Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures

Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts hav...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 23; no. 22; pp. 10103 - 10109
Main Authors Yomogida, Yohei, Nagano, Mai, Liu, Zheng, Ueji, Kan, Rahman, Md. Ashiqur, Ahad, Abdul, Ihara, Akane, Nishidome, Hiroyuki, Yagi, Takashi, Nakanishi, Yusuke, Miyata, Yasumitsu, Yanagi, Kazuhiro
Format Journal Article
LanguageEnglish
Published 22.11.2023
Online AccessGet full text

Cover

Loading…
Abstract Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.
AbstractList Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.
Author Yomogida, Yohei
Nagano, Mai
Nishidome, Hiroyuki
Yanagi, Kazuhiro
Ahad, Abdul
Rahman, Md. Ashiqur
Nakanishi, Yusuke
Ueji, Kan
Ihara, Akane
Miyata, Yasumitsu
Liu, Zheng
Yagi, Takashi
Author_xml – sequence: 1
  givenname: Yohei
  orcidid: 0000-0002-8569-6179
  surname: Yomogida
  fullname: Yomogida, Yohei
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 2
  givenname: Mai
  surname: Nagano
  fullname: Nagano, Mai
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0001-9095-7647
  surname: Liu
  fullname: Liu, Zheng
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
– sequence: 4
  givenname: Kan
  orcidid: 0000-0003-1254-0699
  surname: Ueji
  fullname: Ueji, Kan
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 5
  givenname: Md. Ashiqur
  surname: Rahman
  fullname: Rahman, Md. Ashiqur
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan, Department of Physics, Comilla University, Cumilla 3506, Bangladesh
– sequence: 6
  givenname: Abdul
  surname: Ahad
  fullname: Ahad, Abdul
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan, Department of Physics, Comilla University, Cumilla 3506, Bangladesh
– sequence: 7
  givenname: Akane
  surname: Ihara
  fullname: Ihara, Akane
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 8
  givenname: Hiroyuki
  surname: Nishidome
  fullname: Nishidome, Hiroyuki
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 9
  givenname: Takashi
  surname: Yagi
  fullname: Yagi, Takashi
  organization: National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8563, Japan
– sequence: 10
  givenname: Yusuke
  orcidid: 0000-0001-8782-9556
  surname: Nakanishi
  fullname: Nakanishi, Yusuke
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 11
  givenname: Yasumitsu
  orcidid: 0000-0002-9733-5119
  surname: Miyata
  fullname: Miyata, Yasumitsu
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
– sequence: 12
  givenname: Kazuhiro
  orcidid: 0000-0002-7609-1493
  surname: Yanagi
  fullname: Yanagi, Kazuhiro
  organization: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
BookMark eNp9kD1PwzAQhi0EEm3hHzB4ZEmx8-EkbKh8FKmoQ4sYLdu5tEauXWxHiH9PohYGBqY76d73vbtnjE6ts4DQFSVTSlJ6I1SYWmGdgRinmSK0ZPQEjWiRkYTVdXr621f5ORqH8E4IqbOCjFCzgp1Wzjaditpu8NoLG3TUzuIXiMLge622wii3AasbwHOI4N2wLHYSAv7UcYtnzkbvjIEGL7t-nrwJY_Aq-j608xAu0FkrTIDLY52g18eH9WyeLJZPz7O7RaLSKo-JULLMyropJZWVymRFRE4K2QjZDuc3Rcqglk1NWyILSYCoKoWcUcUKWactySbo-pC79-6jgxD5TgcFxggLrgs8rcqKUJYx1ktvD1LlXQgeWq50FMPf0QttOCV8QMt7tPwHLT-i7c35H_Pe653wX__bvgEjvYey
CitedBy_id crossref_primary_10_1021_acsanm_4c03433
crossref_primary_10_1002_smll_202400503
crossref_primary_10_1002_smll_202407271
crossref_primary_10_1039_D4TC01102C
Cites_doi 10.1038/srep01755
10.1021/acsnano.9b07866
10.1038/s41467-019-12128-2
10.1038/srep42146
10.1021/acsomega.8b00745
10.1039/C7RA12791J
10.1021/nl401675k
10.1021/acscatal.6b01927
10.1038/360444a0
10.1080/1536383X.2010.488594
10.1080/21663831.2017.1337050
10.35848/1347-4065/ac2013
10.1002/zaac.202200128
10.1016/j.matlet.2017.12.022
10.1063/1.4774090
10.1063/5.0005314
10.1002/adfm.202270226
10.1038/s41467-022-31018-8
10.1021/jacs.2c03187
10.7567/1882-0786/ab2acb
10.1063/1.2734175
10.1038/nmat4091
10.1021/acs.jpcc.0c10784
10.1103/PhysRevLett.85.146
10.1038/nature12385
10.1021/acsomega.8b03121
10.1002/smll.201904390
10.1002/adfm.201000490
10.7567/APEX.9.075001
10.1021/acsnano.2c06067
10.1002/adfm.201102111
10.1063/PT.3.4547
10.1002/(SICI)1521-4095(200006)12:11<814::AID-ADMA814>3.0.CO;2-0
10.1021/acsnano.8b06515
10.1126/science.aaz2570
10.1021/acs.nanolett.6b01007
10.1016/S0167-2738(01)01035-9
10.1002/adma.202306631
10.1039/C8CP02245C
10.1116/1.4930161
10.1021/nl2020476
10.1021/nn1003937
10.1088/0957-4484/19/8/085604
10.1039/C0JM01099E
10.1021/nn503027k
10.1021/acsnano.0c10586
10.1016/S0038-1098(00)00047-8
10.1016/j.nanoen.2020.105608
10.1038/s41586-019-1303-3
10.1038/ncomms12512
10.1039/D1NR00455G
10.1142/S1793292009001551
10.1038/ncomms14465
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.3c01761
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 10109
ExternalDocumentID 10_1021_acs_nanolett_3c01761
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
7X8
ID FETCH-LOGICAL-c284t-acb7379d7b1b8c3b80a405bdabf1530d526e9bd91f0b5b0e0c82e461c65b92f03
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 14:47:03 EDT 2025
Tue Jul 01 03:00:48 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-acb7379d7b1b8c3b80a405bdabf1530d526e9bd91f0b5b0e0c82e461c65b92f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1254-0699
0000-0002-7609-1493
0000-0002-8569-6179
0000-0001-8782-9556
0000-0001-9095-7647
0000-0002-9733-5119
PQID 2878016366
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2878016366
crossref_citationtrail_10_1021_acs_nanolett_3c01761
crossref_primary_10_1021_acs_nanolett_3c01761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationTitle Nano letters
PublicationYear 2023
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref200/cit200
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1038/srep01755
– ident: ref5/cit5
  doi: 10.1021/acsnano.9b07866
– ident: ref22/cit22
  doi: 10.1038/s41467-019-12128-2
– ident: ref47/cit47
  doi: 10.1038/srep42146
– ident: ref14/cit14
  doi: 10.1021/acsomega.8b00745
– ident: ref32/cit32
  doi: 10.1039/C7RA12791J
– ident: ref51/cit51
  doi: 10.1021/nl401675k
– ident: ref18/cit18
  doi: 10.1021/acscatal.6b01927
– ident: ref1/cit1
  doi: 10.1038/360444a0
– ident: ref19/cit19
  doi: 10.1080/1536383X.2010.488594
– ident: ref39/cit39
  doi: 10.1080/21663831.2017.1337050
– ident: ref40/cit40
  doi: 10.35848/1347-4065/ac2013
– ident: ref3/cit3
  doi: 10.1002/zaac.202200128
– ident: ref33/cit33
  doi: 10.1016/j.matlet.2017.12.022
– ident: ref43/cit43
  doi: 10.1063/1.4774090
– ident: ref41/cit41
  doi: 10.1063/5.0005314
– ident: ref24/cit24
  doi: 10.1002/adfm.202270226
– ident: ref10/cit10
  doi: 10.1038/s41467-022-31018-8
– ident: ref15/cit15
  doi: 10.1021/jacs.2c03187
– ident: ref38/cit38
  doi: 10.7567/1882-0786/ab2acb
– ident: ref30/cit30
  doi: 10.1063/1.2734175
– ident: ref23/cit23
  doi: 10.1038/nmat4091
– ident: ref35/cit35
  doi: 10.1021/acs.jpcc.0c10784
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.85.146
– ident: ref20/cit20
  doi: 10.1038/nature12385
– ident: ref11/cit11
  doi: 10.1021/acsomega.8b03121
– ident: ref13/cit13
  doi: 10.1002/smll.201904390
– ident: ref29/cit29
  doi: 10.1002/adfm.201000490
– ident: ref52/cit52
  doi: 10.7567/APEX.9.075001
– ident: ref28/cit28
  doi: 10.1021/acsnano.2c06067
– ident: ref49/cit49
  doi: 10.1002/adfm.201102111
– ident: ref2/cit2
  doi: 10.1063/PT.3.4547
– ident: ref4/cit4
  doi: 10.1002/(SICI)1521-4095(200006)12:11<814::AID-ADMA814>3.0.CO;2-0
– ident: ref37/cit37
  doi: 10.1021/acsnano.8b06515
– ident: ref26/cit26
  doi: 10.1126/science.aaz2570
– ident: ref42/cit42
  doi: 10.1021/acs.nanolett.6b01007
– ident: ref45/cit45
  doi: 10.1016/S0167-2738(01)01035-9
– ident: ref200/cit200
  doi: 10.1002/adma.202306631
– ident: ref12/cit12
  doi: 10.1039/C8CP02245C
– ident: ref46/cit46
  doi: 10.1116/1.4930161
– ident: ref17/cit17
  doi: 10.1021/nl2020476
– ident: ref50/cit50
  doi: 10.1021/nn1003937
– ident: ref31/cit31
  doi: 10.1088/0957-4484/19/8/085604
– ident: ref48/cit48
  doi: 10.1039/C0JM01099E
– ident: ref16/cit16
  doi: 10.1021/nn503027k
– ident: ref27/cit27
  doi: 10.1021/acsnano.0c10586
– ident: ref8/cit8
  doi: 10.1016/S0038-1098(00)00047-8
– ident: ref25/cit25
  doi: 10.1016/j.nanoen.2020.105608
– ident: ref7/cit7
  doi: 10.1038/s41586-019-1303-3
– ident: ref21/cit21
  doi: 10.1038/ncomms12512
– ident: ref44/cit44
  doi: 10.1039/D1NR00455G
– ident: ref36/cit36
  doi: 10.1142/S1793292009001551
– ident: ref6/cit6
  doi: 10.1038/ncomms14465
SSID ssj0009350
Score 2.473501
Snippet Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 10103
Title Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures
URI https://www.proquest.com/docview/2878016366
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QTnDgjRgvBYlrR5q0aXOcBtOEBDuMSbtVeVVCTC3S2gu_HidtGQ8h4Fq1Ses4tR1__ozQVSqinFtuA2UcqbYlJBA50wHNfee9nBDp0RYPfDKP7hbxYh0ofs3g0_Ba6tWgkEUJn1ENmAYNaqKdJHJU-cPRbM2xy3xDVtjDEBGJNOoq5X4Y5LMl-vwj9tZlvIOmXY1OAyp5HtSVGujX75SNf3zxXbTdOpp42GjGHtqwxT7a-kA_eIDMzCHjy8JRvsIF7O2Wh3DhewtOOb5xmPqlLkHJnozFEwedKd1kVa3sCrszXDxqsO5La_DUtYcI3NE8nnla2hpi-UM0H98-jiZB23Uh0GCqqkBqlbBEmESFKtVMpUSCU6eMVLmTrIkpt0IZEeZExYpYolNqIx5qHitBc8KOUK8oC3uMME8c_VkUqzyhEUROQsZpwiINXgMn0pA-Yt0KZLqlJHedMZaZT43TMAMZZp0Ms1aGfRS8P_XSUHL8cv9lt7gZ7B2XEJGFLetVBtEiGGjOOD_555inaNP1nXdFiZSeoR4I1Z6Dd1KpC6-TbyQ_5Zc
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconducting+Transition+Metal+Dichalcogenide+Heteronanotubes+with+Controlled+Outer-Wall+Structures&rft.jtitle=Nano+letters&rft.au=Yomogida%2C+Yohei&rft.au=Nagano%2C+Mai&rft.au=Liu%2C+Zheng&rft.au=Ueji%2C+Kan&rft.date=2023-11-22&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=23&rft.issue=22&rft.spage=10103&rft_id=info:doi/10.1021%2Facs.nanolett.3c01761&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon