c65b92f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1254-0699 0000-0002-7609-1493 0000-0002-8569-6179 0000-0001-8782-9556 0000-0001-9095-7647 0000-0002-9733-5119 |
PQID | 2878016366 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2878016366 crossref_citationtrail_10_1021_acs_nanolett_3c01761 crossref_primary_10_1021_acs_nanolett_3c01761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationYear | 2023 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref200/cit200 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1038/srep01755 – ident: ref5/cit5 doi: 10.1021/acsnano.9b07866 – ident: ref22/cit22 doi: 10.1038/s41467-019-12128-2 – ident: ref47/cit47 doi: 10.1038/srep42146 – ident: ref14/cit14 doi: 10.1021/acsomega.8b00745 – ident: ref32/cit32 doi: 10.1039/C7RA12791J – ident: ref51/cit51 doi: 10.1021/nl401675k – ident: ref18/cit18 doi: 10.1021/acscatal.6b01927 – ident: ref1/cit1 doi: 10.1038/360444a0 – ident: ref19/cit19 doi: 10.1080/1536383X.2010.488594 – ident: ref39/cit39 doi: 10.1080/21663831.2017.1337050 – ident: ref40/cit40 doi: 10.35848/1347-4065/ac2013 – ident: ref3/cit3 doi: 10.1002/zaac.202200128 – ident: ref33/cit33 doi: 10.1016/j.matlet.2017.12.022 – ident: ref43/cit43 doi: 10.1063/1.4774090 – ident: ref41/cit41 doi: 10.1063/5.0005314 – ident: ref24/cit24 doi: 10.1002/adfm.202270226 – ident: ref10/cit10 doi: 10.1038/s41467-022-31018-8 – ident: ref15/cit15 doi: 10.1021/jacs.2c03187 – ident: ref38/cit38 doi: 10.7567/1882-0786/ab2acb – ident: ref30/cit30 doi: 10.1063/1.2734175 – ident: ref23/cit23 doi: 10.1038/nmat4091 – ident: ref35/cit35 doi: 10.1021/acs.jpcc.0c10784 – ident: ref9/cit9 doi: 10.1103/PhysRevLett.85.146 – ident: ref20/cit20 doi: 10.1038/nature12385 – ident: ref11/cit11 doi: 10.1021/acsomega.8b03121 – ident: ref13/cit13 doi: 10.1002/smll.201904390 – ident: ref29/cit29 doi: 10.1002/adfm.201000490 – ident: ref52/cit52 doi: 10.7567/APEX.9.075001 – ident: ref28/cit28 doi: 10.1021/acsnano.2c06067 – ident: ref49/cit49 doi: 10.1002/adfm.201102111 – ident: ref2/cit2 doi: 10.1063/PT.3.4547 – ident: ref4/cit4 doi: 10.1002/(SICI)1521-4095(200006)12:11<814::AID-ADMA814>3.0.CO;2-0 – ident: ref37/cit37 doi: 10.1021/acsnano.8b06515 – ident: ref26/cit26 doi: 10.1126/science.aaz2570 – ident: ref42/cit42 doi: 10.1021/acs.nanolett.6b01007 – ident: ref45/cit45 doi: 10.1016/S0167-2738(01)01035-9 – ident: ref200/cit200 doi: 10.1002/adma.202306631 – ident: ref12/cit12 doi: 10.1039/C8CP02245C – ident: ref46/cit46 doi: 10.1116/1.4930161 – ident: ref17/cit17 doi: 10.1021/nl2020476 – ident: ref50/cit50 doi: 10.1021/nn1003937 – ident: ref31/cit31 doi: 10.1088/0957-4484/19/8/085604 – ident: ref48/cit48 doi: 10.1039/C0JM01099E – ident: ref16/cit16 doi: 10.1021/nn503027k – ident: ref27/cit27 doi: 10.1021/acsnano.0c10586 – ident: ref8/cit8 doi: 10.1016/S0038-1098(00)00047-8 – ident: ref25/cit25 doi: 10.1016/j.nanoen.2020.105608 – ident: ref7/cit7 doi: 10.1038/s41586-019-1303-3 – ident: ref21/cit21 doi: 10.1038/ncomms12512 – ident: ref44/cit44 doi: 10.1039/D1NR00455G – ident: ref36/cit36 doi: 10.1142/S1793292009001551 – ident: ref6/cit6 doi: 10.1038/ncomms14465 |
SSID | ssj0009350 |
Score | 2.473501 |
Snippet | Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 10103 |
Title | Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures |
URI | https://www.proquest.com/docview/2878016366 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QTnDgjRgvBYlrR5q0aXOcBtOEBDuMSbtVeVVCTC3S2gu_HidtGQ8h4Fq1Ses4tR1__ozQVSqinFtuA2UcqbYlJBA50wHNfee9nBDp0RYPfDKP7hbxYh0ofs3g0_Ba6tWgkEUJn1ENmAYNaqKdJHJU-cPRbM2xy3xDVtjDEBGJNOoq5X4Y5LMl-vwj9tZlvIOmXY1OAyp5HtSVGujX75SNf3zxXbTdOpp42GjGHtqwxT7a-kA_eIDMzCHjy8JRvsIF7O2Wh3DhewtOOb5xmPqlLkHJnozFEwedKd1kVa3sCrszXDxqsO5La_DUtYcI3NE8nnla2hpi-UM0H98-jiZB23Uh0GCqqkBqlbBEmESFKtVMpUSCU6eMVLmTrIkpt0IZEeZExYpYolNqIx5qHitBc8KOUK8oC3uMME8c_VkUqzyhEUROQsZpwiINXgMn0pA-Yt0KZLqlJHedMZaZT43TMAMZZp0Ms1aGfRS8P_XSUHL8cv9lt7gZ7B2XEJGFLetVBtEiGGjOOD_555inaNP1nXdFiZSeoR4I1Z6Dd1KpC6-TbyQ_5Zc |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconducting+Transition+Metal+Dichalcogenide+Heteronanotubes+with+Controlled+Outer-Wall+Structures&rft.jtitle=Nano+letters&rft.au=Yomogida%2C+Yohei&rft.au=Nagano%2C+Mai&rft.au=Liu%2C+Zheng&rft.au=Ueji%2C+Kan&rft.date=2023-11-22&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=23&rft.issue=22&rft.spage=10103&rft_id=info:doi/10.1021%2Facs.nanolett.3c01761&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |