Classification of Driver Cognitive Load in Conditionally Automated Driving: Utilizing Electrocardiogram-Based Spectrogram with Lightweight Neural Network

With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take o...

Full description

Saved in:
Bibliographic Details
Published inTransportation research record Vol. 2678; no. 12; pp. 1560 - 1573
Main Authors Shi, Wenxin, Wang, Zuyuan, Wang, Ange, He, Dengbo
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take over control of the vehicle should the driving automation fail. However, estimation of cognitive load is challenging because of the difficulties in identifying high-level feature representation and accounting for interindividual differences. Physiological measures are believed to be promising candidates for cognitive load estimation in partially automated vehicles. However, current estimation methods are mainly based on the manual feature extraction of time- or frequency-domain indicators from physiological signals, which may not adapt to dynamic driving conditions. With the development of deep learning, the neural network has shown good performance in automatically capturing high-level features from input data. Inspired by this, we adopted a novel approach to classify driver cognitive load based on electrocardiogram (ECG) spectrograms, in which the driver’s ECG signal was collected and transformed into a 2D spectrogram by a short-time Fourier transform. A squeeze-and-excitation network-based deep-learning framework that can capture high-level features and pays more attention to the cognition-related features of the spectrogram was proposed for classification. Experiments on a publicly available dataset demonstrated that our model achieved an accuracy of 96.76% in differentiating two levels of cognitive load for a within-subject evaluation and 71.50% accuracy with an across-subjects evaluation. The results demonstrated the feasibility of detecting drivers’ cognitive load through deep learning using ECG spectrogram alone.
AbstractList With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take over control of the vehicle should the driving automation fail. However, estimation of cognitive load is challenging because of the difficulties in identifying high-level feature representation and accounting for interindividual differences. Physiological measures are believed to be promising candidates for cognitive load estimation in partially automated vehicles. However, current estimation methods are mainly based on the manual feature extraction of time- or frequency-domain indicators from physiological signals, which may not adapt to dynamic driving conditions. With the development of deep learning, the neural network has shown good performance in automatically capturing high-level features from input data. Inspired by this, we adopted a novel approach to classify driver cognitive load based on electrocardiogram (ECG) spectrograms, in which the driver’s ECG signal was collected and transformed into a 2D spectrogram by a short-time Fourier transform. A squeeze-and-excitation network-based deep-learning framework that can capture high-level features and pays more attention to the cognition-related features of the spectrogram was proposed for classification. Experiments on a publicly available dataset demonstrated that our model achieved an accuracy of 96.76% in differentiating two levels of cognitive load for a within-subject evaluation and 71.50% accuracy with an across-subjects evaluation. The results demonstrated the feasibility of detecting drivers’ cognitive load through deep learning using ECG spectrogram alone.
Author Shi, Wenxin
Wang, Ange
Wang, Zuyuan
He, Dengbo
Author_xml – sequence: 1
  givenname: Wenxin
  surname: Shi
  fullname: Shi, Wenxin
– sequence: 2
  givenname: Zuyuan
  surname: Wang
  fullname: Wang, Zuyuan
– sequence: 3
  givenname: Ange
  surname: Wang
  fullname: Wang, Ange
– sequence: 4
  givenname: Dengbo
  orcidid: 0000-0003-4359-4083
  surname: He
  fullname: He, Dengbo
  email: dengbohe@hkust-gz.edu.cn
BookMark eNp9kE1OwzAQhS1UJErpAdj5Aimx48QNu1LKjxTBArqOJrGdGty4clyqchNui9OyAonNzNOb983inaNBa1uJ0CWJJ4RwfhUnGSH5lFBGaEp5zk_QkJIsj1ic0gEa9veoD5yhcdfpKmYszxjjdIi-5gaCpXQNXtsWW4Vvnf6QDs9t02ofJC4sCKzb4LRC9ykwZo9nW2_X4KU4ALptrvHSa6M_g8QLI2vvbA1OaNs4WEc30IXoy-bg9w7eab_ChW5Wfif7iZ_k1oEJy--se79ApwpMJ8c_e4SWd4vX-UNUPN8_zmdFVNMp81EaC0I5F5WSUiWQ5hQ4UYKSKpWQpJUUVR6UEDSpUgCWpQmtEiVULRmTcZ2MED_-rZ3tOidVWWt_KMM70KYkcdmXXP4pOZDkF7lxeg1u_y8zOTIdNLJ8s1sX2uz-Ab4BOcKSew
CitedBy_id crossref_primary_10_1016_j_ergon_2025_103699
Cites_doi 10.2114/jpa2.27.173
10.1177/03611981221090937
10.3758/s13428-020-01516-y
10.3141/2138-02
10.1109/TITS.2007.895298
10.1109/TBME.2018.2879346
10.4271/J3018_202012
10.1016/j.trf.2018.11.006
10.1111/psyp.14009
10.1109/TOCS56154.2022.10015982
10.1016/j.treng.2020.100008
10.1016/j.eswa.2021.114693
10.1109/51.993193
10.1007/BF02213420
10.1145/2556288.2557068
10.1016/j.aap.2020.105469
10.1109/CIC.2002.1166717
10.1016/j.bspc.2019.101634
10.1109/TITS.2015.2496157
10.3389/fnhum.2018.00431
10.3390/s21238019
10.1109/JBHI.2019.2911367
10.3389/fcomp.2021.775282
10.1109/TITS.2014.2324414
10.3389/fpsyg.2021.596038
10.1016/0001-4575(91)90008-S
10.1016/j.eswa.2013.05.068
10.1109/TPAMI.2022.3195549
10.3389/fnins.2018.00568
10.1016/j.eswa.2010.12.028
10.1109/TITS.2023.3345846
10.3791/53652
10.1016/j.dib.2023.109027
10.3390/brainsci10080526
10.1007/978-3-031-16014-1_66
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID AAYXX
CITATION
DOI 10.1177/03611981241252797
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-4052
EndPage 1573
ExternalDocumentID 10_1177_03611981241252797
10.1177_03611981241252797
GrantInformation_xml – fundername: Guangzhou Municipal Science and Technology Project
  grantid: 2023A03J0011
  funderid: https://doi.org/10.13039/501100010256
– fundername: National Natural Science Foundation of China
  grantid: 52202425
  funderid: https://doi.org/10.13039/501100001809
– fundername: Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone
  grantid: HZQB-KCZYB-2020083
– fundername: Guangzhou Science and Technology Program City-University Joint Funding
  grantid: 2023A03J0001
GroupedDBID -TM
-~X
0R~
4.4
54M
5WW
AADUE
AAGGD
AAGLT
AAHPS
AAPEO
AAQXI
AARIX
AATAA
AAULN
AAWLO
AAYOK
AAZLU
ABCCA
ABCQX
ABDEX
ABFXH
ABIDT
ABKRH
ABPNF
ABQPY
ABRHV
ABUJY
ABYTW
ACCVJ
ACDXX
ACFZE
ACGFS
ACJER
ACKIV
ACOFE
ACOXC
ACSIQ
ACUFS
ACUIR
ADEBD
ADEIA
ADPEE
ADRRZ
ADUKL
AEDFJ
AEDXQ
AENEX
AESZF
AEWDL
AEWHI
AEXNY
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AHDMH
AHHCN
AHWHD
AIZZC
AJUZI
AKSRI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AYPQM
BPACV
CBRKF
CCGJY
CEADM
DH.
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
H~9
J8X
K-O
L7B
MET
MFT
P2P
Q1R
SAFTQ
SAUOL
SCNPE
SFC
TN5
Y4B
ZPLXX
ZPPRI
ZY4
~02
~32
AAEJI
AAPII
AAYXX
ACCVC
AJGYC
AJVBE
AMNSR
CITATION
ID FETCH-LOGICAL-c284t-50d1277dbfeef3a592a71fd21b5ea35bedb95eadd23b5aa46532b3fdfce44e0c3
ISSN 0361-1981
IngestDate Tue Aug 05 12:04:45 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Tue Jun 17 22:30:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Driver State Estimation ECG signal
Automated Driving
Cognitive Load
Spectrogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-50d1277dbfeef3a592a71fd21b5ea35bedb95eadd23b5aa46532b3fdfce44e0c3
ORCID 0000-0003-4359-4083
PageCount 14
ParticipantIDs crossref_citationtrail_10_1177_03611981241252797
crossref_primary_10_1177_03611981241252797
sage_journals_10_1177_03611981241252797
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
PublicationTitle Transportation research record
PublicationYear 2024
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References He, Wang, Khalil, Donmez, Qiao, Kumar 2022; 2676
Mehler, Reimer, Coughlin, Dusek 2009; 2138
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
Du N. (e_1_3_2_7_2) 2020; 22
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
Elgendi M. (e_1_3_2_39_2) 2010
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
Song F. (e_1_3_2_34_2) 2010
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – volume: 2138
  start-page: 6
  year: 2009
  end-page: 12
  article-title: The Impact of Incremental Increases in Cognitive Workload on Physiological Arousal and Performance in Young Adult Drivers
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– volume: 2676
  start-page: 670
  year: 2022
  end-page: 681
  article-title: Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– start-page: 428
  volume-title: Proc., 3rd International Conference on Bio-inspired Systems and Signal Processing, BIOSIGNALS 2010
  year: 2010
  ident: e_1_3_2_39_2
– ident: e_1_3_2_28_2
  doi: 10.2114/jpa2.27.173
– ident: e_1_3_2_24_2
  doi: 10.1177/03611981221090937
– ident: e_1_3_2_42_2
  doi: 10.3758/s13428-020-01516-y
– ident: e_1_3_2_25_2
  doi: 10.3141/2138-02
– ident: e_1_3_2_19_2
  doi: 10.1109/TITS.2007.895298
– ident: e_1_3_2_33_2
  doi: 10.1109/TBME.2018.2879346
– ident: e_1_3_2_36_2
– ident: e_1_3_2_4_2
  doi: 10.4271/J3018_202012
– ident: e_1_3_2_8_2
  doi: 10.1016/j.trf.2018.11.006
– ident: e_1_3_2_47_2
  doi: 10.1111/psyp.14009
– ident: e_1_3_2_17_2
– ident: e_1_3_2_38_2
  doi: 10.1109/TOCS56154.2022.10015982
– ident: e_1_3_2_23_2
  doi: 10.1016/j.treng.2020.100008
– ident: e_1_3_2_48_2
  doi: 10.1016/j.eswa.2021.114693
– ident: e_1_3_2_41_2
  doi: 10.1109/51.993193
– ident: e_1_3_2_2_2
– ident: e_1_3_2_5_2
  doi: 10.1007/BF02213420
– ident: e_1_3_2_10_2
  doi: 10.1145/2556288.2557068
– ident: e_1_3_2_6_2
  doi: 10.1016/j.aap.2020.105469
– ident: e_1_3_2_40_2
  doi: 10.1109/CIC.2002.1166717
– ident: e_1_3_2_9_2
– ident: e_1_3_2_46_2
– ident: e_1_3_2_11_2
  doi: 10.1016/j.bspc.2019.101634
– ident: e_1_3_2_3_2
– ident: e_1_3_2_13_2
  doi: 10.1109/TITS.2015.2496157
– ident: e_1_3_2_21_2
  doi: 10.3389/fnhum.2018.00431
– ident: e_1_3_2_31_2
– ident: e_1_3_2_12_2
  doi: 10.3390/s21238019
– ident: e_1_3_2_49_2
  doi: 10.1109/JBHI.2019.2911367
– ident: e_1_3_2_45_2
– ident: e_1_3_2_15_2
  doi: 10.3389/fcomp.2021.775282
– ident: e_1_3_2_14_2
  doi: 10.1109/TITS.2014.2324414
– start-page: 27
  volume-title: Proc., 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization
  year: 2010
  ident: e_1_3_2_34_2
– ident: e_1_3_2_30_2
  doi: 10.3389/fpsyg.2021.596038
– ident: e_1_3_2_26_2
  doi: 10.1016/0001-4575(91)90008-S
– volume: 22
  volume-title: Proc., 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
  year: 2020
  ident: e_1_3_2_7_2
– ident: e_1_3_2_44_2
  doi: 10.1016/j.eswa.2013.05.068
– ident: e_1_3_2_50_2
  doi: 10.1109/TPAMI.2022.3195549
– ident: e_1_3_2_20_2
  doi: 10.3389/fnins.2018.00568
– ident: e_1_3_2_43_2
  doi: 10.1016/j.eswa.2010.12.028
– ident: e_1_3_2_18_2
  doi: 10.1109/TITS.2023.3345846
– ident: e_1_3_2_35_2
– ident: e_1_3_2_32_2
– ident: e_1_3_2_27_2
  doi: 10.3791/53652
– ident: e_1_3_2_16_2
– ident: e_1_3_2_37_2
  doi: 10.1016/j.dib.2023.109027
– ident: e_1_3_2_22_2
  doi: 10.3390/brainsci10080526
– ident: e_1_3_2_29_2
  doi: 10.1007/978-3-031-16014-1_66
SSID ssib044964472
ssib031724273
ssj0033473
ssib053395398
Score 2.4441648
Snippet With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1560
Title Classification of Driver Cognitive Load in Conditionally Automated Driving: Utilizing Electrocardiogram-Based Spectrogram with Lightweight Neural Network
URI https://journals.sagepub.com/doi/full/10.1177/03611981241252797
Volume 2678
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK9wIPiE8xBsgPSEhUmRo7bmreCgxNaJpAWrXBSxXH9ohUJWhLBNs_4Vfxl7j-qOu2GxpIVRRZTpzmntjH18f3IvSSlpRnuaYJG3ORwPzLLBIykbA8HwouRaG1Vfkejvan2ccTdtLr_Y5US10rdsvLK_eV_I9VoQzsanbJ_oNlw02hAM7BvnAEC8PxRja2GS2N1ifwvvdnRmcBX_lCFHTQFNLv7JOV8_vNLwaTrm2AqgLZNBf4Pc_TtppXl8Z1sOdy45RWq2rkW8lbGOykTVbfOkGXc-AemKn9D-tdHZgwH2DvQ6crj0lvCKDuHtPHF_o2cA6i4OOx6YUHx6r-WQXEHnt39tfuois2Sif16RKXynWf9aloYlcGydZkIW4N7WpvJR2lScpddpddZctIOuIw_WUrnTkZ5eMYtiTqnM2m8WigT5lLorI5iNhlbNOkaREoDmEkdyritdjcvvZso-4ttEVg3kL6aGvy5dPn4EACtgacaMkYs4wDIV1uXQbyzZmNyOjIBKWZE0ks_r9fmLcxw9YbXaFWkS7RUqWje-iun-PgiQPsfdRT9QN0J4p8-RD9WoUubjR20MUButhAF1c1XoEuDtDFHrpvcAAuvga4OAIuNsDFEXCxAy72wH2Eph_2jt7tJz5LSFICtWoTNpQpvGsptFKaFoyTIk-1JKlgqqBMKCk4nElJqGBFYeIJEkG11KXKMjUs6WPUr5taPUE4leNSZ7mA3ktl-bDkXKbmBzfkXJRiGw0XL3hW-hD6JpPLfJYuouav22QbvQ6XfHfxY_5W-ZWx2sx3MefX13x645o76PbyU3uG-u1Zp54Dj27FC4_NP9EhwbY
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7o9sH6oLa1WK2ah0KhMGVmkjQb37Zry6rbpdIuVHxYJjdYXHZLnUXcf-K_9ZzMzLaWKkWYhxByv8x3knz5ArDDLddCBZ7ItjYJrr_okFCaRCqVGu1MEUJk-Q4OekPx8UJe1KxKugtTt-D3faJVYYniz3o5u0kpiR9kuFBGWEJozpVWD2GlTbcRWrDS-XL6eblWR2BE-LkGZyE0Yv_1LVG0c7SM4nfVf5tzUZ1HYwYJ5VCfgd6Z6R8odoMCFlHp-Cl8bepTkVG-7c9LrMriltTj_1X4GTypjVXWqUbXGjzw03V4fEPCcAN-xVc1iW8Uu5jNAnt_RVwP1m2ISaw_KxwbT9GHzsfj3uPkJ-vMyxmay97FCJjYOzYsx5PxAp3sqHqdx0a2LBHIkkOEW8fOLqM_-TDaQmZ92lz4Efd3GQmNYHEHFbP9OQyPj867vaR-7iGxiJFlIlOX5Uo5E7wPvJA6L1QWXJ4Z6QsujXdGo8u5nBtZFCQMlxseXLBeCJ9avgmt6WzqXwDLXNsGoQwOQy9UarV2GX2YoNbGmi1Im-4b2VoLnZ7kmIyyRv78dqtvwd4yymUlBPKvwLvUnaOmc_8e8uW9Q76FR73zk_6o_2Hw6RWs5mhcVbSabWiVV3P_Go2j0rypZ8FviWH_ZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULYg-aKsWq1bnoSAIaZO5OB3f1rZLbZelogv1KWRusLjsLjWL2H_iv_WcSdIbKiLkYTJMMpeTzHfmnG_OAGwLJ4zUUWRqz9gM11_kJFQ2U1rn1nhbxZhYvqO3R2N5fKbOWoMb7YVpR_DbDtGqsEVpsqa_e-Hjbutj3MVZt8DFMkITwjPXRt-BVbzjvAer_S-nHy_X6wiOCEFXAC2lQfy_2imKuo5RKQBeM3cLIRufNFaQUQ2tH_S3ld5Asms0sIRMg4dQdn1qCClfd5Y1dufiVrjH_-_0GjxolVbWb76ydVgJs0dw_1oow8fwM52uSbyjJGo2j-zgnDgfbL8jKLHhvPJsMsMc8pMnG-T0B-sv6zmqzcGnB_Bl79i4nkwnF5hkh80pPS6xZolIlr1H2PXs0yLlUw4jUzIbkpHhe7LzMgo4gs0dNQz3JzAeHH7eP8raYx8yh1hZZyr3Bdfa2xhCFJUyvNJF9LywKlRC2eCtwZT3XFhVVRQgjlsRfXRBypA7sQG92XwWngIr_J6LUlv8HIPUuTPGF3ThC42xzm5C3omwdG1MdDqaY1oWXRj026O-CW8uH1k0AUH-Vvg1ibTsBPznks_-ueQruHt6MCiHH0Ynz-EeRx2rYde8gF59vgxbqCPV9mX7I_wC5P4B6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Driver+Cognitive+Load+in+Conditionally+Automated+Driving%3A+Utilizing+Electrocardiogram-Based+Spectrogram+with+Lightweight+Neural+Network&rft.jtitle=Transportation+research+record&rft.au=Shi%2C+Wenxin&rft.au=Wang%2C+Zuyuan&rft.au=Wang%2C+Ange&rft.au=He%2C+Dengbo&rft.date=2024-12-01&rft.pub=SAGE+Publications&rft.issn=0361-1981&rft.eissn=2169-4052&rft.volume=2678&rft.issue=12&rft.spage=1560&rft.epage=1573&rft_id=info:doi/10.1177%2F03611981241252797&rft.externalDocID=10.1177_03611981241252797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon