Classification of Driver Cognitive Load in Conditionally Automated Driving: Utilizing Electrocardiogram-Based Spectrogram with Lightweight Neural Network
With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take o...
Saved in:
Published in | Transportation research record Vol. 2678; no. 12; pp. 1560 - 1573 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take over control of the vehicle should the driving automation fail. However, estimation of cognitive load is challenging because of the difficulties in identifying high-level feature representation and accounting for interindividual differences. Physiological measures are believed to be promising candidates for cognitive load estimation in partially automated vehicles. However, current estimation methods are mainly based on the manual feature extraction of time- or frequency-domain indicators from physiological signals, which may not adapt to dynamic driving conditions. With the development of deep learning, the neural network has shown good performance in automatically capturing high-level features from input data. Inspired by this, we adopted a novel approach to classify driver cognitive load based on electrocardiogram (ECG) spectrograms, in which the driver’s ECG signal was collected and transformed into a 2D spectrogram by a short-time Fourier transform. A squeeze-and-excitation network-based deep-learning framework that can capture high-level features and pays more attention to the cognition-related features of the spectrogram was proposed for classification. Experiments on a publicly available dataset demonstrated that our model achieved an accuracy of 96.76% in differentiating two levels of cognitive load for a within-subject evaluation and 71.50% accuracy with an across-subjects evaluation. The results demonstrated the feasibility of detecting drivers’ cognitive load through deep learning using ECG spectrogram alone. |
---|---|
AbstractList | With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take over control of the vehicle should the driving automation fail. However, estimation of cognitive load is challenging because of the difficulties in identifying high-level feature representation and accounting for interindividual differences. Physiological measures are believed to be promising candidates for cognitive load estimation in partially automated vehicles. However, current estimation methods are mainly based on the manual feature extraction of time- or frequency-domain indicators from physiological signals, which may not adapt to dynamic driving conditions. With the development of deep learning, the neural network has shown good performance in automatically capturing high-level features from input data. Inspired by this, we adopted a novel approach to classify driver cognitive load based on electrocardiogram (ECG) spectrograms, in which the driver’s ECG signal was collected and transformed into a 2D spectrogram by a short-time Fourier transform. A squeeze-and-excitation network-based deep-learning framework that can capture high-level features and pays more attention to the cognition-related features of the spectrogram was proposed for classification. Experiments on a publicly available dataset demonstrated that our model achieved an accuracy of 96.76% in differentiating two levels of cognitive load for a within-subject evaluation and 71.50% accuracy with an across-subjects evaluation. The results demonstrated the feasibility of detecting drivers’ cognitive load through deep learning using ECG spectrogram alone. |
Author | Shi, Wenxin Wang, Ange Wang, Zuyuan He, Dengbo |
Author_xml | – sequence: 1 givenname: Wenxin surname: Shi fullname: Shi, Wenxin – sequence: 2 givenname: Zuyuan surname: Wang fullname: Wang, Zuyuan – sequence: 3 givenname: Ange surname: Wang fullname: Wang, Ange – sequence: 4 givenname: Dengbo orcidid: 0000-0003-4359-4083 surname: He fullname: He, Dengbo email: dengbohe@hkust-gz.edu.cn |
BookMark | eNp9kE1OwzAQhS1UJErpAdj5Aimx48QNu1LKjxTBArqOJrGdGty4clyqchNui9OyAonNzNOb983inaNBa1uJ0CWJJ4RwfhUnGSH5lFBGaEp5zk_QkJIsj1ic0gEa9veoD5yhcdfpKmYszxjjdIi-5gaCpXQNXtsWW4Vvnf6QDs9t02ofJC4sCKzb4LRC9ykwZo9nW2_X4KU4ALptrvHSa6M_g8QLI2vvbA1OaNs4WEc30IXoy-bg9w7eab_ChW5Wfif7iZ_k1oEJy--se79ApwpMJ8c_e4SWd4vX-UNUPN8_zmdFVNMp81EaC0I5F5WSUiWQ5hQ4UYKSKpWQpJUUVR6UEDSpUgCWpQmtEiVULRmTcZ2MED_-rZ3tOidVWWt_KMM70KYkcdmXXP4pOZDkF7lxeg1u_y8zOTIdNLJ8s1sX2uz-Ab4BOcKSew |
CitedBy_id | crossref_primary_10_1016_j_ergon_2025_103699 |
Cites_doi | 10.2114/jpa2.27.173 10.1177/03611981221090937 10.3758/s13428-020-01516-y 10.3141/2138-02 10.1109/TITS.2007.895298 10.1109/TBME.2018.2879346 10.4271/J3018_202012 10.1016/j.trf.2018.11.006 10.1111/psyp.14009 10.1109/TOCS56154.2022.10015982 10.1016/j.treng.2020.100008 10.1016/j.eswa.2021.114693 10.1109/51.993193 10.1007/BF02213420 10.1145/2556288.2557068 10.1016/j.aap.2020.105469 10.1109/CIC.2002.1166717 10.1016/j.bspc.2019.101634 10.1109/TITS.2015.2496157 10.3389/fnhum.2018.00431 10.3390/s21238019 10.1109/JBHI.2019.2911367 10.3389/fcomp.2021.775282 10.1109/TITS.2014.2324414 10.3389/fpsyg.2021.596038 10.1016/0001-4575(91)90008-S 10.1016/j.eswa.2013.05.068 10.1109/TPAMI.2022.3195549 10.3389/fnins.2018.00568 10.1016/j.eswa.2010.12.028 10.1109/TITS.2023.3345846 10.3791/53652 10.1016/j.dib.2023.109027 10.3390/brainsci10080526 10.1007/978-3-031-16014-1_66 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | AAYXX CITATION |
DOI | 10.1177/03611981241252797 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-4052 |
EndPage | 1573 |
ExternalDocumentID | 10_1177_03611981241252797 10.1177_03611981241252797 |
GrantInformation_xml | – fundername: Guangzhou Municipal Science and Technology Project grantid: 2023A03J0011 funderid: https://doi.org/10.13039/501100010256 – fundername: National Natural Science Foundation of China grantid: 52202425 funderid: https://doi.org/10.13039/501100001809 – fundername: Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone grantid: HZQB-KCZYB-2020083 – fundername: Guangzhou Science and Technology Program City-University Joint Funding grantid: 2023A03J0001 |
GroupedDBID | -TM -~X 0R~ 4.4 54M 5WW AADUE AAGGD AAGLT AAHPS AAPEO AAQXI AARIX AATAA AAULN AAWLO AAYOK AAZLU ABCCA ABCQX ABDEX ABFXH ABIDT ABKRH ABPNF ABQPY ABRHV ABUJY ABYTW ACCVJ ACDXX ACFZE ACGFS ACJER ACKIV ACOFE ACOXC ACSIQ ACUFS ACUIR ADEBD ADEIA ADPEE ADRRZ ADUKL AEDFJ AEDXQ AENEX AESZF AEWDL AEWHI AEXNY AFKRG AFMOU AFQAA AFUIA AGDVU AGKLV AGNHF AGNWV AHDMH AHHCN AHWHD AIZZC AJUZI AKSRI ALMA_UNASSIGNED_HOLDINGS ARTOV AYPQM BPACV CBRKF CCGJY CEADM DH. DOPDO DU5 DV7 DV8 EBS EJD F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 H~9 J8X K-O L7B MET MFT P2P Q1R SAFTQ SAUOL SCNPE SFC TN5 Y4B ZPLXX ZPPRI ZY4 ~02 ~32 AAEJI AAPII AAYXX ACCVC AJGYC AJVBE AMNSR CITATION |
ID | FETCH-LOGICAL-c284t-50d1277dbfeef3a592a71fd21b5ea35bedb95eadd23b5aa46532b3fdfce44e0c3 |
ISSN | 0361-1981 |
IngestDate | Tue Aug 05 12:04:45 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Jun 17 22:30:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Driver State Estimation ECG signal Automated Driving Cognitive Load Spectrogram |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-50d1277dbfeef3a592a71fd21b5ea35bedb95eadd23b5aa46532b3fdfce44e0c3 |
ORCID | 0000-0003-4359-4083 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1177_03611981241252797 crossref_primary_10_1177_03611981241252797 sage_journals_10_1177_03611981241252797 |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA |
PublicationTitle | Transportation research record |
PublicationYear | 2024 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | He, Wang, Khalil, Donmez, Qiao, Kumar 2022; 2676 Mehler, Reimer, Coughlin, Dusek 2009; 2138 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 Du N. (e_1_3_2_7_2) 2020; 22 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Elgendi M. (e_1_3_2_39_2) 2010 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 Song F. (e_1_3_2_34_2) 2010 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – volume: 2138 start-page: 6 year: 2009 end-page: 12 article-title: The Impact of Incremental Increases in Cognitive Workload on Physiological Arousal and Performance in Young Adult Drivers publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 2676 start-page: 670 year: 2022 end-page: 681 article-title: Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures publication-title: Transportation Research Record: Journal of the Transportation Research Board – start-page: 428 volume-title: Proc., 3rd International Conference on Bio-inspired Systems and Signal Processing, BIOSIGNALS 2010 year: 2010 ident: e_1_3_2_39_2 – ident: e_1_3_2_28_2 doi: 10.2114/jpa2.27.173 – ident: e_1_3_2_24_2 doi: 10.1177/03611981221090937 – ident: e_1_3_2_42_2 doi: 10.3758/s13428-020-01516-y – ident: e_1_3_2_25_2 doi: 10.3141/2138-02 – ident: e_1_3_2_19_2 doi: 10.1109/TITS.2007.895298 – ident: e_1_3_2_33_2 doi: 10.1109/TBME.2018.2879346 – ident: e_1_3_2_36_2 – ident: e_1_3_2_4_2 doi: 10.4271/J3018_202012 – ident: e_1_3_2_8_2 doi: 10.1016/j.trf.2018.11.006 – ident: e_1_3_2_47_2 doi: 10.1111/psyp.14009 – ident: e_1_3_2_17_2 – ident: e_1_3_2_38_2 doi: 10.1109/TOCS56154.2022.10015982 – ident: e_1_3_2_23_2 doi: 10.1016/j.treng.2020.100008 – ident: e_1_3_2_48_2 doi: 10.1016/j.eswa.2021.114693 – ident: e_1_3_2_41_2 doi: 10.1109/51.993193 – ident: e_1_3_2_2_2 – ident: e_1_3_2_5_2 doi: 10.1007/BF02213420 – ident: e_1_3_2_10_2 doi: 10.1145/2556288.2557068 – ident: e_1_3_2_6_2 doi: 10.1016/j.aap.2020.105469 – ident: e_1_3_2_40_2 doi: 10.1109/CIC.2002.1166717 – ident: e_1_3_2_9_2 – ident: e_1_3_2_46_2 – ident: e_1_3_2_11_2 doi: 10.1016/j.bspc.2019.101634 – ident: e_1_3_2_3_2 – ident: e_1_3_2_13_2 doi: 10.1109/TITS.2015.2496157 – ident: e_1_3_2_21_2 doi: 10.3389/fnhum.2018.00431 – ident: e_1_3_2_31_2 – ident: e_1_3_2_12_2 doi: 10.3390/s21238019 – ident: e_1_3_2_49_2 doi: 10.1109/JBHI.2019.2911367 – ident: e_1_3_2_45_2 – ident: e_1_3_2_15_2 doi: 10.3389/fcomp.2021.775282 – ident: e_1_3_2_14_2 doi: 10.1109/TITS.2014.2324414 – start-page: 27 volume-title: Proc., 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization year: 2010 ident: e_1_3_2_34_2 – ident: e_1_3_2_30_2 doi: 10.3389/fpsyg.2021.596038 – ident: e_1_3_2_26_2 doi: 10.1016/0001-4575(91)90008-S – volume: 22 volume-title: Proc., 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications year: 2020 ident: e_1_3_2_7_2 – ident: e_1_3_2_44_2 doi: 10.1016/j.eswa.2013.05.068 – ident: e_1_3_2_50_2 doi: 10.1109/TPAMI.2022.3195549 – ident: e_1_3_2_20_2 doi: 10.3389/fnins.2018.00568 – ident: e_1_3_2_43_2 doi: 10.1016/j.eswa.2010.12.028 – ident: e_1_3_2_18_2 doi: 10.1109/TITS.2023.3345846 – ident: e_1_3_2_35_2 – ident: e_1_3_2_32_2 – ident: e_1_3_2_27_2 doi: 10.3791/53652 – ident: e_1_3_2_16_2 – ident: e_1_3_2_37_2 doi: 10.1016/j.dib.2023.109027 – ident: e_1_3_2_22_2 doi: 10.3390/brainsci10080526 – ident: e_1_3_2_29_2 doi: 10.1007/978-3-031-16014-1_66 |
SSID | ssib044964472 ssib031724273 ssj0033473 ssib053395398 |
Score | 2.4441648 |
Snippet | With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1560 |
Title | Classification of Driver Cognitive Load in Conditionally Automated Driving: Utilizing Electrocardiogram-Based Spectrogram with Lightweight Neural Network |
URI | https://journals.sagepub.com/doi/full/10.1177/03611981241252797 |
Volume | 2678 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPiE8xBsgPSEhUmRo7bmreCgxNaJpAWrXBSxXH9ohUJWhLBNs_4Vfxl7j-qOu2GxpIVRRZTpzmntjH18f3IvSSlpRnuaYJG3ORwPzLLBIykbA8HwouRaG1Vfkejvan2ccTdtLr_Y5US10rdsvLK_eV_I9VoQzsanbJ_oNlw02hAM7BvnAEC8PxRja2GS2N1ifwvvdnRmcBX_lCFHTQFNLv7JOV8_vNLwaTrm2AqgLZNBf4Pc_TtppXl8Z1sOdy45RWq2rkW8lbGOykTVbfOkGXc-AemKn9D-tdHZgwH2DvQ6crj0lvCKDuHtPHF_o2cA6i4OOx6YUHx6r-WQXEHnt39tfuois2Sif16RKXynWf9aloYlcGydZkIW4N7WpvJR2lScpddpddZctIOuIw_WUrnTkZ5eMYtiTqnM2m8WigT5lLorI5iNhlbNOkaREoDmEkdyritdjcvvZso-4ttEVg3kL6aGvy5dPn4EACtgacaMkYs4wDIV1uXQbyzZmNyOjIBKWZE0ks_r9fmLcxw9YbXaFWkS7RUqWje-iun-PgiQPsfdRT9QN0J4p8-RD9WoUubjR20MUButhAF1c1XoEuDtDFHrpvcAAuvga4OAIuNsDFEXCxAy72wH2Eph_2jt7tJz5LSFICtWoTNpQpvGsptFKaFoyTIk-1JKlgqqBMKCk4nElJqGBFYeIJEkG11KXKMjUs6WPUr5taPUE4leNSZ7mA3ktl-bDkXKbmBzfkXJRiGw0XL3hW-hD6JpPLfJYuouav22QbvQ6XfHfxY_5W-ZWx2sx3MefX13x645o76PbyU3uG-u1Zp54Dj27FC4_NP9EhwbY |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7o9sH6oLa1WK2ah0KhMGVmkjQb37Zry6rbpdIuVHxYJjdYXHZLnUXcf-K_9ZzMzLaWKkWYhxByv8x3knz5ArDDLddCBZ7ItjYJrr_okFCaRCqVGu1MEUJk-Q4OekPx8UJe1KxKugtTt-D3faJVYYniz3o5u0kpiR9kuFBGWEJozpVWD2GlTbcRWrDS-XL6eblWR2BE-LkGZyE0Yv_1LVG0c7SM4nfVf5tzUZ1HYwYJ5VCfgd6Z6R8odoMCFlHp-Cl8bepTkVG-7c9LrMriltTj_1X4GTypjVXWqUbXGjzw03V4fEPCcAN-xVc1iW8Uu5jNAnt_RVwP1m2ISaw_KxwbT9GHzsfj3uPkJ-vMyxmay97FCJjYOzYsx5PxAp3sqHqdx0a2LBHIkkOEW8fOLqM_-TDaQmZ92lz4Efd3GQmNYHEHFbP9OQyPj867vaR-7iGxiJFlIlOX5Uo5E7wPvJA6L1QWXJ4Z6QsujXdGo8u5nBtZFCQMlxseXLBeCJ9avgmt6WzqXwDLXNsGoQwOQy9UarV2GX2YoNbGmi1Im-4b2VoLnZ7kmIyyRv78dqtvwd4yymUlBPKvwLvUnaOmc_8e8uW9Q76FR73zk_6o_2Hw6RWs5mhcVbSabWiVV3P_Go2j0rypZ8FviWH_ZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULYg-aKsWq1bnoSAIaZO5OB3f1rZLbZelogv1KWRusLjsLjWL2H_iv_WcSdIbKiLkYTJMMpeTzHfmnG_OAGwLJ4zUUWRqz9gM11_kJFQ2U1rn1nhbxZhYvqO3R2N5fKbOWoMb7YVpR_DbDtGqsEVpsqa_e-Hjbutj3MVZt8DFMkITwjPXRt-BVbzjvAer_S-nHy_X6wiOCEFXAC2lQfy_2imKuo5RKQBeM3cLIRufNFaQUQ2tH_S3ld5Asms0sIRMg4dQdn1qCClfd5Y1dufiVrjH_-_0GjxolVbWb76ydVgJs0dw_1oow8fwM52uSbyjJGo2j-zgnDgfbL8jKLHhvPJsMsMc8pMnG-T0B-sv6zmqzcGnB_Bl79i4nkwnF5hkh80pPS6xZolIlr1H2PXs0yLlUw4jUzIbkpHhe7LzMgo4gs0dNQz3JzAeHH7eP8raYx8yh1hZZyr3Bdfa2xhCFJUyvNJF9LywKlRC2eCtwZT3XFhVVRQgjlsRfXRBypA7sQG92XwWngIr_J6LUlv8HIPUuTPGF3ThC42xzm5C3omwdG1MdDqaY1oWXRj026O-CW8uH1k0AUH-Vvg1ibTsBPznks_-ueQruHt6MCiHH0Ynz-EeRx2rYde8gF59vgxbqCPV9mX7I_wC5P4B6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Driver+Cognitive+Load+in+Conditionally+Automated+Driving%3A+Utilizing+Electrocardiogram-Based+Spectrogram+with+Lightweight+Neural+Network&rft.jtitle=Transportation+research+record&rft.au=Shi%2C+Wenxin&rft.au=Wang%2C+Zuyuan&rft.au=Wang%2C+Ange&rft.au=He%2C+Dengbo&rft.date=2024-12-01&rft.pub=SAGE+Publications&rft.issn=0361-1981&rft.eissn=2169-4052&rft.volume=2678&rft.issue=12&rft.spage=1560&rft.epage=1573&rft_id=info:doi/10.1177%2F03611981241252797&rft.externalDocID=10.1177_03611981241252797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon |