Temperature behavior of cable-stayed bridges. Part I — Global 3D temperature distribution by integrating heat-transfer analysis and field monitoring data

Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental cond...

Full description

Saved in:
Bibliographic Details
Published inAdvances in structural engineering Vol. 26; no. 9; pp. 1579 - 1599
Main Authors Shan, Yushi, Li, Lingfang, Xia, Qi, Gao, Wenbo, Jing, Qiang, Xia, Yong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.07.2023
Subjects
Online AccessGet full text
ISSN1369-4332
2048-4011
DOI10.1177/13694332231174258

Cover

Loading…
Abstract Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental conditions. For the first time, this study comprehensively and accurately investigates the global 3D temperature distribution of long-span cable-stayed bridges by integrating the heat-transfer analysis and field monitoring data. A navigation channel bridge of the Hong Kong‒Zhuhai‒Macao Bridge is used as the testbed. A global 3D refined finite element model of the entire bridge is established. The external thermal boundary conditions of the outer surfaces of the structure are carefully determined based on the real-time ambient temperature, wind, and solar radiation, which are tailored for each surface to reflect the influence of the geometric configuration. The internal thermal boundary conditions of the inner surfaces of the box girder and tower are dependent on the measured ambient temperature, considering the vertical temperature difference of the girder and the uniform temperature inside the tower. Then, the numerical heat-transfer analysis and field monitoring data are integrated to calculate the detailed temperature distribution of the entire bridge in different seasons. Results show that ambient temperature, wind, and solar radiation significantly affect the temperature distribution. For the girder, the vertical temperature difference is significant throughout the year, and the transverse temperature difference is nonnegligible in winter and summer, while the longitudinal temperature difference is trivial. The internal temperature of the tower remains stable owing to the insulation of the concrete. The temperatures of the cables vary from each other, which may cause stress redistribution within the structure. The calculated temperatures are in good agreement with their measured counterparts. The temperature results will be used to calculate the thermal-induced responses in the companion paper in a unified manner.
AbstractList Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental conditions. For the first time, this study comprehensively and accurately investigates the global 3D temperature distribution of long-span cable-stayed bridges by integrating the heat-transfer analysis and field monitoring data. A navigation channel bridge of the Hong Kong‒Zhuhai‒Macao Bridge is used as the testbed. A global 3D refined finite element model of the entire bridge is established. The external thermal boundary conditions of the outer surfaces of the structure are carefully determined based on the real-time ambient temperature, wind, and solar radiation, which are tailored for each surface to reflect the influence of the geometric configuration. The internal thermal boundary conditions of the inner surfaces of the box girder and tower are dependent on the measured ambient temperature, considering the vertical temperature difference of the girder and the uniform temperature inside the tower. Then, the numerical heat-transfer analysis and field monitoring data are integrated to calculate the detailed temperature distribution of the entire bridge in different seasons. Results show that ambient temperature, wind, and solar radiation significantly affect the temperature distribution. For the girder, the vertical temperature difference is significant throughout the year, and the transverse temperature difference is nonnegligible in winter and summer, while the longitudinal temperature difference is trivial. The internal temperature of the tower remains stable owing to the insulation of the concrete. The temperatures of the cables vary from each other, which may cause stress redistribution within the structure. The calculated temperatures are in good agreement with their measured counterparts. The temperature results will be used to calculate the thermal-induced responses in the companion paper in a unified manner.
Author Xia, Qi
Gao, Wenbo
Jing, Qiang
Xia, Yong
Li, Lingfang
Shan, Yushi
Author_xml – sequence: 1
  givenname: Yushi
  orcidid: 0000-0002-8848-7524
  surname: Shan
  fullname: Shan, Yushi
  organization: , Zhuhai, China
– sequence: 2
  givenname: Lingfang
  orcidid: 0000-0002-1521-7312
  surname: Li
  fullname: Li, Lingfang
  organization: , Zhuhai, China
– sequence: 3
  givenname: Qi
  surname: Xia
  fullname: Xia, Qi
  email: ceyxia@polyu.edu.hk
  organization: , Zhuhai, China
– sequence: 4
  givenname: Wenbo
  surname: Gao
  fullname: Gao, Wenbo
  organization: , Zhuhai, China
– sequence: 5
  givenname: Qiang
  surname: Jing
  fullname: Jing, Qiang
  organization: , Zhuhai, China
– sequence: 6
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  email: ceyxia@polyu.edu.hk
  organization: , Zhuhai, China
BookMark eNp9kE1OwzAQhS0EEm3hAOx8gRT_5HeJCpRKlWBR1tE4nqSu0riyXaTuOAQ7bsdJSFQWCKSuZkbvfaOZNybnne2QkBvOppxn2S2XaRFLKYTsx1gk-RkZCRbnUcw4PyejQY8GwyUZe79hjIss4yPyucLtDh2EvUOqcA1vxjpqa1qBajHyAQ6oqXJGN-in9AVcoAv69f5B561V0FJ5T8OvFdr44IzaB2M7qg7UdAGbXjNdQ9cIIQoOOl-jo9BBe_DG942mtcFW063tTLBu8GoIcEUuamg9Xv_UCXl9fFjNnqLl83wxu1tGlcjjEMVVoXPFGQMoVMJTqJDLJMOEKQlJqhBiqRMlChWnVQqQpyITiQYGdcFVLuSEZMe9lbPeO6zLygQYPuiPNW3JWTlkXP7LuCf5H3LnzBbc4SQzPTIeGiw3du_6IPwJ4BsEGJD8
CitedBy_id crossref_primary_10_1109_JIOT_2023_3300073
crossref_primary_10_1177_13694332241247918
crossref_primary_10_1061_JBENF2_BEENG_6431
crossref_primary_10_1007_s13349_024_00795_9
crossref_primary_10_1111_mice_13436
crossref_primary_10_1177_13694332231214998
crossref_primary_10_1177_13694332241240661
crossref_primary_10_1177_13694332241246378
crossref_primary_10_1016_j_rineng_2024_102718
crossref_primary_10_1177_14759217241285746
crossref_primary_10_1177_13694332251325043
crossref_primary_10_1088_1361_6501_ad69b1
crossref_primary_10_1177_13694332241281548
crossref_primary_10_1016_j_istruc_2024_108054
crossref_primary_10_1177_13694332241252270
crossref_primary_10_1177_13694332241298019
crossref_primary_10_1177_13694332241237583
Cites_doi 10.1061/(ASCE)CF.1943-5509.0001348
10.1177/1475921710388970
10.1061/(ASCE)BE.1943-5592.0000668
10.1007/s11771-014-2308-6
10.1080/1023697X.1995.10667677
10.1016/j.cma.2013.05.001
10.1016/j.engstruct.2012.02.001
10.1061/(ASCE)BE.1943-5592.0000277
10.1016/S0141-0296(96)00149-6
10.1260/136943308785082599
10.1201/b13182
10.1016/S0045-7949(00)00161-9
10.1177/1369433219828644
10.1177/13694332221130797
10.1177/13694332231153976
10.1061/JSDEAG.0004850
10.1061/(ASCE)1084-0702(2002)7:6(357)
10.1002/stc.515
10.1061/JSDEAG.0005815
10.1139/l04-041
10.1016/j.engstruct.2018.09.029
10.1061/(ASCE)BE.1943-5592.0000701
10.1680/stbu.2003.156.2.175
10.1061/JSDEAG.0005085
10.1177/13694332221124618
10.1061/(ASCE)BE.1943-5592.0000786
10.1115/1.2212439
10.1177/13694332221079090
10.1061/(ASCE)BE.1943-5592.0001039
10.15554/pcij.07011998.92.120.137
10.1061/(ASCE)1084-0702(2002)7:3(166)
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID AAYXX
CITATION
DOI 10.1177/13694332231174258
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4011
EndPage 1599
ExternalDocumentID 10_1177_13694332231174258
10.1177_13694332231174258
GrantInformation_xml – fundername: RGC-GRF
  grantid: Project No. 15206821
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: Project No. 2019B111106001
– fundername: National Key R&D Program
  grantid: Project No. 2019YFB1600700
GroupedDBID -TM
-TN
0R~
23M
4.4
54M
5GY
6KP
AABPG
AADUE
AAGGD
AAGLT
AAJPV
AANSI
AAOTM
AAOVH
AAPEO
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFNE
ABFWQ
ABGWC
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUBZ
ABUJY
ABYTW
ACDXX
ACGBL
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADEBD
ADEIA
ADGDL
ADMLS
ADRRZ
ADTBJ
ADUKL
ADVBO
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFGYO
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CBRKF
CFDXU
CKLRP
CORYS
CS3
DH.
DOPDO
DV7
EBS
EJD
ESX
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MV1
O9-
Q1R
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAYXX
AJGYC
CITATION
ID FETCH-LOGICAL-c284t-4c9d8b100aa9b516ace1357e50b3a56bea43d5b29b46c6aa862725da0af91b823
ISSN 1369-4332
IngestDate Tue Jul 01 05:25:51 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Tue Jun 17 22:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Temperature distribution
cable-stayed bridge
heat-transfer analysis
temperature behavior
structural health monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c284t-4c9d8b100aa9b516ace1357e50b3a56bea43d5b29b46c6aa862725da0af91b823
ORCID 0000-0002-8848-7524
0000-0002-1521-7312
PageCount 21
ParticipantIDs crossref_citationtrail_10_1177_13694332231174258
crossref_primary_10_1177_13694332231174258
sage_journals_10_1177_13694332231174258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Advances in structural engineering
PublicationYear 2023
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Kulprapha, Warnitchai 2012; 40
Tong, Tham, Au 2001; 79
Salawu 1997; 19
Froli, Hariga 1993; 93
Liu, Dai, Rao 2014; 21
Xu, Li, Wang 2022; 25
Li, He, Liu 2019; 22
Lucas, Berred, Louis 2003; 156
Roberts-Wollman, Breen, Cawrse 2002; 7
Yik, Chung, Chan 1995; 2
Zhu, Meng 2017; 22
Xia, Wu, Li 2022; 25
Beckmann, Mella, Wenman 2013; 263
Im, Chang 2004; 4
Westgate, Koo, Brownjohn 2015; 20
Cundy, Pell, Nydahl 1979; 105
Li, Chen, Zhou 2023; 26
Dai, Wang, Chen 2022; 26
Emanuel, Hulsey 1978; 104
Lee 2012; 17
Thurston, Priestley, Cdoke 1980; 77
Guo, Liu, Zhang 2015; 20
Zhou, Xia, Brownjohn 2016; 21
Cao, Yim, Zhao 2011; 10
Yang, Lu 2007; 129
Shushkewich 1998; 43
Sousa Tomé, Pimentel, Figueiras 2018; 176
Ho, Ma, Cornish 1984; 12
Li, Maes, Dilger 2004; 31
Naruoka, Hirai, Yamaguti 1957
Xia, Chen, Zhou 2013; 20
Wang, Zhang, Xu 2019; 33
Zuk 1965; 76
Churchward, Sokal 1981; 107
Tong, Tham, Au 2002; 7
Ding, Li 2008; 11
bibr4-13694332231174258
bibr17-13694332231174258
bibr7-13694332231174258
bibr1-13694332231174258
bibr24-13694332231174258
bibr32-13694332231174258
bibr12-13694332231174258
bibr9-13694332231174258
bibr29-13694332231174258
Thurston S (bibr27-13694332231174258) 1980; 77
bibr40-13694332231174258
Zuk W (bibr42-13694332231174258) 1965; 76
bibr3-13694332231174258
bibr30-13694332231174258
bibr39-13694332231174258
bibr20-13694332231174258
bibr26-13694332231174258
bibr19-13694332231174258
bibr6-13694332231174258
bibr16-13694332231174258
bibr33-13694332231174258
bibr23-13694332231174258
bibr36-13694332231174258
Ho D (bibr13-13694332231174258) 1984; 12
bibr10-13694332231174258
bibr8-13694332231174258
bibr5-13694332231174258
bibr2-13694332231174258
bibr15-13694332231174258
bibr31-13694332231174258
bibr18-13694332231174258
bibr34-13694332231174258
bibr25-13694332231174258
bibr35-13694332231174258
bibr41-13694332231174258
Im CK (bibr14-13694332231174258) 2004; 4
Froli M (bibr11-13694332231174258) 1993; 93
bibr21-13694332231174258
bibr28-13694332231174258
bibr38-13694332231174258
McClure RM (bibr22-13694332231174258) 1984
Xu YX (bibr37-13694332231174258) 2023
References_xml – volume: 105
  start-page: 261
  issue: 1
  year: 1979
  end-page: 264
  article-title: Discussion of "Temperature distributions in composite bridges
  publication-title: Journal of the Structural Division
– volume: 7
  start-page: 166
  issue: 3
  year: 2002
  end-page: 174
  article-title: Measurements of thermal gradients and their effects on segmental concrete bridge
  publication-title: Journal of Bridge Engineering
– volume: 7
  start-page: 357
  issue: 6
  year: 2002
  end-page: 366
  article-title: Extreme thermal loading on steel bridges in tropical region
  publication-title: Journal of Bridge Engineering
– volume: 129
  start-page: 253
  issue: 2
  year: 2007
  end-page: 255
  article-title: The optimum tilt angles and orientations of PV claddings for building-integrated photovoltaic (BIPV) applications
  publication-title: Journal of Solar Energy Engineering
– volume: 22
  start-page: 04017017
  issue: 6
  year: 2017
  article-title: Effective and fine analysis for temperature effect of bridges in natural environments
  publication-title: Journal of Bridge Engineering
– volume: 107
  start-page: 2163
  issue: 11
  year: 1981
  end-page: 2176
  article-title: Prediction of temperatures in concrete bridges
  publication-title: Journal of the Structural Division
– volume: 93
  start-page: 161
  year: 1993
  end-page: 170
  article-title: La risposta termica per effetti ambientali dei ponti a travata in ca, cap
  publication-title: Atti delle giornate AICAP
– volume: 176
  start-page: 652
  year: 2018
  end-page: 672
  article-title: Structural response of a concrete cable-stayed bridge under thermal loads
  publication-title: Engineering Structures
– volume: 17
  start-page: 547
  issue: 3
  year: 2012
  end-page: 556
  article-title: Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders
  publication-title: Journal of Bridge Engineering
– volume: 21
  start-page: 04015027
  issue: 1
  year: 2016
  article-title: Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation
  publication-title: Journal of Bridge Engineering
– volume: 2
  start-page: 23
  issue: 1
  year: 1995
  end-page: 29
  article-title: A method to estimate direct and diffuse radiation in Hong Kong and its accuracy
  publication-title: HKIE Transactions
– volume: 33
  start-page: 04019072
  issue: 6
  year: 2019
  article-title: Evaluation of thermal effects on cable forces of a long-span prestressed concrete cable–stayed bridge
  publication-title: Journal of Performance of Constructed Facilities
– volume: 263
  start-page: 71
  year: 2013
  end-page: 80
  article-title: Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus
  publication-title: Computer methods in applied mechanics and engineering
– volume: 26
  start-page: 302
  year: 2022
  end-page: 315
  article-title: Modelling of extreme uniform temperature for high-speed railway bridge piers using maximum entropy and field monitoring
  publication-title: Advances in Structural Engineering
– volume: 11
  start-page: 323
  issue: 3
  year: 2008
  end-page: 335
  article-title: Finite element model updating for the Runyang Cable-stayed Bridge tower using ambient vibration test results
  publication-title: Advances in Structural Engineering
– volume: 25
  start-page: 1815
  year: 2022
  end-page: 1828
  article-title: Structural damage detection by integrating robust PCA and classical PCA for handling environmental variations and imperfect measurement data
  publication-title: Advances in Structural Engineering
– volume: 10
  start-page: 523
  issue: 5
  year: 2011
  end-page: 537
  article-title: Temperature effects on cable stayed bridge using health monitoring system: a case study
  publication-title: Structural Health Monitoring
– volume: 4
  start-page: 25
  issue: 1
  year: 2004
  end-page: 31
  article-title: Estimating extreme thermal loads in composite bridge using long-term measured data
  publication-title: International Journal of Steel Structures
– volume: 26
  start-page: 985
  issue: 6
  year: 2023
  end-page: 1010
  article-title: Thermal behaviors of bridges – a literature review
  publication-title: Advances in Structural Engineering
– volume: 22
  start-page: 1867
  issue: 8
  year: 2019
  end-page: 1877
  article-title: Effect of solar temperature field on a sea-crossing cable-stayed bridge tower
  publication-title: Advances in Structural Engineering
– volume: 79
  start-page: 583
  issue: 6
  year: 2001
  end-page: 593
  article-title: Numerical modelling for temperature distribution in steel bridges
  publication-title: Computers and Structures
– volume: 104
  start-page: 65
  issue: 1
  year: 1978
  end-page: 78
  article-title: Temperature distributions in composite bridges
  publication-title: Journal of the Structural Division
– volume: 31
  start-page: 813
  issue: 5
  year: 2004
  end-page: 825
  article-title: Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge
  publication-title: Canadian Journal of Civil Engineering
– volume: 77
  start-page: 347
  issue: 5
  year: 1980
  end-page: 357
  article-title: Thermal analysis of thick concrete sections
  publication-title: Journal Proceedings
– volume: 40
  start-page: 20
  year: 2012
  end-page: 38
  article-title: Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses
  publication-title: Engineering Structures
– volume: 25
  start-page: 3492
  issue: 16
  year: 2022
  end-page: 3509
  article-title: Temperature behaviors of an arch bridge through integration of field monitoring and unified numerical simulation
  publication-title: Advances in Structural Engineering
– volume: 19
  start-page: 718
  issue: 9
  year: 1997
  end-page: 723
  article-title: Detection of structural damage through changes in frequency: a review
  publication-title: Engineering Structures
– start-page: 106
  year: 1957
  end-page: 115
  article-title: The measurement of the temperature of the interior of the reinforced concrete slab of the Shigita Bridge and presumption of thermal stresses
– volume: 20
  start-page: 04014077
  issue: 5
  year: 2015
  article-title: Effect of solar radiation on suspension bridge performance
  publication-title: Journal of Bridge Engineering
– volume: 76
  start-page: 231
  issue: 1
  year: 1965
  end-page: 253
  article-title: Thermal behaviour of composite bridges-insulated and uninsulated
  publication-title: Highway Research Record
– volume: 21
  start-page: 3345
  issue: 8
  year: 2014
  end-page: 3352
  article-title: Numerical calculation on solar temperature field of a cable-stayed bridge with U-shaped section on high-speed railway
  publication-title: Journal of Central South University
– volume: 156
  start-page: 175
  issue: 2
  year: 2003
  end-page: 182
  article-title: Thermal actions on a steel box girder bridge
  publication-title: Proceedings of the Institution of Civil Engineers - Structures and Buildings
– volume: 12
  start-page: 29
  issue: 9
  year: 1984
  end-page: 33
  article-title: Temperature measurements in castle peak/texaco road flyover
  publication-title: Hong Kong Engineer
– volume: 20
  start-page: 04014099
  issue: 9
  year: 2015
  article-title: Displacement monitoring and analysis of expansion joints of long-span steel bridges with viscous dampers
  publication-title: Journal of Bridge Engineering
– volume: 43
  start-page: 120
  issue: 4
  year: 1998
  end-page: 137
  article-title: Design of segmental bridges for thermal gradient
  publication-title: PCI journal
– volume: 20
  start-page: 560
  issue: 4
  year: 2013
  end-page: 575
  article-title: Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior
  publication-title: Structural Control and Health Monitoring
– volume: 12
  start-page: 29
  issue: 9
  year: 1984
  ident: bibr13-13694332231174258
  publication-title: Hong Kong Engineer
– start-page: 756
  volume-title: Advances in Civil Engineering: Structural Seismic Resistance, Monitoring and Detection
  year: 2023
  ident: bibr37-13694332231174258
– volume-title: Observations from Tests on a Segmental Bridge
  year: 1984
  ident: bibr22-13694332231174258
– ident: bibr31-13694332231174258
  doi: 10.1061/(ASCE)CF.1943-5509.0001348
– ident: bibr4-13694332231174258
– volume: 77
  start-page: 347
  issue: 5
  year: 1980
  ident: bibr27-13694332231174258
  publication-title: Journal Proceedings
– ident: bibr3-13694332231174258
  doi: 10.1177/1475921710388970
– ident: bibr32-13694332231174258
  doi: 10.1061/(ASCE)BE.1943-5592.0000668
– ident: bibr20-13694332231174258
  doi: 10.1007/s11771-014-2308-6
– ident: bibr39-13694332231174258
  doi: 10.1080/1023697X.1995.10667677
– volume: 76
  start-page: 231
  issue: 1
  year: 1965
  ident: bibr42-13694332231174258
  publication-title: Highway Research Record
– ident: bibr2-13694332231174258
  doi: 10.1016/j.cma.2013.05.001
– ident: bibr15-13694332231174258
  doi: 10.1016/j.engstruct.2012.02.001
– ident: bibr16-13694332231174258
  doi: 10.1061/(ASCE)BE.1943-5592.0000277
– ident: bibr25-13694332231174258
  doi: 10.1016/S0141-0296(96)00149-6
– ident: bibr8-13694332231174258
  doi: 10.1260/136943308785082599
– ident: bibr36-13694332231174258
  doi: 10.1201/b13182
– ident: bibr29-13694332231174258
  doi: 10.1016/S0045-7949(00)00161-9
– ident: bibr10-13694332231174258
– ident: bibr19-13694332231174258
  doi: 10.1177/1369433219828644
– ident: bibr33-13694332231174258
  doi: 10.1177/13694332221130797
– ident: bibr18-13694332231174258
  doi: 10.1177/13694332231153976
– ident: bibr9-13694332231174258
  doi: 10.1061/JSDEAG.0004850
– volume: 93
  start-page: 161
  year: 1993
  ident: bibr11-13694332231174258
  publication-title: Atti delle giornate AICAP
– ident: bibr30-13694332231174258
  doi: 10.1061/(ASCE)1084-0702(2002)7:6(357)
– ident: bibr23-13694332231174258
– ident: bibr34-13694332231174258
  doi: 10.1002/stc.515
– ident: bibr5-13694332231174258
  doi: 10.1061/JSDEAG.0005815
– ident: bibr17-13694332231174258
  doi: 10.1139/l04-041
– ident: bibr28-13694332231174258
  doi: 10.1016/j.engstruct.2018.09.029
– ident: bibr12-13694332231174258
  doi: 10.1061/(ASCE)BE.1943-5592.0000701
– ident: bibr21-13694332231174258
  doi: 10.1680/stbu.2003.156.2.175
– volume: 4
  start-page: 25
  issue: 1
  year: 2004
  ident: bibr14-13694332231174258
  publication-title: International Journal of Steel Structures
– ident: bibr6-13694332231174258
  doi: 10.1061/JSDEAG.0005085
– ident: bibr7-13694332231174258
  doi: 10.1177/13694332221124618
– ident: bibr1-13694332231174258
– ident: bibr40-13694332231174258
  doi: 10.1061/(ASCE)BE.1943-5592.0000786
– ident: bibr38-13694332231174258
  doi: 10.1115/1.2212439
– ident: bibr35-13694332231174258
  doi: 10.1177/13694332221079090
– ident: bibr41-13694332231174258
  doi: 10.1061/(ASCE)BE.1943-5592.0001039
– ident: bibr26-13694332231174258
  doi: 10.15554/pcij.07011998.92.120.137
– ident: bibr24-13694332231174258
  doi: 10.1061/(ASCE)1084-0702(2002)7:3(166)
SSID ssj0012771
Score 2.4451563
Snippet Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1579
Title Temperature behavior of cable-stayed bridges. Part I — Global 3D temperature distribution by integrating heat-transfer analysis and field monitoring data
URI https://journals.sagepub.com/doi/full/10.1177/13694332231174258
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW7QUOFb-i_MkHJCSiVHEcZ5PjlqW0SCAhtWI5rTy201aCXdSmh3LiIbjxWLwBT8L4J1mXXVDhEkXWbKLsfJl8Hs98JuQpG0GuQNYpK0YiLTTItCpVnjINdcWhUaW2vcNv3pZ7h8XrqZgOBj-iqqXzFrbVl7V9Jf_jVRxDv9ou2X_wbH9RHMBz9C8e0cN4vJqPDZJeL4rc99u7OnHbD5Ui77uw_NILOWwjWTxtk_2kK28oEq_3n_BJ0kYX0lZKN-yCZclpJyhhcwo2cqet47rGFl8GQRObfHelcMknFyJcTV_oeuup79hXG7j6W69a6xQ_zFIQsc_2HPus7Ifzs-OTvmLoJKQQjhq5NJ36Wt93vdkr6XK_780cFnFGI-d99Wu8lLY2acl4WdseLx-_jRuzysM4Cw4hO8R034UfsFtHAZoJv3dN-NgjmavXf0jcUra9n70dkmCcueVeZP43fe5gPVuxvUY2cpy75EOyMd6Z7Oz2i1s4GtoB_cOExXarA7ZykUt0Kao1dPTn4CbZDPMWOvYgvEUGZn6b3IjULO-Q7xEcaQdHumhoDEfawZFaONJ9-vPrN-qBSPmERkCkMRApXNAIiPQSEGkHRDzR1AGRLoFILRDvksPdlwcv9tKw90eqkDC1aaFqXQHLMilrEKyUyjAuRkZkwKUowciCawF5DUWpSilxYj7KhZaZbGoGVc7vkeF8MTf3Cc2qpjEFCKOELgwoMEJV0Ggm0VIrsUWy7i-eqSCMb_dn-ThjQQt_xStb5Hn_k89eFeZvxs-s32YhcJz92fLBlS0fkuvLN-cRGeJbax4jO27hSUDbL5Qxt9I
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+behavior+of+cable-stayed+bridges.+Part+I+%E2%80%94+Global+3D+temperature+distribution+by+integrating+heat-transfer+analysis+and+field+monitoring+data&rft.jtitle=Advances+in+structural+engineering&rft.au=Shan%2C+Yushi&rft.au=Li%2C+Lingfang&rft.au=Xia%2C+Qi&rft.au=Gao%2C+Wenbo&rft.date=2023-07-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=26&rft.issue=9&rft.spage=1579&rft.epage=1599&rft_id=info:doi/10.1177%2F13694332231174258&rft.externalDocID=10.1177_13694332231174258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon