Hybridizing Cuckoo Search with Levenberg-Marquardt Algorithms in Optimization and Training of ANNs for Mass Appraisal of Properties

Various algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), ant colony algorithm (AC), cuckoo search (CS) algorithm, and firefly algorithm (FA) have been introduced to help optimize artificial neural networks (ANNs), speed up convergence and iteration rates, and escape f...

Full description

Saved in:
Bibliographic Details
Published inJournal of real estate literature Vol. 24; no. 2; pp. 473 - 492
Main Authors Yacim, Joseph Awoamim, Boshoff, Douw G.B., Khan, Abdullah
Format Journal Article
LanguageEnglish
Published Clemson American Real Estate Society 2016
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), ant colony algorithm (AC), cuckoo search (CS) algorithm, and firefly algorithm (FA) have been introduced to help optimize artificial neural networks (ANNs), speed up convergence and iteration rates, and escape from trapping into local optimum. However, despite the capabilities of these algorithms, it is only GA that has been utilized in the mass appraisal of properties. Therefore, in order to deal with problems of inconsistencies in appraisal/valuation estimates that sometimes occur during predictions, CS, a meta-heuristic algorithm is introduced into the mass appraisal industry. The proposed algorithm is combined with Levenberg-Marquardt (LM) and back propagation (BP) algorithms to test their effectiveness in the prediction of property values. We analyzed a dataset of 3,494 property transactions from the city of Cape Town, South Africa. The results indicate that CSLM and CSBP outperformed standalone the conventional BP algorithm in optimizing and training of ANN for mass appraisal of properties. This is reflected in the minimal error matrices predicted by both CSLM and CSBP algorithms.
AbstractList Various algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), ant colony algorithm (AC), cuckoo search (CS) algorithm, and firefly algorithm (FA) have been introduced to help optimize artificial neural networks (ANNs), speed up convergence and iteration rates, and escape from trapping into local optimum. However, despite the capabilities of these algorithms, it is only GA that has been utilized in the mass appraisal of properties. Therefore, in order to deal with problems of inconsistencies in appraisal/valuation estimates that sometimes occur during predictions, CS, a meta-heuristic algorithm is introduced into the mass appraisal industry. The proposed algorithm is combined with Levenberg-Marquardt (LM) and back propagation (BP) algorithms to test their effectiveness in the prediction of property values. We analyzed a dataset of 3,494 property transactions from the city of Cape Town, South Africa. The results indicate that CSLM and CSBP outperformed standalone the conventional BP algorithm in optimizing and training of ANN for mass appraisal of properties. This is reflected in the minimal error matrices predicted by both CSLM and CSBP algorithms.
Author Yacim, Joseph Awoamim
Khan, Abdullah
Boshoff, Douw G.B.
Author_xml – sequence: 1
  givenname: Joseph Awoamim
  surname: Yacim
  fullname: Yacim, Joseph Awoamim
  organization: University of Pretoria, Pretoria, South Africa
– sequence: 2
  givenname: Douw G.B.
  surname: Boshoff
  fullname: Boshoff, Douw G.B.
  organization: University of Pretoria, Pretoria, South Africa
– sequence: 3
  givenname: Abdullah
  surname: Khan
  fullname: Khan, Abdullah
  organization: Agriculture University Peshawar, Peshawar, Pakistan
BookMark eNo9kMlOwzAQhi0EEmV5BJAlzil24i3HqmKTyiIB52iS2MWltcM4BcGVFydVgcv8h38Z6TsguyEGS8gpZ2PODDsfTiGl0OOccTXmOSuZKMwOGXGpi8wYVu6SEStznWkpxD45SGnBGCuNkSPyff1Zo2_9lw9zOl03rzHSRwvYvNAP37_QmX23obY4z24B39aAbU8ny3nEwVwl6gO973q_8l_Q-xgohJY-IfiwmYuOTu7uEnUR6S2kRCddN3gJlhvrAWNnsfc2HZE9B8tkj3_1kDxfXjxNr7PZ_dXNdDLLmtyIPlNOt5rJQknLLBeQg5S1qwFaXYLjCrQ1tlCudByMYqZuWlkLAbUp67Y1pjgkZ9vdDuPb2qa-WsQ1huFlxY1SQslhfEipbarBmBJaV3XoV4CfFWfVBnj1B7zaAK_-gA_Fk21xkfqI_61cGG1KnRc_GNiBNQ
CitedBy_id crossref_primary_10_3390_risks8040112
crossref_primary_10_3390_buildings13102464
crossref_primary_10_3390_buildings13071603
ContentType Journal Article
Copyright 2016 American Real Estate Society
Copyright American Real Estate Society 2016
Copyright_xml – notice: 2016 American Real Estate Society
– notice: Copyright American Real Estate Society 2016
DBID AAYXX
CITATION
0U~
1-H
3V.
4T-
4U-
7WY
7WZ
7XB
87Z
8BJ
8FK
8FL
8G5
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
GUQSH
JBE
K60
K6~
L.-
L.0
M0C
M2O
MBDVC
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
S0X
DOI 10.1080/10835547.2016.12090438
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
ProQuest Central (Corporate)
Docstoc
University Readers
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global (ProQuest)
ProQuest Research Library
Research Library (Corporate)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
University Readers
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SIRS Editorial
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
Trade PRO
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
International Bibliography of the Social Sciences (IBSS)
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
Docstoc
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1573-8809
EndPage 492
ExternalDocumentID 4312979851
10_1080_10835547_2016_12090438
24878972
Genre Feature
GroupedDBID -~X
.86
0BK
0R~
29L
2WC
3V.
43D
5GY
7WY
8FL
8G5
8R4
8R5
8VB
AAHSX
AAMFJ
AAMIU
AAPUL
ABBHK
ABJNI
ABLIJ
ABUWG
ABXSQ
ABXYU
ACGFO
ACHDO
ACIHN
ADACV
ADAHI
ADINQ
ADKVQ
ADULT
AEAQA
AECIN
AEHFS
AEISY
AELHJ
AEUPB
AEYOC
AEZRU
AFKRA
AGDLA
AGRBW
AHBYD
AHDZW
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AWYRJ
AZQEC
BENPR
BEZIV
BGNMA
BKOMP
BMOTO
BPHCQ
CCPQU
CS3
DGFLZ
DWQXO
EBA
EBE
EBR
EBS
EBU
EMK
EOH
FAC
FAS
FJW
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K1G
K60
K6~
M0C
M2O
M4Y
M4Z
NU0
P2P
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
Q2X
QWB
RNANH
ROSJB
RSYQP
RXW
S0X
SA0
SJN
TBQAZ
TDBHL
TEG
TFH
TFL
TN5
TNTFI
TUROJ
U5U
ZL0
AAYXX
ABXUL
ACLSK
AFWLO
CITATION
0U~
1-H
4T-
4U-
7XB
8BJ
8FK
FQK
JBE
L.-
L.0
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c284t-6f7d705365e0e14a2a55bfbaad79af16a7e8e36f9f1a8608bcd5b44ab89bdd883
IEDL.DBID BENPR
ISSN 0927-7544
IngestDate Thu Oct 10 20:23:45 EDT 2024
Thu Sep 12 18:53:41 EDT 2024
Sun Oct 13 11:57:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-6f7d705365e0e14a2a55bfbaad79af16a7e8e36f9f1a8608bcd5b44ab89bdd883
PQID 1866465536
PQPubID 32327
PageCount 20
ParticipantIDs proquest_journals_1866465536
crossref_primary_10_1080_10835547_2016_12090438
jstor_primary_24878972
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Clemson
PublicationPlace_xml – name: Clemson
PublicationTitle Journal of real estate literature
PublicationYear 2016
Publisher American Real Estate Society
Taylor & Francis Ltd
Publisher_xml – name: American Real Estate Society
– name: Taylor & Francis Ltd
SSID ssj0009885
Score 2.0206535
Snippet Various algorithms, including particle swarm optimization (PSO), genetic algorithm (GA), ant colony algorithm (AC), cuckoo search (CS) algorithm, and firefly...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Publisher
StartPage 473
SubjectTerms Accuracy
Algorithms
Back propagation
Data, Methods, and Technology
Datasets
Fuzzy logic
Fuzzy sets
Genetic algorithms
Neural networks
Optimization techniques
Propagation
Property values
Real estate appraisal
Studies
Valuation
Title Hybridizing Cuckoo Search with Levenberg-Marquardt Algorithms in Optimization and Training of ANNs for Mass Appraisal of Properties
URI https://www.jstor.org/stable/24878972
https://www.proquest.com/docview/1866465536
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZg9wAXxKtiS6l84Gqapx-nKu1mN0G7SZSktOwlsmPnuC3d5Rfwx_HkQYWQOFpj2ZLHnhnP4xuEPkuodA18h3hBZ0gAeJ9SdA5RnmSCtrr1NdQObzOa3ARf78K70eF2GNMqJ5nYC2p934KP_AKA2QDry6eXDz8IdI2C6OrYQuM5mnv2p-DN0PwqzoryCXaX9005HeExAlBvU40wd6y44KBrGaR30S9QQgpBsb_U05Ch-I-U7lXP6jV6NdqMOBqY_AY9M_u36MVUUnx4h34l3yFJJt2l2RpfW6szz_EQB8K3aZ3gTfwtzq7ick22UQk27LLG0Wadl5a4rXCa4byorRTb9Q4rHGVLXJdRmsFy-cqOswrb3yLeRlWFo6KwtCraAKmAPMCytjble3SziuvrhIzdFUhrVdKR0I5pZp8gDY1j3EB6MgxVp6TUTMjOpZIZbnzaic6VnDpctTpUQSAVF0przv0TNNvf780HhF3BpPBDJpnyAt6GKmwDJaQvjCM6regCXUyH2jwMIBqNO2KTTmxogA3NxIYFOunP_s90uy7jgnkLdDYxoxlf26F5uhun_yd_RC9hm8GFcoZmx8ef5pM1Ko7qHM2jZLm7PR9v0G_xib8i
link.rule.ids 315,783,787,4033,21402,27937,27938,27939,33758,43819,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPZQL4lWxtIAPXEPz9ONUpW12E0icKEmh9BLZsXPcFnb5BfxxPHlQISSO1liO5BnPTObxDUIfJHS6hoHr-OFgnBDwPiUfXEf5knLS6z7Q0DtcCJJeh59uops54LabyyoXnTgqan3XQ4z8DIDZAOsrIOf33x2YGgXZ1XmExmN0CFBVVqoPLxJR1Q-wu2wcyulynzoA9bb0CDPXqgsGtpZCeRf5CC2kkBT7yzxNFYr_aOnR9Kyfoaezz4jjicnP0SOzfYGOlpbi3Uv0K_0GRTLZbSY2-NJ6nWWJpzwQ_pq1Kc6TL4m4SOqNU8Q1-LBXLY7zTVlbYtHgTOCyaq0Wux0DVjgWV7it40zAceXarkWD7d8iLuKmwXFVWVoT50CqoA6wbq1P-Qpdr5P2MnXm6QpOb03S3iED1dQ-QRIZ13ih9GUUqUFJqSmXg0ckNcwEZOCDJxlxmep1pMJQKsaV1owFx-hge7c1rxH2OJU8iKikyg9ZH6moDxWXATcuH7QiK3S2XGp3P4FodN6MTbqwoQM2dAsbVuh4vPs_2-25lHHqr9Dpwoxufm277kE23vyf_B4dpW2Rd3kmPp-gJ_DJKZxyig72P36at9bB2Kt3sxT9BibUwHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagKwEXxGtFYQEfuIbm4fhxQtlt2gbaJEqysOwlsmP72F1o-QX8cTx5sEJIHKOJHMkznpmMv_kGofcSOl1J5HshscYjwPcphfU9FUomaKe7SEPv8C6nm0vy6Sq-GvFPhxFWOfnE3lHrmw5q5AsgZgOur4gu7AiLKJerj7ffPZggBTet4ziN--iEEWdVM3RynuZldUfBy_sBnb4ImQe0b1O_MPed6-AQdxlAvegHaCeFC7K_QtWAVvzHY_dhaPUEPR7zR5wMCn-K7pn9M_Rwai8-PEe_Nt8AMJNdZ_kaX7gMtCjwcCeEv2bNBm_TL2l-nlZrb5dUkM8uG5xs10XlhLsaZzkuysZ5tOu-eIWTfImbKslyWK5Yuee8xu7PEe-SusZJWTpZnWxBVAImsGpcfvkCXa7S5mLjjZMWvM6Fp6NHLdPMHUcaG98ERIYyjpVVUmompA2oZIabiFphA8mpz1WnY0WIVFworTmPTtFsf7M3LxEOBJMiiplkKiS8i1XcESVkJIwvrFZ0jhbTpra3A6FGG4w8pZMaWlBDO6lhjk77vf_zuluXccHCOTqblNGOJ-_Q3tnJq_-L36EHzoDabZZ_fo0ewReHysoZmh1__DRvXK5xVG9HI_oNxKrErw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYBRIDIZING+CUCKOO+SEARCH+WITH+LEVENBERG-MARQUARDT+ALGORITHMS+IN+OPTIMIZATION+AND+TRAINING+OF+ANNS+FOR+MASS+APPRAISAL+OF+PROPERTIES&rft.jtitle=Journal+of+real+estate+literature&rft.au=Yacim%2C+Joseph+A&rft.au=Boshoff%2C+Douw+G+B&rft.au=Khan%2C+Abdullah&rft.date=2016&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0927-7544&rft.eissn=1573-8809&rft.volume=24&rft.issue=2&rft.spage=473&rft_id=info:doi/10.1080%2F10835547.2016.12090438&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4312979851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7544&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7544&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7544&client=summon