Temperature behavior of cable-stayed bridges. Part I — Global 3D temperature distribution by integrating heat-transfer analysis and field monitoring data
Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental cond...
Saved in:
Published in | Advances in structural engineering Vol. 26; no. 9; pp. 1579 - 1599 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1369-4332 2048-4011 |
DOI | 10.1177/13694332231174258 |
Cover
Loading…
Abstract | Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental conditions. For the first time, this study comprehensively and accurately investigates the global 3D temperature distribution of long-span cable-stayed bridges by integrating the heat-transfer analysis and field monitoring data. A navigation channel bridge of the Hong Kong‒Zhuhai‒Macao Bridge is used as the testbed. A global 3D refined finite element model of the entire bridge is established. The external thermal boundary conditions of the outer surfaces of the structure are carefully determined based on the real-time ambient temperature, wind, and solar radiation, which are tailored for each surface to reflect the influence of the geometric configuration. The internal thermal boundary conditions of the inner surfaces of the box girder and tower are dependent on the measured ambient temperature, considering the vertical temperature difference of the girder and the uniform temperature inside the tower. Then, the numerical heat-transfer analysis and field monitoring data are integrated to calculate the detailed temperature distribution of the entire bridge in different seasons. Results show that ambient temperature, wind, and solar radiation significantly affect the temperature distribution. For the girder, the vertical temperature difference is significant throughout the year, and the transverse temperature difference is nonnegligible in winter and summer, while the longitudinal temperature difference is trivial. The internal temperature of the tower remains stable owing to the insulation of the concrete. The temperatures of the cables vary from each other, which may cause stress redistribution within the structure. The calculated temperatures are in good agreement with their measured counterparts. The temperature results will be used to calculate the thermal-induced responses in the companion paper in a unified manner. |
---|---|
AbstractList | Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental conditions. For the first time, this study comprehensively and accurately investigates the global 3D temperature distribution of long-span cable-stayed bridges by integrating the heat-transfer analysis and field monitoring data. A navigation channel bridge of the Hong Kong‒Zhuhai‒Macao Bridge is used as the testbed. A global 3D refined finite element model of the entire bridge is established. The external thermal boundary conditions of the outer surfaces of the structure are carefully determined based on the real-time ambient temperature, wind, and solar radiation, which are tailored for each surface to reflect the influence of the geometric configuration. The internal thermal boundary conditions of the inner surfaces of the box girder and tower are dependent on the measured ambient temperature, considering the vertical temperature difference of the girder and the uniform temperature inside the tower. Then, the numerical heat-transfer analysis and field monitoring data are integrated to calculate the detailed temperature distribution of the entire bridge in different seasons. Results show that ambient temperature, wind, and solar radiation significantly affect the temperature distribution. For the girder, the vertical temperature difference is significant throughout the year, and the transverse temperature difference is nonnegligible in winter and summer, while the longitudinal temperature difference is trivial. The internal temperature of the tower remains stable owing to the insulation of the concrete. The temperatures of the cables vary from each other, which may cause stress redistribution within the structure. The calculated temperatures are in good agreement with their measured counterparts. The temperature results will be used to calculate the thermal-induced responses in the companion paper in a unified manner. |
Author | Xia, Qi Gao, Wenbo Jing, Qiang Xia, Yong Li, Lingfang Shan, Yushi |
Author_xml | – sequence: 1 givenname: Yushi orcidid: 0000-0002-8848-7524 surname: Shan fullname: Shan, Yushi organization: , Zhuhai, China – sequence: 2 givenname: Lingfang orcidid: 0000-0002-1521-7312 surname: Li fullname: Li, Lingfang organization: , Zhuhai, China – sequence: 3 givenname: Qi surname: Xia fullname: Xia, Qi email: ceyxia@polyu.edu.hk organization: , Zhuhai, China – sequence: 4 givenname: Wenbo surname: Gao fullname: Gao, Wenbo organization: , Zhuhai, China – sequence: 5 givenname: Qiang surname: Jing fullname: Jing, Qiang organization: , Zhuhai, China – sequence: 6 givenname: Yong surname: Xia fullname: Xia, Yong email: ceyxia@polyu.edu.hk organization: , Zhuhai, China |
BookMark | eNp9kE1OwzAQhS0EEm3hAOx8gRT_5HeJCpRKlWBR1tE4nqSu0riyXaTuOAQ7bsdJSFQWCKSuZkbvfaOZNybnne2QkBvOppxn2S2XaRFLKYTsx1gk-RkZCRbnUcw4PyejQY8GwyUZe79hjIss4yPyucLtDh2EvUOqcA1vxjpqa1qBajHyAQ6oqXJGN-in9AVcoAv69f5B561V0FJ5T8OvFdr44IzaB2M7qg7UdAGbXjNdQ9cIIQoOOl-jo9BBe_DG942mtcFW063tTLBu8GoIcEUuamg9Xv_UCXl9fFjNnqLl83wxu1tGlcjjEMVVoXPFGQMoVMJTqJDLJMOEKQlJqhBiqRMlChWnVQqQpyITiQYGdcFVLuSEZMe9lbPeO6zLygQYPuiPNW3JWTlkXP7LuCf5H3LnzBbc4SQzPTIeGiw3du_6IPwJ4BsEGJD8 |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3300073 crossref_primary_10_1177_13694332241247918 crossref_primary_10_1061_JBENF2_BEENG_6431 crossref_primary_10_1007_s13349_024_00795_9 crossref_primary_10_1111_mice_13436 crossref_primary_10_1177_13694332231214998 crossref_primary_10_1177_13694332241240661 crossref_primary_10_1177_13694332241246378 crossref_primary_10_1016_j_rineng_2024_102718 crossref_primary_10_1177_14759217241285746 crossref_primary_10_1177_13694332251325043 crossref_primary_10_1088_1361_6501_ad69b1 crossref_primary_10_1177_13694332241281548 crossref_primary_10_1016_j_istruc_2024_108054 crossref_primary_10_1177_13694332241252270 crossref_primary_10_1177_13694332241298019 crossref_primary_10_1177_13694332241237583 |
Cites_doi | 10.1061/(ASCE)CF.1943-5509.0001348 10.1177/1475921710388970 10.1061/(ASCE)BE.1943-5592.0000668 10.1007/s11771-014-2308-6 10.1080/1023697X.1995.10667677 10.1016/j.cma.2013.05.001 10.1016/j.engstruct.2012.02.001 10.1061/(ASCE)BE.1943-5592.0000277 10.1016/S0141-0296(96)00149-6 10.1260/136943308785082599 10.1201/b13182 10.1016/S0045-7949(00)00161-9 10.1177/1369433219828644 10.1177/13694332221130797 10.1177/13694332231153976 10.1061/JSDEAG.0004850 10.1061/(ASCE)1084-0702(2002)7:6(357) 10.1002/stc.515 10.1061/JSDEAG.0005815 10.1139/l04-041 10.1016/j.engstruct.2018.09.029 10.1061/(ASCE)BE.1943-5592.0000701 10.1680/stbu.2003.156.2.175 10.1061/JSDEAG.0005085 10.1177/13694332221124618 10.1061/(ASCE)BE.1943-5592.0000786 10.1115/1.2212439 10.1177/13694332221079090 10.1061/(ASCE)BE.1943-5592.0001039 10.15554/pcij.07011998.92.120.137 10.1061/(ASCE)1084-0702(2002)7:3(166) |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | AAYXX CITATION |
DOI | 10.1177/13694332231174258 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4011 |
EndPage | 1599 |
ExternalDocumentID | 10_1177_13694332231174258 10.1177_13694332231174258 |
GrantInformation_xml | – fundername: RGC-GRF grantid: Project No. 15206821 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: Project No. 2019B111106001 – fundername: National Key R&D Program grantid: Project No. 2019YFB1600700 |
GroupedDBID | -TM -TN 0R~ 23M 4.4 54M 5GY 6KP AABPG AADUE AAGGD AAGLT AAJPV AANSI AAOTM AAOVH AAPEO AAQXI AARIX AATAA AATZT ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFNE ABFWQ ABGWC ABHKI ABIDT ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUBZ ABUJY ABYTW ACDXX ACGBL ACGFS ACOFE ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADEBD ADEIA ADGDL ADMLS ADRRZ ADTBJ ADUKL ADVBO AEDFJ AENEX AEPTA AEQLS AESZF AEWDL AEWHI AEXNY AFEET AFGYO AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AHDMH AIZZC AJEFB AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CBRKF CFDXU CKLRP CORYS CS3 DH. DOPDO DV7 EBS EJD ESX FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F IL9 J8X K.F MET MV1 O9- Q1R ROL SASJQ SAUOL SCNPE SFC SPV TUS ZPPRI ZRKOI AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c284t-4c9d8b100aa9b516ace1357e50b3a56bea43d5b29b46c6aa862725da0af91b823 |
ISSN | 1369-4332 |
IngestDate | Tue Jul 01 05:25:51 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Tue Jun 17 22:40:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Temperature distribution cable-stayed bridge heat-transfer analysis temperature behavior structural health monitoring |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c284t-4c9d8b100aa9b516ace1357e50b3a56bea43d5b29b46c6aa862725da0af91b823 |
ORCID | 0000-0002-8848-7524 0000-0002-1521-7312 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1177_13694332231174258 crossref_primary_10_1177_13694332231174258 sage_journals_10_1177_13694332231174258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230700 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Advances in structural engineering |
PublicationYear | 2023 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Kulprapha, Warnitchai 2012; 40 Tong, Tham, Au 2001; 79 Salawu 1997; 19 Froli, Hariga 1993; 93 Liu, Dai, Rao 2014; 21 Xu, Li, Wang 2022; 25 Li, He, Liu 2019; 22 Lucas, Berred, Louis 2003; 156 Roberts-Wollman, Breen, Cawrse 2002; 7 Yik, Chung, Chan 1995; 2 Zhu, Meng 2017; 22 Xia, Wu, Li 2022; 25 Beckmann, Mella, Wenman 2013; 263 Im, Chang 2004; 4 Westgate, Koo, Brownjohn 2015; 20 Cundy, Pell, Nydahl 1979; 105 Li, Chen, Zhou 2023; 26 Dai, Wang, Chen 2022; 26 Emanuel, Hulsey 1978; 104 Lee 2012; 17 Thurston, Priestley, Cdoke 1980; 77 Guo, Liu, Zhang 2015; 20 Zhou, Xia, Brownjohn 2016; 21 Cao, Yim, Zhao 2011; 10 Yang, Lu 2007; 129 Shushkewich 1998; 43 Sousa Tomé, Pimentel, Figueiras 2018; 176 Ho, Ma, Cornish 1984; 12 Li, Maes, Dilger 2004; 31 Naruoka, Hirai, Yamaguti 1957 Xia, Chen, Zhou 2013; 20 Wang, Zhang, Xu 2019; 33 Zuk 1965; 76 Churchward, Sokal 1981; 107 Tong, Tham, Au 2002; 7 Ding, Li 2008; 11 bibr4-13694332231174258 bibr17-13694332231174258 bibr7-13694332231174258 bibr1-13694332231174258 bibr24-13694332231174258 bibr32-13694332231174258 bibr12-13694332231174258 bibr9-13694332231174258 bibr29-13694332231174258 Thurston S (bibr27-13694332231174258) 1980; 77 bibr40-13694332231174258 Zuk W (bibr42-13694332231174258) 1965; 76 bibr3-13694332231174258 bibr30-13694332231174258 bibr39-13694332231174258 bibr20-13694332231174258 bibr26-13694332231174258 bibr19-13694332231174258 bibr6-13694332231174258 bibr16-13694332231174258 bibr33-13694332231174258 bibr23-13694332231174258 bibr36-13694332231174258 Ho D (bibr13-13694332231174258) 1984; 12 bibr10-13694332231174258 bibr8-13694332231174258 bibr5-13694332231174258 bibr2-13694332231174258 bibr15-13694332231174258 bibr31-13694332231174258 bibr18-13694332231174258 bibr34-13694332231174258 bibr25-13694332231174258 bibr35-13694332231174258 bibr41-13694332231174258 Im CK (bibr14-13694332231174258) 2004; 4 Froli M (bibr11-13694332231174258) 1993; 93 bibr21-13694332231174258 bibr28-13694332231174258 bibr38-13694332231174258 McClure RM (bibr22-13694332231174258) 1984 Xu YX (bibr37-13694332231174258) 2023 |
References_xml | – volume: 105 start-page: 261 issue: 1 year: 1979 end-page: 264 article-title: Discussion of "Temperature distributions in composite bridges publication-title: Journal of the Structural Division – volume: 7 start-page: 166 issue: 3 year: 2002 end-page: 174 article-title: Measurements of thermal gradients and their effects on segmental concrete bridge publication-title: Journal of Bridge Engineering – volume: 7 start-page: 357 issue: 6 year: 2002 end-page: 366 article-title: Extreme thermal loading on steel bridges in tropical region publication-title: Journal of Bridge Engineering – volume: 129 start-page: 253 issue: 2 year: 2007 end-page: 255 article-title: The optimum tilt angles and orientations of PV claddings for building-integrated photovoltaic (BIPV) applications publication-title: Journal of Solar Energy Engineering – volume: 22 start-page: 04017017 issue: 6 year: 2017 article-title: Effective and fine analysis for temperature effect of bridges in natural environments publication-title: Journal of Bridge Engineering – volume: 107 start-page: 2163 issue: 11 year: 1981 end-page: 2176 article-title: Prediction of temperatures in concrete bridges publication-title: Journal of the Structural Division – volume: 93 start-page: 161 year: 1993 end-page: 170 article-title: La risposta termica per effetti ambientali dei ponti a travata in ca, cap publication-title: Atti delle giornate AICAP – volume: 176 start-page: 652 year: 2018 end-page: 672 article-title: Structural response of a concrete cable-stayed bridge under thermal loads publication-title: Engineering Structures – volume: 17 start-page: 547 issue: 3 year: 2012 end-page: 556 article-title: Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders publication-title: Journal of Bridge Engineering – volume: 21 start-page: 04015027 issue: 1 year: 2016 article-title: Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation publication-title: Journal of Bridge Engineering – volume: 2 start-page: 23 issue: 1 year: 1995 end-page: 29 article-title: A method to estimate direct and diffuse radiation in Hong Kong and its accuracy publication-title: HKIE Transactions – volume: 33 start-page: 04019072 issue: 6 year: 2019 article-title: Evaluation of thermal effects on cable forces of a long-span prestressed concrete cable–stayed bridge publication-title: Journal of Performance of Constructed Facilities – volume: 263 start-page: 71 year: 2013 end-page: 80 article-title: Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus publication-title: Computer methods in applied mechanics and engineering – volume: 26 start-page: 302 year: 2022 end-page: 315 article-title: Modelling of extreme uniform temperature for high-speed railway bridge piers using maximum entropy and field monitoring publication-title: Advances in Structural Engineering – volume: 11 start-page: 323 issue: 3 year: 2008 end-page: 335 article-title: Finite element model updating for the Runyang Cable-stayed Bridge tower using ambient vibration test results publication-title: Advances in Structural Engineering – volume: 25 start-page: 1815 year: 2022 end-page: 1828 article-title: Structural damage detection by integrating robust PCA and classical PCA for handling environmental variations and imperfect measurement data publication-title: Advances in Structural Engineering – volume: 10 start-page: 523 issue: 5 year: 2011 end-page: 537 article-title: Temperature effects on cable stayed bridge using health monitoring system: a case study publication-title: Structural Health Monitoring – volume: 4 start-page: 25 issue: 1 year: 2004 end-page: 31 article-title: Estimating extreme thermal loads in composite bridge using long-term measured data publication-title: International Journal of Steel Structures – volume: 26 start-page: 985 issue: 6 year: 2023 end-page: 1010 article-title: Thermal behaviors of bridges – a literature review publication-title: Advances in Structural Engineering – volume: 22 start-page: 1867 issue: 8 year: 2019 end-page: 1877 article-title: Effect of solar temperature field on a sea-crossing cable-stayed bridge tower publication-title: Advances in Structural Engineering – volume: 79 start-page: 583 issue: 6 year: 2001 end-page: 593 article-title: Numerical modelling for temperature distribution in steel bridges publication-title: Computers and Structures – volume: 104 start-page: 65 issue: 1 year: 1978 end-page: 78 article-title: Temperature distributions in composite bridges publication-title: Journal of the Structural Division – volume: 31 start-page: 813 issue: 5 year: 2004 end-page: 825 article-title: Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge publication-title: Canadian Journal of Civil Engineering – volume: 77 start-page: 347 issue: 5 year: 1980 end-page: 357 article-title: Thermal analysis of thick concrete sections publication-title: Journal Proceedings – volume: 40 start-page: 20 year: 2012 end-page: 38 article-title: Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses publication-title: Engineering Structures – volume: 25 start-page: 3492 issue: 16 year: 2022 end-page: 3509 article-title: Temperature behaviors of an arch bridge through integration of field monitoring and unified numerical simulation publication-title: Advances in Structural Engineering – volume: 19 start-page: 718 issue: 9 year: 1997 end-page: 723 article-title: Detection of structural damage through changes in frequency: a review publication-title: Engineering Structures – start-page: 106 year: 1957 end-page: 115 article-title: The measurement of the temperature of the interior of the reinforced concrete slab of the Shigita Bridge and presumption of thermal stresses – volume: 20 start-page: 04014077 issue: 5 year: 2015 article-title: Effect of solar radiation on suspension bridge performance publication-title: Journal of Bridge Engineering – volume: 76 start-page: 231 issue: 1 year: 1965 end-page: 253 article-title: Thermal behaviour of composite bridges-insulated and uninsulated publication-title: Highway Research Record – volume: 21 start-page: 3345 issue: 8 year: 2014 end-page: 3352 article-title: Numerical calculation on solar temperature field of a cable-stayed bridge with U-shaped section on high-speed railway publication-title: Journal of Central South University – volume: 156 start-page: 175 issue: 2 year: 2003 end-page: 182 article-title: Thermal actions on a steel box girder bridge publication-title: Proceedings of the Institution of Civil Engineers - Structures and Buildings – volume: 12 start-page: 29 issue: 9 year: 1984 end-page: 33 article-title: Temperature measurements in castle peak/texaco road flyover publication-title: Hong Kong Engineer – volume: 20 start-page: 04014099 issue: 9 year: 2015 article-title: Displacement monitoring and analysis of expansion joints of long-span steel bridges with viscous dampers publication-title: Journal of Bridge Engineering – volume: 43 start-page: 120 issue: 4 year: 1998 end-page: 137 article-title: Design of segmental bridges for thermal gradient publication-title: PCI journal – volume: 20 start-page: 560 issue: 4 year: 2013 end-page: 575 article-title: Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior publication-title: Structural Control and Health Monitoring – volume: 12 start-page: 29 issue: 9 year: 1984 ident: bibr13-13694332231174258 publication-title: Hong Kong Engineer – start-page: 756 volume-title: Advances in Civil Engineering: Structural Seismic Resistance, Monitoring and Detection year: 2023 ident: bibr37-13694332231174258 – volume-title: Observations from Tests on a Segmental Bridge year: 1984 ident: bibr22-13694332231174258 – ident: bibr31-13694332231174258 doi: 10.1061/(ASCE)CF.1943-5509.0001348 – ident: bibr4-13694332231174258 – volume: 77 start-page: 347 issue: 5 year: 1980 ident: bibr27-13694332231174258 publication-title: Journal Proceedings – ident: bibr3-13694332231174258 doi: 10.1177/1475921710388970 – ident: bibr32-13694332231174258 doi: 10.1061/(ASCE)BE.1943-5592.0000668 – ident: bibr20-13694332231174258 doi: 10.1007/s11771-014-2308-6 – ident: bibr39-13694332231174258 doi: 10.1080/1023697X.1995.10667677 – volume: 76 start-page: 231 issue: 1 year: 1965 ident: bibr42-13694332231174258 publication-title: Highway Research Record – ident: bibr2-13694332231174258 doi: 10.1016/j.cma.2013.05.001 – ident: bibr15-13694332231174258 doi: 10.1016/j.engstruct.2012.02.001 – ident: bibr16-13694332231174258 doi: 10.1061/(ASCE)BE.1943-5592.0000277 – ident: bibr25-13694332231174258 doi: 10.1016/S0141-0296(96)00149-6 – ident: bibr8-13694332231174258 doi: 10.1260/136943308785082599 – ident: bibr36-13694332231174258 doi: 10.1201/b13182 – ident: bibr29-13694332231174258 doi: 10.1016/S0045-7949(00)00161-9 – ident: bibr10-13694332231174258 – ident: bibr19-13694332231174258 doi: 10.1177/1369433219828644 – ident: bibr33-13694332231174258 doi: 10.1177/13694332221130797 – ident: bibr18-13694332231174258 doi: 10.1177/13694332231153976 – ident: bibr9-13694332231174258 doi: 10.1061/JSDEAG.0004850 – volume: 93 start-page: 161 year: 1993 ident: bibr11-13694332231174258 publication-title: Atti delle giornate AICAP – ident: bibr30-13694332231174258 doi: 10.1061/(ASCE)1084-0702(2002)7:6(357) – ident: bibr23-13694332231174258 – ident: bibr34-13694332231174258 doi: 10.1002/stc.515 – ident: bibr5-13694332231174258 doi: 10.1061/JSDEAG.0005815 – ident: bibr17-13694332231174258 doi: 10.1139/l04-041 – ident: bibr28-13694332231174258 doi: 10.1016/j.engstruct.2018.09.029 – ident: bibr12-13694332231174258 doi: 10.1061/(ASCE)BE.1943-5592.0000701 – ident: bibr21-13694332231174258 doi: 10.1680/stbu.2003.156.2.175 – volume: 4 start-page: 25 issue: 1 year: 2004 ident: bibr14-13694332231174258 publication-title: International Journal of Steel Structures – ident: bibr6-13694332231174258 doi: 10.1061/JSDEAG.0005085 – ident: bibr7-13694332231174258 doi: 10.1177/13694332221124618 – ident: bibr1-13694332231174258 – ident: bibr40-13694332231174258 doi: 10.1061/(ASCE)BE.1943-5592.0000786 – ident: bibr38-13694332231174258 doi: 10.1115/1.2212439 – ident: bibr35-13694332231174258 doi: 10.1177/13694332221079090 – ident: bibr41-13694332231174258 doi: 10.1061/(ASCE)BE.1943-5592.0001039 – ident: bibr26-13694332231174258 doi: 10.15554/pcij.07011998.92.120.137 – ident: bibr24-13694332231174258 doi: 10.1061/(ASCE)1084-0702(2002)7:3(166) |
SSID | ssj0012771 |
Score | 2.4451563 |
Snippet | Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1579 |
Title | Temperature behavior of cable-stayed bridges. Part I — Global 3D temperature distribution by integrating heat-transfer analysis and field monitoring data |
URI | https://journals.sagepub.com/doi/full/10.1177/13694332231174258 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW7QUOFb-i_MkHJCSiVHEcZ5PjlqW0SCAhtWI5rTy201aCXdSmh3LiIbjxWLwBT8L4J1mXXVDhEkXWbKLsfJl8Hs98JuQpG0GuQNYpK0YiLTTItCpVnjINdcWhUaW2vcNv3pZ7h8XrqZgOBj-iqqXzFrbVl7V9Jf_jVRxDv9ou2X_wbH9RHMBz9C8e0cN4vJqPDZJeL4rc99u7OnHbD5Ui77uw_NILOWwjWTxtk_2kK28oEq_3n_BJ0kYX0lZKN-yCZclpJyhhcwo2cqet47rGFl8GQRObfHelcMknFyJcTV_oeuup79hXG7j6W69a6xQ_zFIQsc_2HPus7Ifzs-OTvmLoJKQQjhq5NJ36Wt93vdkr6XK_780cFnFGI-d99Wu8lLY2acl4WdseLx-_jRuzysM4Cw4hO8R034UfsFtHAZoJv3dN-NgjmavXf0jcUra9n70dkmCcueVeZP43fe5gPVuxvUY2cpy75EOyMd6Z7Oz2i1s4GtoB_cOExXarA7ZykUt0Kao1dPTn4CbZDPMWOvYgvEUGZn6b3IjULO-Q7xEcaQdHumhoDEfawZFaONJ9-vPrN-qBSPmERkCkMRApXNAIiPQSEGkHRDzR1AGRLoFILRDvksPdlwcv9tKw90eqkDC1aaFqXQHLMilrEKyUyjAuRkZkwKUowciCawF5DUWpSilxYj7KhZaZbGoGVc7vkeF8MTf3Cc2qpjEFCKOELgwoMEJV0Ggm0VIrsUWy7i-eqSCMb_dn-ThjQQt_xStb5Hn_k89eFeZvxs-s32YhcJz92fLBlS0fkuvLN-cRGeJbax4jO27hSUDbL5Qxt9I |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+behavior+of+cable-stayed+bridges.+Part+I+%E2%80%94+Global+3D+temperature+distribution+by+integrating+heat-transfer+analysis+and+field+monitoring+data&rft.jtitle=Advances+in+structural+engineering&rft.au=Shan%2C+Yushi&rft.au=Li%2C+Lingfang&rft.au=Xia%2C+Qi&rft.au=Gao%2C+Wenbo&rft.date=2023-07-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=26&rft.issue=9&rft.spage=1579&rft.epage=1599&rft_id=info:doi/10.1177%2F13694332231174258&rft.externalDocID=10.1177_13694332231174258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon |