Detecting rs ‐ fMRI Networks in Disorders of Consciousness: Improving Clinical Interpretability
Preserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in DOC, a systematic assessment of networks is needed to improve the interpretability of data in clinical practice. We investigated functional c...
Saved in:
Published in | Annals of clinical and translational neurology |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
27.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Preserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in DOC, a systematic assessment of networks is needed to improve the interpretability of data in clinical practice. We investigated functional connectivity of the main networks, combining structural MRI to obtain a description of the most observed networks in DOC, their diagnostic ability, and whether they can be related to clinical assessment.
A group of 109 chronic patients [65 vegetative state/unresponsive wakefulness state (VS/UWS), 34 minimally conscious state (MCS), and 10 emerged from MCS (eMCS)], with different etiologies, and 34 control subjects underwent multimodal assessment. Rs-fMRI data were analyzed with a semi-automatic pipeline to assess residual functional activity in terms of number, type, mean intensity, and structural preservation of networks.
The more networks observed, the better the patient's clinical condition is likely to be. VS/UWS patients display 0-9, MCS 5-9, and eMCS 8-10 networks. Both the presence and intensity of 5 networks (visual networks, temporal, left fronto-parietal and default mode network) are relevant to distinguish VS/UWS from MCS, with AUCs of 0.64-0.69 (95% confidence interval). Etiology and disease duration have an impact on the number and type of preserved networks. High residual functional connectivity observed in VS/UWS patients, as in MCS, is in agreement with neurophysiological and metabolic evaluations.
This systematic assessment of the main rs-fMRI networks in DOC provides basic measures of functional connectivity that can enhance their interpretability in clinical practice. |
---|---|
AbstractList | Preserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in DOC, a systematic assessment of networks is needed to improve the interpretability of data in clinical practice. We investigated functional connectivity of the main networks, combining structural MRI to obtain a description of the most observed networks in DOC, their diagnostic ability, and whether they can be related to clinical assessment.
A group of 109 chronic patients [65 vegetative state/unresponsive wakefulness state (VS/UWS), 34 minimally conscious state (MCS), and 10 emerged from MCS (eMCS)], with different etiologies, and 34 control subjects underwent multimodal assessment. Rs-fMRI data were analyzed with a semi-automatic pipeline to assess residual functional activity in terms of number, type, mean intensity, and structural preservation of networks.
The more networks observed, the better the patient's clinical condition is likely to be. VS/UWS patients display 0-9, MCS 5-9, and eMCS 8-10 networks. Both the presence and intensity of 5 networks (visual networks, temporal, left fronto-parietal and default mode network) are relevant to distinguish VS/UWS from MCS, with AUCs of 0.64-0.69 (95% confidence interval). Etiology and disease duration have an impact on the number and type of preserved networks. High residual functional connectivity observed in VS/UWS patients, as in MCS, is in agreement with neurophysiological and metabolic evaluations.
This systematic assessment of the main rs-fMRI networks in DOC provides basic measures of functional connectivity that can enhance their interpretability in clinical practice. Preserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in DOC, a systematic assessment of networks is needed to improve the interpretability of data in clinical practice. We investigated functional connectivity of the main networks, combining structural MRI to obtain a description of the most observed networks in DOC, their diagnostic ability, and whether they can be related to clinical assessment.BACKGROUNDPreserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in DOC, a systematic assessment of networks is needed to improve the interpretability of data in clinical practice. We investigated functional connectivity of the main networks, combining structural MRI to obtain a description of the most observed networks in DOC, their diagnostic ability, and whether they can be related to clinical assessment.A group of 109 chronic patients [65 vegetative state/unresponsive wakefulness state (VS/UWS), 34 minimally conscious state (MCS), and 10 emerged from MCS (eMCS)], with different etiologies, and 34 control subjects underwent multimodal assessment. Rs-fMRI data were analyzed with a semi-automatic pipeline to assess residual functional activity in terms of number, type, mean intensity, and structural preservation of networks.METHODSA group of 109 chronic patients [65 vegetative state/unresponsive wakefulness state (VS/UWS), 34 minimally conscious state (MCS), and 10 emerged from MCS (eMCS)], with different etiologies, and 34 control subjects underwent multimodal assessment. Rs-fMRI data were analyzed with a semi-automatic pipeline to assess residual functional activity in terms of number, type, mean intensity, and structural preservation of networks.The more networks observed, the better the patient's clinical condition is likely to be. VS/UWS patients display 0-9, MCS 5-9, and eMCS 8-10 networks. Both the presence and intensity of 5 networks (visual networks, temporal, left fronto-parietal and default mode network) are relevant to distinguish VS/UWS from MCS, with AUCs of 0.64-0.69 (95% confidence interval). Etiology and disease duration have an impact on the number and type of preserved networks. High residual functional connectivity observed in VS/UWS patients, as in MCS, is in agreement with neurophysiological and metabolic evaluations.RESULTSThe more networks observed, the better the patient's clinical condition is likely to be. VS/UWS patients display 0-9, MCS 5-9, and eMCS 8-10 networks. Both the presence and intensity of 5 networks (visual networks, temporal, left fronto-parietal and default mode network) are relevant to distinguish VS/UWS from MCS, with AUCs of 0.64-0.69 (95% confidence interval). Etiology and disease duration have an impact on the number and type of preserved networks. High residual functional connectivity observed in VS/UWS patients, as in MCS, is in agreement with neurophysiological and metabolic evaluations.This systematic assessment of the main rs-fMRI networks in DOC provides basic measures of functional connectivity that can enhance their interpretability in clinical practice.CONCLUSIONSThis systematic assessment of the main rs-fMRI networks in DOC provides basic measures of functional connectivity that can enhance their interpretability in clinical practice. |
Author | Leonardi, Matilde Grisoli, Marina Bruzzone, Maria Grazia Epifani, Francesca Deruti, Alice Medina Carrion, Jean Paul Rossi Sebastiano, Davide Stanziano, Mario Ferraro, Stefania D'Incerti, Ludovico Nigri, Anna Rosazza, Cristina Fedeli, Davide Magnani, Francesca Giulia Sattin, Davide Minati, Ludovico |
Author_xml | – sequence: 1 givenname: Jean Paul orcidid: 0000-0002-6450-0202 surname: Medina Carrion fullname: Medina Carrion, Jean Paul organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 2 givenname: Mario surname: Stanziano fullname: Stanziano, Mario organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy, Neurosciences Department “Rita Levi Montalcini” University of Turin Turin Italy – sequence: 3 givenname: Ludovico surname: D'Incerti fullname: D'Incerti, Ludovico organization: Neuroradiology Unit Children's Hospital A. Meyer–University of Florence Florence Italy – sequence: 4 givenname: Davide surname: Sattin fullname: Sattin, Davide organization: Istituti Clinici Scientifici Maugeri IRCCS Health Directorate Milan Italy – sequence: 5 givenname: Stefania surname: Ferraro fullname: Ferraro, Stefania organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation University of Electronic Science and Technology of China Chengdu China – sequence: 6 givenname: Davide orcidid: 0000-0003-3698-8615 surname: Rossi Sebastiano fullname: Rossi Sebastiano, Davide organization: Department of Neurophysiology and Diagnostic, Epileptology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 7 givenname: Francesca Giulia orcidid: 0000-0002-6503-3052 surname: Magnani fullname: Magnani, Francesca Giulia organization: Neurology, Public Health, Disability Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 8 givenname: Alice orcidid: 0009-0008-5088-5464 surname: Deruti fullname: Deruti, Alice organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 9 givenname: Davide surname: Fedeli fullname: Fedeli, Davide organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 10 givenname: Ludovico surname: Minati fullname: Minati, Ludovico organization: School of Life Science and Technology, MOE Key Laboratory for Neuroinformation University of Electronic Science and Technology of China Chengdu China, Center for Mind/Brain Sciences (CIMeC) University of Trento Trento Italy – sequence: 11 givenname: Francesca surname: Epifani fullname: Epifani, Francesca organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 12 givenname: Marina surname: Grisoli fullname: Grisoli, Marina organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 13 givenname: Matilde surname: Leonardi fullname: Leonardi, Matilde organization: Neurology, Public Health, Disability Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 14 givenname: Maria Grazia surname: Bruzzone fullname: Bruzzone, Maria Grazia organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 15 givenname: Anna orcidid: 0000-0002-1197-5458 surname: Nigri fullname: Nigri, Anna organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy – sequence: 16 givenname: Cristina orcidid: 0000-0002-7799-415X surname: Rosazza fullname: Rosazza, Cristina organization: Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy, Department of Humanistic Studies University of Urbino Carlo Bo Urbino Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40577112$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEtOwzAQhi1UREvphgMgLxFSih9xHbNDKY9IBSQE68hxJsiQOsVOQd1xBM7ISUhpQaxmRvPN6Ne3j3qucYDQISVjSgg71cbxsSRExTtowDhLIiUI7_3r-2gUwjMhhFImuGR7qB8TIWU3DpCeQgumte4J-4C_Pj5xdXOf4Vto3xv_ErB1eGpD40vo1k2F08YFY5tlcBDCGc7mC9-8ra_T2jprdI0z14JfeGh1YWvbrg7QbqXrAKNtHaLHy4uH9Dqa3V1l6fksMiyJ20hpZmTBVFLpUhVUsJJTWphElAwKVZaSME20UVJzznVVJcJwHQPTAuhEFoIP0fHmb5fodQmhzec2GKhr7aDLm3PGYhVLFk869GiLLos5lPnC27n2q_xXSwecbADjmxA8VH8IJflae77Wnv9o598QK3XK |
Cites_doi | 10.1093/brain/awp313 10.1038/s41582‐020‐0358‐y 10.1080/02699052.2020.1861652 10.1016/j.medengphy.2012.02.004 10.1007/978-1-4615-1079-6_16 10.1056/NEJMoa2400645 10.1177/1073858420928988 10.1007/s10548‐013‐0335‐5 10.1007/s10456‐020‐09720‐2 10.1002/hbm.20672 10.1371/journal.pone.0098860 10.1162/jocn.2010.21488 10.1016/j.clinph.2014.07.004 10.1148/radiol.2017162161 10.3390/brainsci12030355 10.1038/nrneurol.2013.279 10.1002/ana.24634 10.3389/fnsys.2011.00001 10.1097/MRR.0000000000000135 10.1016/j.cub.2016.04.024 10.1093/brain/awac335 10.1212/WNL.0000000000200038 10.7554/eLife.36173 10.1097/WCO.0000000000000951 10.1212/WNL.0b013e31823fcd61 10.1016/j.pmr.2023.06.017 10.1002/hbm.24303 10.1016/j.conb.2016.06.014 10.1016/B978-0-12-397025-1.00052-X 10.1111/ene.14151 10.1038/s41582‐020‐00428‐x 10.3389/fnins.2023.1113695 10.1017/S003329172000330X 10.1007/s00415‐023‐11941‐6 10.1016/j.clinph.2020.07.015 10.3389/fneur.2020.526465 10.1016/j.neurobiolaging.2011.06.007 10.1213/ANE.0000000000001721 10.1002/acn3.51729 10.1111/ejn.16149 10.1073/pnas.1418031112 10.1016/S1474‐4422(08)70164‐9 10.1126/sciadv.aat7603 10.1093/brain/awv169 10.3389/fnsys.2010.00013 10.1002/brb3.424 10.1097/RMR.0000000000000214 10.1073/pnas.0604187103 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. |
Copyright_xml | – notice: 2025 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/acn3.70094 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2328-9503 |
ExternalDocumentID | 40577112 10_1002_acn3_70094 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Lombardy Regional Government grantid: IX/000407 – fundername: Italian Ministry of Health grantid: GR-2016-02361225 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8FI 8FJ AAMMB AAYXX ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION DIK DWQXO EBS FYUFA GNUQQ GROUPED_DOAJ HMCUK HYE IAO IHR INH ITC KQ8 M2M M48 OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSYQQ RPM UKHRP NPM 7X8 |
ID | FETCH-LOGICAL-c284t-9a2c7b298fad9b152d311bc85d2eb9dd702a0ac97a333aff85c3a4e2a5e167b53 |
ISSN | 2328-9503 |
IngestDate | Fri Jul 11 16:58:06 EDT 2025 Mon Jul 21 06:00:15 EDT 2025 Thu Jul 03 08:29:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | clinical interpretation DOC rs‐fMRI networks structural‐functional integration residual functional connectivity chronic conditions |
Language | English |
License | 2025 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-9a2c7b298fad9b152d311bc85d2eb9dd702a0ac97a333aff85c3a4e2a5e167b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0008-5088-5464 0000-0002-6450-0202 0000-0002-6503-3052 0000-0003-3698-8615 0000-0002-7799-415X 0000-0002-1197-5458 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.70094 |
PMID | 40577112 |
PQID | 3224947246 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3224947246 pubmed_primary_40577112 crossref_primary_10_1002_acn3_70094 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-27 |
PublicationDateYYYYMMDD | 2025-06-27 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annals of clinical and translational neurology |
PublicationTitleAlternate | Ann Clin Transl Neurol |
PublicationYear | 2025 |
References | e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_47_1 (e_1_2_12_26_1) 2017 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 Lombardi F. (e_1_2_12_21_1) 2007; 22 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – ident: e_1_2_12_10_1 doi: 10.1093/brain/awp313 – ident: e_1_2_12_3_1 doi: 10.1038/s41582‐020‐0358‐y – ident: e_1_2_12_18_1 doi: 10.1080/02699052.2020.1861652 – ident: e_1_2_12_50_1 doi: 10.1016/j.medengphy.2012.02.004 – ident: e_1_2_12_25_1 doi: 10.1007/978-1-4615-1079-6_16 – volume-title: MATLAB. Version 9.2.0 (R2017a) year: 2017 ident: e_1_2_12_26_1 – ident: e_1_2_12_4_1 doi: 10.1056/NEJMoa2400645 – ident: e_1_2_12_39_1 doi: 10.1177/1073858420928988 – ident: e_1_2_12_46_1 doi: 10.1007/s10548‐013‐0335‐5 – ident: e_1_2_12_43_1 doi: 10.1007/s10456‐020‐09720‐2 – ident: e_1_2_12_9_1 doi: 10.1002/hbm.20672 – ident: e_1_2_12_49_1 doi: 10.1371/journal.pone.0098860 – ident: e_1_2_12_37_1 doi: 10.1162/jocn.2010.21488 – ident: e_1_2_12_45_1 doi: 10.1016/j.clinph.2014.07.004 – ident: e_1_2_12_13_1 doi: 10.1148/radiol.2017162161 – ident: e_1_2_12_16_1 doi: 10.3390/brainsci12030355 – ident: e_1_2_12_2_1 doi: 10.1038/nrneurol.2013.279 – ident: e_1_2_12_23_1 doi: 10.1002/ana.24634 – ident: e_1_2_12_32_1 doi: 10.3389/fnsys.2011.00001 – ident: e_1_2_12_22_1 doi: 10.1097/MRR.0000000000000135 – ident: e_1_2_12_47_1 doi: 10.1016/j.cub.2016.04.024 – ident: e_1_2_12_14_1 doi: 10.1093/brain/awac335 – ident: e_1_2_12_48_1 doi: 10.1212/WNL.0000000000200038 – ident: e_1_2_12_17_1 doi: 10.7554/eLife.36173 – ident: e_1_2_12_7_1 doi: 10.1097/WCO.0000000000000951 – ident: e_1_2_12_11_1 doi: 10.1212/WNL.0b013e31823fcd61 – ident: e_1_2_12_5_1 doi: 10.1016/j.pmr.2023.06.017 – ident: e_1_2_12_31_1 doi: 10.1002/hbm.24303 – ident: e_1_2_12_36_1 doi: 10.1016/j.conb.2016.06.014 – ident: e_1_2_12_29_1 doi: 10.1016/B978-0-12-397025-1.00052-X – ident: e_1_2_12_8_1 doi: 10.1111/ene.14151 – ident: e_1_2_12_6_1 doi: 10.1038/s41582‐020‐00428‐x – ident: e_1_2_12_38_1 doi: 10.3389/fnins.2023.1113695 – ident: e_1_2_12_51_1 doi: 10.1017/S003329172000330X – ident: e_1_2_12_15_1 doi: 10.1007/s00415‐023‐11941‐6 – ident: e_1_2_12_44_1 doi: 10.1016/j.clinph.2020.07.015 – volume: 22 start-page: 47 issue: 1 year: 2007 ident: e_1_2_12_21_1 article-title: The Italian Version of the Coma Recovery Scale‐Revised (CRS‐R) publication-title: Functional Neurology – ident: e_1_2_12_24_1 doi: 10.3389/fneur.2020.526465 – ident: e_1_2_12_30_1 doi: 10.1016/j.neurobiolaging.2011.06.007 – ident: e_1_2_12_35_1 doi: 10.1213/ANE.0000000000001721 – ident: e_1_2_12_19_1 doi: 10.1002/acn3.51729 – ident: e_1_2_12_20_1 doi: 10.1111/ejn.16149 – ident: e_1_2_12_41_1 doi: 10.1073/pnas.1418031112 – ident: e_1_2_12_42_1 doi: 10.1016/S1474‐4422(08)70164‐9 – ident: e_1_2_12_40_1 doi: 10.1126/sciadv.aat7603 – ident: e_1_2_12_12_1 doi: 10.1093/brain/awv169 – ident: e_1_2_12_27_1 doi: 10.3389/fnsys.2010.00013 – ident: e_1_2_12_33_1 doi: 10.1002/brb3.424 – ident: e_1_2_12_34_1 doi: 10.1097/RMR.0000000000000214 – ident: e_1_2_12_28_1 doi: 10.1073/pnas.0604187103 |
SSID | ssj0001125372 |
Score | 2.2957008 |
SecondaryResourceType | online_first |
Snippet | Preserved resting-state functional MRI (rs-fMRI) networks are typically observed in Disorders of Consciousness (DOC). Despite the widespread use of rs-fMRI in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | Detecting rs ‐ fMRI Networks in Disorders of Consciousness: Improving Clinical Interpretability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40577112 https://www.proquest.com/docview/3224947246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYJyFeEPeVS2UEPGY0dhw3vMHoNKauoNFKfUGRb5EmoRSV7GW_nnPsxGkZSIOXKHJVp_X5cnwu3zkm5LXILDfcyATse5tkVlaJLpxJCjXB7TaveCDIzvOTZXa6Equ-hMBXlzT60Fz9sa7kf6QKYyBXrJL9B8nGSWEA7kG-cAUJw_VGMv7oMAWAzv7mZ1KdnX_C-l1kWnmSa9dY05M18GBOg3xXVG0YBuijCUddcWRPQPSM2Z2Eb99oOdZSeu4lbnXfu4Cib465HabHNFCtkFWyuQjp_VOM_G_TEfEY4yvA6LqtHAq8MG9bv2ES1JdrGQezSwu_18SPv6qmbYDgefluO37BBPKsQjuAoObApAOVK8ZBzbnrY9eUfGgaq0zNDyUyI_utrEvfzz-Xx8vZrFxMV4s9ss_AhWADsv9hOv9y3kfgwLbj_nSv-LjYv5a97afftVj-4oZ4c2Rxj9xt_Qj6PoDiPrnl6gfk9lnLlHhIvkVs0BYbtMMGvahpxAZdV3QHG-9oRAbtkEF_R8YjsjyeLo5OkvYojcSA_dHAq8eM1KyYVMoWGmw2y9NUm4mwzOnCWjlmaqxMIRXnXFXVRBiuMseUcGkuteCPyaBe1-6AUGtzV0mdOiN4BtPqVFpu4cUWVrJMpUPyqluu8kfomFKG3tisxEUt_aIOyctuJUtQaJilUrWDf1rCDpMVGUyVD8mTsMRxHvQuJMjt6Q2-_Yzc6eH2nAyazaV7AQZko0dkT67kqMXDyIdhfgGfn3iE |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+rs-fMRI+Networks+in+Disorders+of+Consciousness%3A+Improving+Clinical+Interpretability&rft.jtitle=Annals+of+clinical+and+translational+neurology&rft.au=Medina+Carrion%2C+Jean+Paul&rft.au=Stanziano%2C+Mario&rft.au=D%27Incerti%2C+Ludovico&rft.au=Sattin%2C+Davide&rft.date=2025-06-27&rft.issn=2328-9503&rft.eissn=2328-9503&rft_id=info:doi/10.1002%2Facn3.70094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-9503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-9503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-9503&client=summon |