Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index
Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease...
Saved in:
Published in | Computers and electronics in agriculture Vol. 215; p. 108434 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R² value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R² value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment. |
---|---|
AbstractList | Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R² value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R² value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment. |
ArticleNumber | 108434 |
Author | Lv, Xuan Zhang, Xunhe Yang, Ziqian Deng, Jie Wang, Zhifang Ma, Zhanhong Li, Pengju Yang, Lujia Zhou, Congying Zhang, Kai Wang, Rui |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-2391-0782 surname: Deng fullname: Deng, Jie – sequence: 2 givenname: Xunhe surname: Zhang fullname: Zhang, Xunhe – sequence: 3 givenname: Ziqian surname: Yang fullname: Yang, Ziqian – sequence: 4 givenname: Congying surname: Zhou fullname: Zhou, Congying – sequence: 5 givenname: Rui surname: Wang fullname: Wang, Rui – sequence: 6 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 7 givenname: Xuan surname: Lv fullname: Lv, Xuan – sequence: 8 givenname: Lujia surname: Yang fullname: Yang, Lujia – sequence: 9 givenname: Zhifang surname: Wang fullname: Wang, Zhifang – sequence: 10 givenname: Pengju surname: Li fullname: Li, Pengju – sequence: 11 givenname: Zhanhong orcidid: 0000-0002-4910-5001 surname: Ma fullname: Ma, Zhanhong |
BookMark | eNp9kD1vwjAQhj1QqUD7Dzp47BLqfJDEbIh-SkjtULpaxrkEI2MH26Gw9afXNJ06VDeczn6fk-4ZoYE2GhC6ickkJnF-t50Is2t5M0lIkoanMkuzARqGrzKKc0ov0ci5LQkzLYsh-nqTR1CRggMobKGx4Jw0GtfG4tX8A29OLVjXgvCWKyx3vAE3w_cALVbArZa6idbcQYX3Hddeeu7lAbDUh4ABNjX-3AD32HkrW8C2cx5X0kFAQqiC4xW6qLlycP3bx2j1-PC-eI6Wr08vi_kyEkmZ-aic5pRQAbXIKhoqnfKc8oLkvMrznFRrqOukEpAmUBShlVVMQYQTEx6XBdTpGN32e1tr9h04z3bSCVCKazCdYynJSDolBYlDdNZHhTXOWaiZ-LnL6CBBKhYTdlbNtqxXzc6qWa86wNkfuLVBmz39j30DRrSNFg |
CitedBy_id | crossref_primary_10_3390_agronomy14112697 crossref_primary_10_1016_j_ecolind_2024_112653 crossref_primary_10_3390_agronomy14050991 crossref_primary_10_3390_agronomy14112660 crossref_primary_10_3390_a18020084 crossref_primary_10_1016_j_eja_2024_127478 crossref_primary_10_1016_j_jag_2024_104262 crossref_primary_10_2139_ssrn_5082287 crossref_primary_10_1016_j_atech_2024_100647 crossref_primary_10_1016_j_compag_2024_109170 crossref_primary_10_3390_rs16234394 crossref_primary_10_1016_j_jcs_2024_104083 crossref_primary_10_1186_s13007_025_01363_y crossref_primary_10_1016_j_compag_2024_109245 crossref_primary_10_3390_plants13010140 crossref_primary_10_1016_j_jag_2024_104281 crossref_primary_10_1016_j_compag_2024_109656 crossref_primary_10_1016_j_egyai_2024_100466 crossref_primary_10_3390_agronomy14102389 crossref_primary_10_1016_j_compag_2024_109008 |
Cites_doi | 10.1109/ACCESS.2018.2812999 10.3390/rs6065107 10.1109/CVPR.2018.00183 10.1080/07060661.2014.924560 10.1016/j.rse.2013.07.031 10.1109/TGRS.2023.3292130 10.1109/TGRS.2002.804721 10.1007/s11119-007-9038-9 10.1016/j.pbi.2017.05.006 10.1016/j.neunet.2014.09.003 10.1007/978-3-319-24574-4_28 10.1016/j.compmedimag.2019.04.005 10.3724/SP.J.1005.2012.01607 10.1109/CVPR.2017.660 10.1094/PHYTOFR-01-21-0006-R 10.1109/ICASSP40776.2020.9053405 10.1007/s40858-021-00454-0 10.1109/TPAMI.2005.159 10.3390/land7030081 10.1109/TII.2020.2979237 10.3390/s22030757 10.1007/978-3-030-58539-6_11 10.15302/J-FASE-2021405 10.1071/FP16127 10.1007/978-3-030-72087-2_11 10.1109/CVPR.2017.41 10.1016/j.rse.2012.09.019 10.1111/mpp.12116 10.1016/j.neucom.2022.07.054 10.1007/978-3-030-01234-2_49 10.1007/s12571-020-01016-z 10.1094/PDIS-03-15-0340-FE 10.1109/ICCV.2019.00338 10.1109/ICCV.2017.244 10.1109/TPAMI.2020.2983686 10.1364/AO.397844 10.1126/science.1072678 10.1109/CVPR.2017.632 10.1109/ICCV48922.2021.00717 10.1016/j.ecolind.2022.109090 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compag.2023.108434 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_compag_2023_108434 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACMHX ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADQTV ADSLC AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AEXOQ AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWPP AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c284t-856909cefc4d9d9d35a69a706ad6660dbeff2dce32e77ce38d19ec9872a187ef3 |
ISSN | 0168-1699 |
IngestDate | Fri Aug 22 20:27:27 EDT 2025 Tue Jul 01 01:58:33 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-856909cefc4d9d9d35a69a706ad6660dbeff2dce32e77ce38d19ec9872a187ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2391-0782 0000-0002-4910-5001 |
PQID | 3040350701 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040350701 crossref_citationtrail_10_1016_j_compag_2023_108434 crossref_primary_10_1016_j_compag_2023_108434 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2023 |
References | Ashourloo (10.1016/j.compag.2023.108434_b0015) 2014; 6 10.1016/j.compag.2023.108434_b0060 Mahlein (10.1016/j.compag.2023.108434_b0135) 2013; 128 Peng (10.1016/j.compag.2023.108434_b0150) 2005; 27 Huang (10.1016/j.compag.2023.108434_b0100) 2007; 8 Nutter (10.1016/j.compag.2023.108434_b0145) 1991; 75 Ma (10.1016/j.compag.2023.108434_b0125) 2018; 45 An (10.1016/j.compag.2023.108434_b0005) 2022; 141 Chen (10.1016/j.compag.2023.108434_b0065) 2014; 15 Shakoor (10.1016/j.compag.2023.108434_b0170) 2017; 38 Zeng (10.1016/j.compag.2023.108434_b0215) 2022; 9 10.1016/j.compag.2023.108434_b0105 Chu (10.1016/j.compag.2023.108434_b0070) 2021; 1 Thomas (10.1016/j.compag.2023.108434_b0195) 2017; 44 Calderon (10.1016/j.compag.2023.108434_b0040) 2013; 139 Brown (10.1016/j.compag.2023.108434_b0030) 2002; 297 Wang (10.1016/j.compag.2023.108434_b0200) 2020; 43 10.1016/j.compag.2023.108434_b0205 10.1016/j.compag.2023.108434_b0020 10.1016/j.compag.2023.108434_b0240 10.1016/j.compag.2023.108434_b0140 10.1016/j.compag.2023.108434_b0160 Schmidhuber (10.1016/j.compag.2023.108434_b0165) 2015; 61 Arnal Barbedo (10.1016/j.compag.2023.108434_b0010) 2019; 3 Bock (10.1016/j.compag.2023.108434_b0025) 2022; 47 10.1016/j.compag.2023.108434_b0120 Bruce (10.1016/j.compag.2023.108434_b0035) 2002; 40 Zheng (10.1016/j.compag.2023.108434_b0235) 2020; 59 Guo (10.1016/j.compag.2023.108434_b0085) 2021; 13 Mahlein (10.1016/j.compag.2023.108434_b0130) 2016; 100 Chen (10.1016/j.compag.2023.108434_b0050) 2020; 12 Han (10.1016/j.compag.2023.108434_b0090) 2012; 34 Taghanaki (10.1016/j.compag.2023.108434_b0185) 2019; 75 Terentev (10.1016/j.compag.2023.108434_b0190) 2022; 22 Zhang (10.1016/j.compag.2023.108434_b0220) 2019; 11 Chen (10.1016/j.compag.2023.108434_b0045) 2014; 36 Khan (10.1016/j.compag.2023.108434_b0115) 2018; 6 Deng (10.1016/j.compag.2023.108434_b0075) 2023; 61 10.1016/j.compag.2023.108434_b0095 10.1016/j.compag.2023.108434_b0155 10.1016/j.compag.2023.108434_b0210 10.1016/j.compag.2023.108434_b0055 10.1016/j.compag.2023.108434_b0110 Su (10.1016/j.compag.2023.108434_b0180) 2021; 17 10.1016/j.compag.2023.108434_b0175 10.1016/j.compag.2023.108434_b0230 |
References_xml | – volume: 3 year: 2019 ident: 10.1016/j.compag.2023.108434_b0010 article-title: A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses publication-title: Drones – volume: 6 start-page: 14118 year: 2018 ident: 10.1016/j.compag.2023.108434_b0115 article-title: Modern trends in hyperspectral image analysis: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812999 – volume: 6 start-page: 5107 year: 2014 ident: 10.1016/j.compag.2023.108434_b0015 article-title: Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements publication-title: Remote Sens. (Basel) doi: 10.3390/rs6065107 – ident: 10.1016/j.compag.2023.108434_b0140 doi: 10.1109/CVPR.2018.00183 – volume: 36 start-page: 311 year: 2014 ident: 10.1016/j.compag.2023.108434_b0045 article-title: Integration of cultivar resistance and fungicide application for control of wheat stripe rust publication-title: Can. J. Plant Pathol. doi: 10.1080/07060661.2014.924560 – volume: 139 start-page: 231 year: 2013 ident: 10.1016/j.compag.2023.108434_b0040 article-title: High-resolution airborne hyperspectral and thermal imagery for early, detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.031 – volume: 61 start-page: 4406111 year: 2023 ident: 10.1016/j.compag.2023.108434_b0075 article-title: Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2023.3292130 – volume: 40 start-page: 2331 year: 2002 ident: 10.1016/j.compag.2023.108434_b0035 article-title: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.804721 – volume: 8 start-page: 187 year: 2007 ident: 10.1016/j.compag.2023.108434_b0100 article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging publication-title: Precis. Agric. doi: 10.1007/s11119-007-9038-9 – volume: 38 start-page: 184 year: 2017 ident: 10.1016/j.compag.2023.108434_b0170 article-title: High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.05.006 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.compag.2023.108434_b0165 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1016/j.compag.2023.108434_b0160 doi: 10.1007/978-3-319-24574-4_28 – volume: 75 start-page: 24 year: 2019 ident: 10.1016/j.compag.2023.108434_b0185 article-title: Combo loss: Handling input and output imbalance in multi-organ segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.04.005 – volume: 34 start-page: 1607 year: 2012 ident: 10.1016/j.compag.2023.108434_b0090 article-title: Characterization and inheritance of resistance to stripe rust in the wheat line Guinong775 publication-title: Yi Chuan= Hereditas doi: 10.3724/SP.J.1005.2012.01607 – ident: 10.1016/j.compag.2023.108434_b0230 doi: 10.1109/CVPR.2017.660 – volume: 45 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.compag.2023.108434_b0125 article-title: Researches and control of wheat stripe rust in China publication-title: J Plant Prot. – volume: 1 start-page: 339 year: 2021 ident: 10.1016/j.compag.2023.108434_b0070 article-title: Effects of wheat cultivar mixtures on population genetic structure of puccinia striiformis f. sp. tritici publication-title: PhytoFrontiers™ doi: 10.1094/PHYTOFR-01-21-0006-R – ident: 10.1016/j.compag.2023.108434_b0095 doi: 10.1109/ICASSP40776.2020.9053405 – volume: 47 start-page: 14 year: 2022 ident: 10.1016/j.compag.2023.108434_b0025 article-title: A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues publication-title: Trop. Plant Pathol. doi: 10.1007/s40858-021-00454-0 – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.compag.2023.108434_b0150 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – ident: 10.1016/j.compag.2023.108434_b0155 doi: 10.3390/land7030081 – volume: 17 start-page: 2242 year: 2021 ident: 10.1016/j.compag.2023.108434_b0180 article-title: Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2979237 – volume: 22 start-page: 757 year: 2022 ident: 10.1016/j.compag.2023.108434_b0190 article-title: Current state of hyperspectral remote sensing for early plant disease detection: A review publication-title: Sensors doi: 10.3390/s22030757 – ident: 10.1016/j.compag.2023.108434_b0210 doi: 10.1007/978-3-030-58539-6_11 – volume: 75 start-page: 1187 year: 1991 ident: 10.1016/j.compag.2023.108434_b0145 article-title: Disease Assessment Terms And Concepts publication-title: Plant Dis. – volume: 9 start-page: 37 year: 2022 ident: 10.1016/j.compag.2023.108434_b0215 article-title: Wheat stripe rust and integration of sustainable control strategies in China publication-title: Front. Agric. Sci. Eng doi: 10.15302/J-FASE-2021405 – volume: 44 start-page: 23 year: 2017 ident: 10.1016/j.compag.2023.108434_b0195 article-title: Observation of plant-pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements publication-title: Funct. Plant Biol. doi: 10.1071/FP16127 – ident: 10.1016/j.compag.2023.108434_b0055 – ident: 10.1016/j.compag.2023.108434_b0105 doi: 10.1007/978-3-030-72087-2_11 – ident: 10.1016/j.compag.2023.108434_b0205 doi: 10.1109/CVPR.2017.41 – volume: 13 year: 2021 ident: 10.1016/j.compag.2023.108434_b0085 article-title: Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology publication-title: Remote Sens. (Basel) – volume: 128 start-page: 21 year: 2013 ident: 10.1016/j.compag.2023.108434_b0135 article-title: Development of spectral indices for detecting and identifying plant diseases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.019 – volume: 15 start-page: 433 year: 2014 ident: 10.1016/j.compag.2023.108434_b0065 article-title: Wheat stripe (yellow) rust caused by P uccinia striiformis f. sp. tritici publication-title: Mol. Plant Pathol doi: 10.1111/mpp.12116 – ident: 10.1016/j.compag.2023.108434_b0120 doi: 10.1016/j.neucom.2022.07.054 – volume: 11 year: 2019 ident: 10.1016/j.compag.2023.108434_b0220 article-title: A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images publication-title: Remote Sens. (Basel) – ident: 10.1016/j.compag.2023.108434_b0060 doi: 10.1007/978-3-030-01234-2_49 – volume: 12 start-page: 239 year: 2020 ident: 10.1016/j.compag.2023.108434_b0050 article-title: Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen publication-title: Food Secur doi: 10.1007/s12571-020-01016-z – volume: 100 start-page: 241 year: 2016 ident: 10.1016/j.compag.2023.108434_b0130 article-title: Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping publication-title: Plant Dis. doi: 10.1094/PDIS-03-15-0340-FE – ident: 10.1016/j.compag.2023.108434_b0020 doi: 10.1109/ICCV.2019.00338 – ident: 10.1016/j.compag.2023.108434_b0240 doi: 10.1109/ICCV.2017.244 – volume: 43 start-page: 3349 year: 2020 ident: 10.1016/j.compag.2023.108434_b0200 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – volume: 59 start-page: 8003 year: 2020 ident: 10.1016/j.compag.2023.108434_b0235 article-title: Using continous wavelet analysis for monitoring wheat yellow rust in different infestation stages based on unmanned aerial vehicle hyperspectral images publication-title: Appl. Opt. doi: 10.1364/AO.397844 – volume: 297 start-page: 537 year: 2002 ident: 10.1016/j.compag.2023.108434_b0030 article-title: Epidemiology - Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease publication-title: Science doi: 10.1126/science.1072678 – ident: 10.1016/j.compag.2023.108434_b0110 doi: 10.1109/CVPR.2017.632 – ident: 10.1016/j.compag.2023.108434_b0175 doi: 10.1109/ICCV48922.2021.00717 – volume: 141 year: 2022 ident: 10.1016/j.compag.2023.108434_b0005 article-title: Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2022.109090 |
SSID | ssj0016987 |
Score | 2.506316 |
Snippet | Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 108434 |
SubjectTerms | agriculture algorithms China crop yield data collection disease detection electronics image analysis pests phenotype plant height radiative transfer regression analysis stripe rust of wheat unmanned aerial vehicles vegetation wheat |
Title | Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index |
URI | https://www.proquest.com/docview/3040350701 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7a9NIeSp80fbGF3sQaS6tnb6ZJCCWkPdjFzUXIq11bwZEcx6aPQ-lP78w-JJkGmhaDLJa1ZHY-Zmdmv5kh5G3ERQYqL2KKhyEDUBSsEGXKlK_CUPAYcKNZvqfx8ST8MI2m3Ymuzi7ZzAbix7V5Jf8jVRgDuWKW7D9Itn0oDMA9yBeuIGG43kjGn6pvcsmWyPvx1nJuKK2GOTgZffYW4GOaVEpdWuMCVIcmwB1IuXLtIuYM97ESkytrnW-GTKKqRrKGjiZ8RWWNGSXVSnqYn-GOdDxdZ7Fv27oGEabqc9dfRzNui_naVvlokXQgLRu4aofa8PV0Wy_a0S928Ky67IH5bNFsdZi3qeff3QZs4xcB73FBbEgzBj82Nm2SnE4GQ8RbIf8x5CG7VtOboMP5QFP15wN8sp3f7WzuNP_0Y340OTnJx4fT8W1yJwCPAptdDH62bCB4f2oy6-2fcVmWmgr45zt2rZjdTVxbJuMH5L51KejI4OMhuSXrR-TeqFvwx-RXDym0QwoFpFBACt1BCjVIeUcRJ3QXJ7SPE2pxQhtFNU6owQlFnFCLE6px8oRMjg7H74-Z7b3BBBgsG5ZGcTbMhFQiLDP48KiIsyIZxkUJDu-wnEmlglJIHsgkga-09DMpYBGDwk8TqfhTslc3tXxGaBrjhorOfRyEsshmpVJZiqXsfB6rJNsn3K1lLmxheuyPsswdA_E8NxLIUQK5kcA-Ye2vVqYwy1_mv3FiykGD4rFYUctme5Vz0Ecc3KKh__wGc16Qux2KX5K9zXorX4Fdupm91oj6DUoalJI |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pixel-level+regression+for+UAV+hyperspectral+images%3A+Deep+learning-based+quantitative+inverse+of+wheat+stripe+rust+disease+index&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Deng%2C+Jie&rft.au=Zhang%2C+Xunhe&rft.au=Yang%2C+Ziqian&rft.au=Zhou%2C+Congying&rft.date=2023-12-01&rft.issn=0168-1699&rft.volume=215+p.108434-&rft_id=info:doi/10.1016%2Fj.compag.2023.108434&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |