Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 215; p. 108434
Main Authors Deng, Jie, Zhang, Xunhe, Yang, Ziqian, Zhou, Congying, Wang, Rui, Zhang, Kai, Lv, Xuan, Yang, Lujia, Wang, Zhifang, Li, Pengju, Ma, Zhanhong
Format Journal Article
LanguageEnglish
Published 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R² value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R² value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
AbstractList Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R² value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R² value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
ArticleNumber 108434
Author Lv, Xuan
Zhang, Xunhe
Yang, Ziqian
Deng, Jie
Wang, Zhifang
Ma, Zhanhong
Li, Pengju
Yang, Lujia
Zhou, Congying
Zhang, Kai
Wang, Rui
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-2391-0782
  surname: Deng
  fullname: Deng, Jie
– sequence: 2
  givenname: Xunhe
  surname: Zhang
  fullname: Zhang, Xunhe
– sequence: 3
  givenname: Ziqian
  surname: Yang
  fullname: Yang, Ziqian
– sequence: 4
  givenname: Congying
  surname: Zhou
  fullname: Zhou, Congying
– sequence: 5
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
– sequence: 6
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 7
  givenname: Xuan
  surname: Lv
  fullname: Lv, Xuan
– sequence: 8
  givenname: Lujia
  surname: Yang
  fullname: Yang, Lujia
– sequence: 9
  givenname: Zhifang
  surname: Wang
  fullname: Wang, Zhifang
– sequence: 10
  givenname: Pengju
  surname: Li
  fullname: Li, Pengju
– sequence: 11
  givenname: Zhanhong
  orcidid: 0000-0002-4910-5001
  surname: Ma
  fullname: Ma, Zhanhong
BookMark eNp9kD1vwjAQhj1QqUD7Dzp47BLqfJDEbIh-SkjtULpaxrkEI2MH26Gw9afXNJ06VDeczn6fk-4ZoYE2GhC6ickkJnF-t50Is2t5M0lIkoanMkuzARqGrzKKc0ov0ci5LQkzLYsh-nqTR1CRggMobKGx4Jw0GtfG4tX8A29OLVjXgvCWKyx3vAE3w_cALVbArZa6idbcQYX3Hddeeu7lAbDUh4ABNjX-3AD32HkrW8C2cx5X0kFAQqiC4xW6qLlycP3bx2j1-PC-eI6Wr08vi_kyEkmZ-aic5pRQAbXIKhoqnfKc8oLkvMrznFRrqOukEpAmUBShlVVMQYQTEx6XBdTpGN32e1tr9h04z3bSCVCKazCdYynJSDolBYlDdNZHhTXOWaiZ-LnL6CBBKhYTdlbNtqxXzc6qWa86wNkfuLVBmz39j30DRrSNFg
CitedBy_id crossref_primary_10_3390_agronomy14112697
crossref_primary_10_1016_j_ecolind_2024_112653
crossref_primary_10_3390_agronomy14050991
crossref_primary_10_3390_agronomy14112660
crossref_primary_10_3390_a18020084
crossref_primary_10_1016_j_eja_2024_127478
crossref_primary_10_1016_j_jag_2024_104262
crossref_primary_10_2139_ssrn_5082287
crossref_primary_10_1016_j_atech_2024_100647
crossref_primary_10_1016_j_compag_2024_109170
crossref_primary_10_3390_rs16234394
crossref_primary_10_1016_j_jcs_2024_104083
crossref_primary_10_1186_s13007_025_01363_y
crossref_primary_10_1016_j_compag_2024_109245
crossref_primary_10_3390_plants13010140
crossref_primary_10_1016_j_jag_2024_104281
crossref_primary_10_1016_j_compag_2024_109656
crossref_primary_10_1016_j_egyai_2024_100466
crossref_primary_10_3390_agronomy14102389
crossref_primary_10_1016_j_compag_2024_109008
Cites_doi 10.1109/ACCESS.2018.2812999
10.3390/rs6065107
10.1109/CVPR.2018.00183
10.1080/07060661.2014.924560
10.1016/j.rse.2013.07.031
10.1109/TGRS.2023.3292130
10.1109/TGRS.2002.804721
10.1007/s11119-007-9038-9
10.1016/j.pbi.2017.05.006
10.1016/j.neunet.2014.09.003
10.1007/978-3-319-24574-4_28
10.1016/j.compmedimag.2019.04.005
10.3724/SP.J.1005.2012.01607
10.1109/CVPR.2017.660
10.1094/PHYTOFR-01-21-0006-R
10.1109/ICASSP40776.2020.9053405
10.1007/s40858-021-00454-0
10.1109/TPAMI.2005.159
10.3390/land7030081
10.1109/TII.2020.2979237
10.3390/s22030757
10.1007/978-3-030-58539-6_11
10.15302/J-FASE-2021405
10.1071/FP16127
10.1007/978-3-030-72087-2_11
10.1109/CVPR.2017.41
10.1016/j.rse.2012.09.019
10.1111/mpp.12116
10.1016/j.neucom.2022.07.054
10.1007/978-3-030-01234-2_49
10.1007/s12571-020-01016-z
10.1094/PDIS-03-15-0340-FE
10.1109/ICCV.2019.00338
10.1109/ICCV.2017.244
10.1109/TPAMI.2020.2983686
10.1364/AO.397844
10.1126/science.1072678
10.1109/CVPR.2017.632
10.1109/ICCV48922.2021.00717
10.1016/j.ecolind.2022.109090
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2023.108434
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2023_108434
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACMHX
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
ADSLC
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AEXOQ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWPP
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c284t-856909cefc4d9d9d35a69a706ad6660dbeff2dce32e77ce38d19ec9872a187ef3
ISSN 0168-1699
IngestDate Fri Aug 22 20:27:27 EDT 2025
Tue Jul 01 01:58:33 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-856909cefc4d9d9d35a69a706ad6660dbeff2dce32e77ce38d19ec9872a187ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2391-0782
0000-0002-4910-5001
PQID 3040350701
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040350701
crossref_citationtrail_10_1016_j_compag_2023_108434
crossref_primary_10_1016_j_compag_2023_108434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
References Ashourloo (10.1016/j.compag.2023.108434_b0015) 2014; 6
10.1016/j.compag.2023.108434_b0060
Mahlein (10.1016/j.compag.2023.108434_b0135) 2013; 128
Peng (10.1016/j.compag.2023.108434_b0150) 2005; 27
Huang (10.1016/j.compag.2023.108434_b0100) 2007; 8
Nutter (10.1016/j.compag.2023.108434_b0145) 1991; 75
Ma (10.1016/j.compag.2023.108434_b0125) 2018; 45
An (10.1016/j.compag.2023.108434_b0005) 2022; 141
Chen (10.1016/j.compag.2023.108434_b0065) 2014; 15
Shakoor (10.1016/j.compag.2023.108434_b0170) 2017; 38
Zeng (10.1016/j.compag.2023.108434_b0215) 2022; 9
10.1016/j.compag.2023.108434_b0105
Chu (10.1016/j.compag.2023.108434_b0070) 2021; 1
Thomas (10.1016/j.compag.2023.108434_b0195) 2017; 44
Calderon (10.1016/j.compag.2023.108434_b0040) 2013; 139
Brown (10.1016/j.compag.2023.108434_b0030) 2002; 297
Wang (10.1016/j.compag.2023.108434_b0200) 2020; 43
10.1016/j.compag.2023.108434_b0205
10.1016/j.compag.2023.108434_b0020
10.1016/j.compag.2023.108434_b0240
10.1016/j.compag.2023.108434_b0140
10.1016/j.compag.2023.108434_b0160
Schmidhuber (10.1016/j.compag.2023.108434_b0165) 2015; 61
Arnal Barbedo (10.1016/j.compag.2023.108434_b0010) 2019; 3
Bock (10.1016/j.compag.2023.108434_b0025) 2022; 47
10.1016/j.compag.2023.108434_b0120
Bruce (10.1016/j.compag.2023.108434_b0035) 2002; 40
Zheng (10.1016/j.compag.2023.108434_b0235) 2020; 59
Guo (10.1016/j.compag.2023.108434_b0085) 2021; 13
Mahlein (10.1016/j.compag.2023.108434_b0130) 2016; 100
Chen (10.1016/j.compag.2023.108434_b0050) 2020; 12
Han (10.1016/j.compag.2023.108434_b0090) 2012; 34
Taghanaki (10.1016/j.compag.2023.108434_b0185) 2019; 75
Terentev (10.1016/j.compag.2023.108434_b0190) 2022; 22
Zhang (10.1016/j.compag.2023.108434_b0220) 2019; 11
Chen (10.1016/j.compag.2023.108434_b0045) 2014; 36
Khan (10.1016/j.compag.2023.108434_b0115) 2018; 6
Deng (10.1016/j.compag.2023.108434_b0075) 2023; 61
10.1016/j.compag.2023.108434_b0095
10.1016/j.compag.2023.108434_b0155
10.1016/j.compag.2023.108434_b0210
10.1016/j.compag.2023.108434_b0055
10.1016/j.compag.2023.108434_b0110
Su (10.1016/j.compag.2023.108434_b0180) 2021; 17
10.1016/j.compag.2023.108434_b0175
10.1016/j.compag.2023.108434_b0230
References_xml – volume: 3
  year: 2019
  ident: 10.1016/j.compag.2023.108434_b0010
  article-title: A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses
  publication-title: Drones
– volume: 6
  start-page: 14118
  year: 2018
  ident: 10.1016/j.compag.2023.108434_b0115
  article-title: Modern trends in hyperspectral image analysis: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812999
– volume: 6
  start-page: 5107
  year: 2014
  ident: 10.1016/j.compag.2023.108434_b0015
  article-title: Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs6065107
– ident: 10.1016/j.compag.2023.108434_b0140
  doi: 10.1109/CVPR.2018.00183
– volume: 36
  start-page: 311
  year: 2014
  ident: 10.1016/j.compag.2023.108434_b0045
  article-title: Integration of cultivar resistance and fungicide application for control of wheat stripe rust
  publication-title: Can. J. Plant Pathol.
  doi: 10.1080/07060661.2014.924560
– volume: 139
  start-page: 231
  year: 2013
  ident: 10.1016/j.compag.2023.108434_b0040
  article-title: High-resolution airborne hyperspectral and thermal imagery for early, detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.031
– volume: 61
  start-page: 4406111
  year: 2023
  ident: 10.1016/j.compag.2023.108434_b0075
  article-title: Quantitative Estimation of Wheat Stripe Rust Disease Index Using Unmanned Aerial Vehicle Hyperspectral Imagery and Innovative Vegetation Indices
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2023.3292130
– volume: 40
  start-page: 2331
  year: 2002
  ident: 10.1016/j.compag.2023.108434_b0035
  article-title: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.804721
– volume: 8
  start-page: 187
  year: 2007
  ident: 10.1016/j.compag.2023.108434_b0100
  article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-007-9038-9
– volume: 38
  start-page: 184
  year: 2017
  ident: 10.1016/j.compag.2023.108434_b0170
  article-title: High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.05.006
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compag.2023.108434_b0165
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1016/j.compag.2023.108434_b0160
  doi: 10.1007/978-3-319-24574-4_28
– volume: 75
  start-page: 24
  year: 2019
  ident: 10.1016/j.compag.2023.108434_b0185
  article-title: Combo loss: Handling input and output imbalance in multi-organ segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.04.005
– volume: 34
  start-page: 1607
  year: 2012
  ident: 10.1016/j.compag.2023.108434_b0090
  article-title: Characterization and inheritance of resistance to stripe rust in the wheat line Guinong775
  publication-title: Yi Chuan= Hereditas
  doi: 10.3724/SP.J.1005.2012.01607
– ident: 10.1016/j.compag.2023.108434_b0230
  doi: 10.1109/CVPR.2017.660
– volume: 45
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compag.2023.108434_b0125
  article-title: Researches and control of wheat stripe rust in China
  publication-title: J Plant Prot.
– volume: 1
  start-page: 339
  year: 2021
  ident: 10.1016/j.compag.2023.108434_b0070
  article-title: Effects of wheat cultivar mixtures on population genetic structure of puccinia striiformis f. sp. tritici
  publication-title: PhytoFrontiers™
  doi: 10.1094/PHYTOFR-01-21-0006-R
– ident: 10.1016/j.compag.2023.108434_b0095
  doi: 10.1109/ICASSP40776.2020.9053405
– volume: 47
  start-page: 14
  year: 2022
  ident: 10.1016/j.compag.2023.108434_b0025
  article-title: A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues
  publication-title: Trop. Plant Pathol.
  doi: 10.1007/s40858-021-00454-0
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.compag.2023.108434_b0150
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: 10.1016/j.compag.2023.108434_b0155
  doi: 10.3390/land7030081
– volume: 17
  start-page: 2242
  year: 2021
  ident: 10.1016/j.compag.2023.108434_b0180
  article-title: Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.2979237
– volume: 22
  start-page: 757
  year: 2022
  ident: 10.1016/j.compag.2023.108434_b0190
  article-title: Current state of hyperspectral remote sensing for early plant disease detection: A review
  publication-title: Sensors
  doi: 10.3390/s22030757
– ident: 10.1016/j.compag.2023.108434_b0210
  doi: 10.1007/978-3-030-58539-6_11
– volume: 75
  start-page: 1187
  year: 1991
  ident: 10.1016/j.compag.2023.108434_b0145
  article-title: Disease Assessment Terms And Concepts
  publication-title: Plant Dis.
– volume: 9
  start-page: 37
  year: 2022
  ident: 10.1016/j.compag.2023.108434_b0215
  article-title: Wheat stripe rust and integration of sustainable control strategies in China
  publication-title: Front. Agric. Sci. Eng
  doi: 10.15302/J-FASE-2021405
– volume: 44
  start-page: 23
  year: 2017
  ident: 10.1016/j.compag.2023.108434_b0195
  article-title: Observation of plant-pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16127
– ident: 10.1016/j.compag.2023.108434_b0055
– ident: 10.1016/j.compag.2023.108434_b0105
  doi: 10.1007/978-3-030-72087-2_11
– ident: 10.1016/j.compag.2023.108434_b0205
  doi: 10.1109/CVPR.2017.41
– volume: 13
  year: 2021
  ident: 10.1016/j.compag.2023.108434_b0085
  article-title: Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology
  publication-title: Remote Sens. (Basel)
– volume: 128
  start-page: 21
  year: 2013
  ident: 10.1016/j.compag.2023.108434_b0135
  article-title: Development of spectral indices for detecting and identifying plant diseases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.019
– volume: 15
  start-page: 433
  year: 2014
  ident: 10.1016/j.compag.2023.108434_b0065
  article-title: Wheat stripe (yellow) rust caused by P uccinia striiformis f. sp. tritici
  publication-title: Mol. Plant Pathol
  doi: 10.1111/mpp.12116
– ident: 10.1016/j.compag.2023.108434_b0120
  doi: 10.1016/j.neucom.2022.07.054
– volume: 11
  year: 2019
  ident: 10.1016/j.compag.2023.108434_b0220
  article-title: A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images
  publication-title: Remote Sens. (Basel)
– ident: 10.1016/j.compag.2023.108434_b0060
  doi: 10.1007/978-3-030-01234-2_49
– volume: 12
  start-page: 239
  year: 2020
  ident: 10.1016/j.compag.2023.108434_b0050
  article-title: Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen
  publication-title: Food Secur
  doi: 10.1007/s12571-020-01016-z
– volume: 100
  start-page: 241
  year: 2016
  ident: 10.1016/j.compag.2023.108434_b0130
  article-title: Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-15-0340-FE
– ident: 10.1016/j.compag.2023.108434_b0020
  doi: 10.1109/ICCV.2019.00338
– ident: 10.1016/j.compag.2023.108434_b0240
  doi: 10.1109/ICCV.2017.244
– volume: 43
  start-page: 3349
  year: 2020
  ident: 10.1016/j.compag.2023.108434_b0200
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume: 59
  start-page: 8003
  year: 2020
  ident: 10.1016/j.compag.2023.108434_b0235
  article-title: Using continous wavelet analysis for monitoring wheat yellow rust in different infestation stages based on unmanned aerial vehicle hyperspectral images
  publication-title: Appl. Opt.
  doi: 10.1364/AO.397844
– volume: 297
  start-page: 537
  year: 2002
  ident: 10.1016/j.compag.2023.108434_b0030
  article-title: Epidemiology - Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease
  publication-title: Science
  doi: 10.1126/science.1072678
– ident: 10.1016/j.compag.2023.108434_b0110
  doi: 10.1109/CVPR.2017.632
– ident: 10.1016/j.compag.2023.108434_b0175
  doi: 10.1109/ICCV48922.2021.00717
– volume: 141
  year: 2022
  ident: 10.1016/j.compag.2023.108434_b0005
  article-title: Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2022.109090
SSID ssj0016987
Score 2.506316
Snippet Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 108434
SubjectTerms agriculture
algorithms
China
crop yield
data collection
disease detection
electronics
image analysis
pests
phenotype
plant height
radiative transfer
regression analysis
stripe rust of wheat
unmanned aerial vehicles
vegetation
wheat
Title Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index
URI https://www.proquest.com/docview/3040350701
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7a9NIeSp80fbGF3sQaS6tnb6ZJCCWkPdjFzUXIq11bwZEcx6aPQ-lP78w-JJkGmhaDLJa1ZHY-Zmdmv5kh5G3ERQYqL2KKhyEDUBSsEGXKlK_CUPAYcKNZvqfx8ST8MI2m3Ymuzi7ZzAbix7V5Jf8jVRgDuWKW7D9Itn0oDMA9yBeuIGG43kjGn6pvcsmWyPvx1nJuKK2GOTgZffYW4GOaVEpdWuMCVIcmwB1IuXLtIuYM97ESkytrnW-GTKKqRrKGjiZ8RWWNGSXVSnqYn-GOdDxdZ7Fv27oGEabqc9dfRzNui_naVvlokXQgLRu4aofa8PV0Wy_a0S928Ky67IH5bNFsdZi3qeff3QZs4xcB73FBbEgzBj82Nm2SnE4GQ8RbIf8x5CG7VtOboMP5QFP15wN8sp3f7WzuNP_0Y340OTnJx4fT8W1yJwCPAptdDH62bCB4f2oy6-2fcVmWmgr45zt2rZjdTVxbJuMH5L51KejI4OMhuSXrR-TeqFvwx-RXDym0QwoFpFBACt1BCjVIeUcRJ3QXJ7SPE2pxQhtFNU6owQlFnFCLE6px8oRMjg7H74-Z7b3BBBgsG5ZGcTbMhFQiLDP48KiIsyIZxkUJDu-wnEmlglJIHsgkga-09DMpYBGDwk8TqfhTslc3tXxGaBrjhorOfRyEsshmpVJZiqXsfB6rJNsn3K1lLmxheuyPsswdA_E8NxLIUQK5kcA-Ye2vVqYwy1_mv3FiykGD4rFYUctme5Vz0Ecc3KKh__wGc16Qux2KX5K9zXorX4Fdupm91oj6DUoalJI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pixel-level+regression+for+UAV+hyperspectral+images%3A+Deep+learning-based+quantitative+inverse+of+wheat+stripe+rust+disease+index&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Deng%2C+Jie&rft.au=Zhang%2C+Xunhe&rft.au=Yang%2C+Ziqian&rft.au=Zhou%2C+Congying&rft.date=2023-12-01&rft.issn=0168-1699&rft.volume=215+p.108434-&rft_id=info:doi/10.1016%2Fj.compag.2023.108434&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon