Study on fine characterization and reconstruction modeling of porous media based on spatially-resolved nuclear magnetic resonance technology

At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples be...

Full description

Saved in:
Bibliographic Details
Published inOpen Physics Vol. 20; no. 1; pp. 1048 - 1061
Main Authors Niu, Zhongkun, Yang, Zhengming, Luo, Yutian, Zhang, Yapu, Zhao, Xinli, Chang, Yilin, Chen, Xinliang
Format Journal Article
LanguageEnglish
Published De Gruyter 02.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples because of the limitations of accuracy in characterization techniques (imaging). In order to solve this problem and break through the barriers caused by the lack of accuracy, Spin-echo serial peripheral interface sequence of low field nuclear magnetic resonance is used to test the saturated water rock core with spatially resolved T distributions. Based on the experimental results of 1D T distributions, a novel method for fine reconstruction modeling of porous media is proposed, and the porous media model reconstructed by this new method better reproduces the reservoir and seepage characteristics of the original samples. Taking some of the tested porous media cores (P58 and Y75) as examples, representative elementary volume (REV)-lattice Boltzmann method (LBM) is used to simulate the flow field. Ensuring that the error of standard case is only 0.36% when multi-relaxation time REV-LBM is used, the distribution of porosity and permeability have been calculated and compared with the experimental data. The overall permeability error of the reconstructed porous media model is only 6.15 and 7.60%, respectively. Furthermore, the porosity and permeability error of almost all measuring points can be maintained within 3 and 8%. In addition, this method improves the efficiency of the existing reconstruction modeling methods, reduces the test cost, and makes the reconstruction modeling of porous media easier to operate, which has promising development prospects.
AbstractList At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples because of the limitations of accuracy in characterization techniques (imaging). In order to solve this problem and break through the barriers caused by the lack of accuracy, Spin-echo serial peripheral interface sequence of low field nuclear magnetic resonance is used to test the saturated water rock core with spatially resolved T distributions. Based on the experimental results of 1D T distributions, a novel method for fine reconstruction modeling of porous media is proposed, and the porous media model reconstructed by this new method better reproduces the reservoir and seepage characteristics of the original samples. Taking some of the tested porous media cores (P58 and Y75) as examples, representative elementary volume (REV)-lattice Boltzmann method (LBM) is used to simulate the flow field. Ensuring that the error of standard case is only 0.36% when multi-relaxation time REV-LBM is used, the distribution of porosity and permeability have been calculated and compared with the experimental data. The overall permeability error of the reconstructed porous media model is only 6.15 and 7.60%, respectively. Furthermore, the porosity and permeability error of almost all measuring points can be maintained within 3 and 8%. In addition, this method improves the efficiency of the existing reconstruction modeling methods, reduces the test cost, and makes the reconstruction modeling of porous media easier to operate, which has promising development prospects.
At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples because of the limitations of accuracy in characterization techniques (imaging). In order to solve this problem and break through the barriers caused by the lack of accuracy, Spin-echo serial peripheral interface sequence of low field nuclear magnetic resonance is used to test the saturated water rock core with spatially resolved T 2 distributions. Based on the experimental results of 1D T 2 distributions, a novel method for fine reconstruction modeling of porous media is proposed, and the porous media model reconstructed by this new method better reproduces the reservoir and seepage characteristics of the original samples. Taking some of the tested porous media cores (P58 and Y75) as examples, representative elementary volume (REV)-lattice Boltzmann method (LBM) is used to simulate the flow field. Ensuring that the error of standard case is only 0.36% when multi-relaxation time REV-LBM is used, the distribution of porosity and permeability have been calculated and compared with the experimental data. The overall permeability error of the reconstructed porous media model is only 6.15 and 7.60%, respectively. Furthermore, the porosity and permeability error of almost all measuring points can be maintained within 3 and 8%. In addition, this method improves the efficiency of the existing reconstruction modeling methods, reduces the test cost, and makes the reconstruction modeling of porous media easier to operate, which has promising development prospects.
At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton physical structure of porous media. However, it is difficult to reconstruct the reservoir and seepage characteristics of the real samples because of the limitations of accuracy in characterization techniques (imaging). In order to solve this problem and break through the barriers caused by the lack of accuracy, Spin-echo serial peripheral interface sequence of low field nuclear magnetic resonance is used to test the saturated water rock core with spatially resolved T2 distributions. Based on the experimental results of 1D T2 distributions, a novel method for fine reconstruction modeling of porous media is proposed, and the porous media model reconstructed by this new method better reproduces the reservoir and seepage characteristics of the original samples. Taking some of the tested porous media cores (P58 and Y75) as examples, representative elementary volume (REV)-lattice Boltzmann method (LBM) is used to simulate the flow field. Ensuring that the error of standard case is only 0.36% when multi-relaxation time REV-LBM is used, the distribution of porosity and permeability have been calculated and compared with the experimental data. The overall permeability error of the reconstructed porous media model is only 6.15 and 7.60%, respectively. Furthermore, the porosity and permeability error of almost all measuring points can be maintained within 3 and 8%. In addition, this method improves the efficiency of the existing reconstruction modeling methods, reduces the test cost, and makes the reconstruction modeling of porous media easier to operate, which has promising development prospects.
Author Yang, Zhengming
Chang, Yilin
Luo, Yutian
Zhang, Yapu
Niu, Zhongkun
Zhao, Xinli
Chen, Xinliang
Author_xml – sequence: 1
  givenname: Zhongkun
  surname: Niu
  fullname: Niu, Zhongkun
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
– sequence: 2
  givenname: Zhengming
  surname: Yang
  fullname: Yang, Zhengming
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
– sequence: 3
  givenname: Yutian
  surname: Luo
  fullname: Luo, Yutian
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
– sequence: 4
  givenname: Yapu
  surname: Zhang
  fullname: Zhang, Yapu
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
– sequence: 5
  givenname: Xinli
  surname: Zhao
  fullname: Zhao, Xinli
  email: ucaszxl@163.com
  organization: School of Petroleum Engineering, Changzhou University, Changzhou, 213164, China
– sequence: 6
  givenname: Yilin
  surname: Chang
  fullname: Chang, Yilin
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
– sequence: 7
  givenname: Xinliang
  surname: Chen
  fullname: Chen, Xinliang
  email: chenxinliang20@mails.ucas.edu.cn
  organization: Department of Porous Flow & Fluid Mechanics, Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei 065007, China
BookMark eNp1kc9u1DAQxi1UJErplbNfIMV27I33wAFV_KlUiQNwtibjSTYrr72yE1B4Bh4ap4sQF04z-kbfTzPzvWRXMUVi7LUUd9JI8-Z8WEujhFKNUEI_Y9eq3cvG6E5e_dO_YLelHIUQ0rSdVvqa_foyL37lKfJhisTxABlwpjz9hHmqKkTPM2GKZc4LPkmn5ClMceRp4OeU01L4ifwEvIdCfkOVczVDCGuTqaTwvapxwUCQ-QnGSPOEfJtEiEh8JjzEFNK4vmLPBwiFbv_UG_btw_uv95-ax88fH-7fPTaorJ4bDd1-v1OiV2it7ttBDgp7IpTS7BR1g_VgBo9G-haFsfsBhbQttl6A7ci3N-zhwvUJju6cpxPk1SWY3JOQ8ugg1yUDOdtZ6yuw3xnQEnagDBmDUikio7WqrLsLC3MqJdPwlyeF26JxWzRui8Zt0VTD24vhB4T6aE9jXtbauGNacqxn_8eohJRC2_Y3amScWw
Cites_doi 10.1088/1742-2132/12/5/745
10.1016/j.jmr.2009.03.002
10.1016/j.petrol.2020.107217
10.1115/1.4043695
10.1016/j.apgeochem.2021.105028
10.1615/JPorMedia.2019023331
10.1016/j.petrol.2019.106857
10.1142/S0218348X18400030
10.1088/0957-0233/26/5/055601
10.3934/dcdsb.2018334
10.1016/j.marpetgeo.2019.104119
10.1016/j.petrol.2011.12.014
10.1515/phys-2018-0086
10.1115/1.4045461
10.1007/s12182-020-00494-2
10.1007/s11242-017-0917-x
10.1029/2019WR026007
10.1166/jnn.2021.18743
10.1016/j.petrol.2020.107184
10.1029/2019WR025219
10.1016/j.jmr.2019.106666
10.1137/1010093
10.1103/PhysRevE.66.036304
10.1007/s12517-019-4568-9
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/phys-2022-0204
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2391-5471
EndPage 1061
ExternalDocumentID oai_doaj_org_article_8788df8db65a41a6a25e55c122ee5442
10_1515_phys_2022_0204
10_1515_phys_2022_02042011048
GroupedDBID 5VS
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AENEX
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
GROUPED_DOAJ
KQ8
M48
M~E
QD8
SLJYH
AAYXX
CITATION
Y2W
ID FETCH-LOGICAL-c284t-4a799620b2c884b3f1f2cbeec11562e7f8da5fdc51d3c0589fc0183c3d0a87ed3
IEDL.DBID M48
ISSN 2391-5471
IngestDate Wed Aug 27 01:29:55 EDT 2025
Tue Jul 01 01:58:29 EDT 2025
Thu Jul 10 10:34:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-4a799620b2c884b3f1f2cbeec11562e7f8da5fdc51d3c0589fc0183c3d0a87ed3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/phys-2022-0204
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8788df8db65a41a6a25e55c122ee5442
crossref_primary_10_1515_phys_2022_0204
walterdegruyter_journals_10_1515_phys_2022_02042011048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Open Physics
PublicationYear 2022
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2022120619195073725_j_phys-2022-0204_ref_009
2022120619195073725_j_phys-2022-0204_ref_008
2022120619195073725_j_phys-2022-0204_ref_007
2022120619195073725_j_phys-2022-0204_ref_006
2022120619195073725_j_phys-2022-0204_ref_005
2022120619195073725_j_phys-2022-0204_ref_004
2022120619195073725_j_phys-2022-0204_ref_003
2022120619195073725_j_phys-2022-0204_ref_025
2022120619195073725_j_phys-2022-0204_ref_002
2022120619195073725_j_phys-2022-0204_ref_024
2022120619195073725_j_phys-2022-0204_ref_001
2022120619195073725_j_phys-2022-0204_ref_023
2022120619195073725_j_phys-2022-0204_ref_022
2022120619195073725_j_phys-2022-0204_ref_021
2022120619195073725_j_phys-2022-0204_ref_020
2022120619195073725_j_phys-2022-0204_ref_019
2022120619195073725_j_phys-2022-0204_ref_018
2022120619195073725_j_phys-2022-0204_ref_017
2022120619195073725_j_phys-2022-0204_ref_016
2022120619195073725_j_phys-2022-0204_ref_015
2022120619195073725_j_phys-2022-0204_ref_014
2022120619195073725_j_phys-2022-0204_ref_013
2022120619195073725_j_phys-2022-0204_ref_012
2022120619195073725_j_phys-2022-0204_ref_011
2022120619195073725_j_phys-2022-0204_ref_010
References_xml – ident: 2022120619195073725_j_phys-2022-0204_ref_019
  doi: 10.1088/1742-2132/12/5/745
– ident: 2022120619195073725_j_phys-2022-0204_ref_017
  doi: 10.1016/j.jmr.2009.03.002
– ident: 2022120619195073725_j_phys-2022-0204_ref_005
  doi: 10.1016/j.petrol.2020.107217
– ident: 2022120619195073725_j_phys-2022-0204_ref_002
  doi: 10.1115/1.4043695
– ident: 2022120619195073725_j_phys-2022-0204_ref_015
  doi: 10.1016/j.apgeochem.2021.105028
– ident: 2022120619195073725_j_phys-2022-0204_ref_014
  doi: 10.1615/JPorMedia.2019023331
– ident: 2022120619195073725_j_phys-2022-0204_ref_003
  doi: 10.1016/j.petrol.2019.106857
– ident: 2022120619195073725_j_phys-2022-0204_ref_010
  doi: 10.1142/S0218348X18400030
– ident: 2022120619195073725_j_phys-2022-0204_ref_018
  doi: 10.1088/0957-0233/26/5/055601
– ident: 2022120619195073725_j_phys-2022-0204_ref_023
  doi: 10.3934/dcdsb.2018334
– ident: 2022120619195073725_j_phys-2022-0204_ref_007
  doi: 10.1016/j.marpetgeo.2019.104119
– ident: 2022120619195073725_j_phys-2022-0204_ref_020
  doi: 10.1016/j.petrol.2011.12.014
– ident: 2022120619195073725_j_phys-2022-0204_ref_001
  doi: 10.1515/phys-2018-0086
– ident: 2022120619195073725_j_phys-2022-0204_ref_009
  doi: 10.1115/1.4045461
– ident: 2022120619195073725_j_phys-2022-0204_ref_004
  doi: 10.1007/s12182-020-00494-2
– ident: 2022120619195073725_j_phys-2022-0204_ref_011
  doi: 10.1007/s11242-017-0917-x
– ident: 2022120619195073725_j_phys-2022-0204_ref_013
  doi: 10.1029/2019WR026007
– ident: 2022120619195073725_j_phys-2022-0204_ref_006
  doi: 10.1166/jnn.2021.18743
– ident: 2022120619195073725_j_phys-2022-0204_ref_021
  doi: 10.1016/j.petrol.2020.107184
– ident: 2022120619195073725_j_phys-2022-0204_ref_012
  doi: 10.1029/2019WR025219
– ident: 2022120619195073725_j_phys-2022-0204_ref_016
  doi: 10.1016/j.jmr.2019.106666
– ident: 2022120619195073725_j_phys-2022-0204_ref_022
  doi: 10.1137/1010093
– ident: 2022120619195073725_j_phys-2022-0204_ref_025
  doi: 10.1103/PhysRevE.66.036304
– ident: 2022120619195073725_j_phys-2022-0204_ref_024
– ident: 2022120619195073725_j_phys-2022-0204_ref_008
  doi: 10.1007/s12517-019-4568-9
SSID ssj0001537424
Score 2.2613308
Snippet At present, image analysis and digital core are the main approaches for porous media reconstruction modeling, and they are both based on the real pore skeleton...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 1048
SubjectTerms distributions
nuclear magnetic resonance
porous media
reconstruction model
REV-LBM
spatially resolved T
spatially resolved t2 distributions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIOih-MT6Yg-Cp9Bks5ukRxVLEfRkobewj9leaiptVfof_NHObNJSBfHidfPYsDObmW925hvGrlKvTAwqjww4iCRAFhmpXCS9SFKXaOsNxSEfn7LBUD6M1Gij1RflhNX0wPXCdQvEaM4XzmRKy0RnWihQyiZCACgpw98Xbd4GmKrrg1PEfLJhaUSb3aVAAaoEQi8qB_1mhQJZ_y5rf4QDagfj2dtysToQDXamv8fajYPIb-oP22dbUB2w7ZCoaeeH7JMS_5Z8WnGP_iG3a77lupyS68rxAHLXxLA8NLtBC8WnnqO3jVCfh3oRThbM0avmlFatJ5NlhOB7OnnH0Yp4jvWMv-hxRXWOnK4QOQfwxToaf8SG_fvnu0HUdFSILJqhRSR1jvhGxEbYopAm9YkX1gBY9AszATmus1beWZW41FLDQW9j3PM2dbEucnDpMWtV0wpOGC-0QVfSQ0_pnhSJ1GBdjA9lovA6VnGHXa9WuHytiTNKAhwoi5JkUZIsSpJFh92SANZ3EeF1GEA1KBs1KP9Sgw7LfoivbDbj_Jdpg-cji9P_mP2M7QTVonCzOGctlDBcoLOyMJdBL78AGNnskw
  priority: 102
  providerName: Directory of Open Access Journals
Title Study on fine characterization and reconstruction modeling of porous media based on spatially-resolved nuclear magnetic resonance technology
URI https://www.degruyter.com/doi/10.1515/phys-2022-0204
https://doaj.org/article/8788df8db65a41a6a25e55c122ee5442
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKFRIcUMtDLG2RD0icDLFjJ9lDVbVVEaoEJ1biFvkx3ss2gd3lsf-BH90Zb3YRUKRencSx_Nme-cbzYOwwj8ZlYErhIIDQAIVw2gSho5J5kNZHR3bI84vibKB_X5mrJ_-nbgIn_6R2VE9qMB4dP9zMvuGG_5qq90hzQjYARBtZFUV6rrD3KJVK2qTnnao_jxjOkQXqVGuuL4XBQ7nL4fi6i2cyKqXy32Cb9-n6OsBwfDubLq5LkxQ6_cA2O_WRf5_j_ZG9g2aLrSU3Tj_ZZo_kFjjjbcMjao_cL7Mxz4MtuW0CTxR4mTaWp1I4KL94GzlOQ3s74SmahJN8C9TVhJyu7Wg0E0jN29EdtjaUBdmO-R87bCgKktMTSt0BfLq01e-wwemvy59noqu3IDwKqanQtkT2ozKnfFVpl0cZlXcAHrXGQkEZq2BNDN7IkHsqRxh9hieCz0NmqxJCvstWm7aBPcYr61DRjNA3tq-V1BZ8yPCjQlXRZibrsaPFDNfX87QaNdERxKImLGrCoiYseuwHAbB8i9Jhp4Z2PKy73VVXSOQDDs8VxmppC6sMGOOlUgBGa9VjxQv46sVKe-O3SS_S1f5_j_MTW0_rhyzO6jNbRRjhC-orU3eQeP5BWo5_AbDn7Zs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3BVgh6qPgUCwV8QOIUbeLYWfdYUMsCbTnQSr1F_hhvD9sE7aag_Q_86M54QyggLlydOLHybM17E88zwOsyapejnmYOA2YKscqc0iFTURZlKKyPjvOQxyfV7Ex9PNfnN2pheFtlwPnyat1tHFInofVXnCgbvAYoAk9Y9hPAJKS4uHNy0V0ubsNWRezfjGBrf_b-y-dfmRZdkv5TvWPj371_i0jJuH8bdr6nn9XDSG7EnMP7sNOTRbG_QfcB3MLmIdxJmzb96hH84E2Aa9E2IhJXFH7wXt6UVgrbBJEE72ASK9LBNxStRBsFMW-S_SLVjgiOZoEfteIt1naxWGckxNvFN2pt2PPYLsWlnTdc8yj4Cht1oOiGzPxjODs8OH03y_rTFTJPIanLlJ2S1pG5k94Y5cpYROkdoieOWEmcRhOsjsHrIpSeDx-MPqf178uQWzPFUD6BUdM2-BSEsY5oZcQ9bfeULJRFH3LqVEkTba7zMbz5-YXrrxsTjZrFB2FRMxY1Y1EzFmN4ywAMd7H5dWpol_O6X0u1IdkeaHiu0lYVtrJSo9a-kBJRKyXHUP0BX90vzNU_XptYkDLP_rfjK7g7Oz0-qo8-nHx6DvfS1OLUs9yFESGML4i4dO5lPzOvAeXY8KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5BVyA4rHiK8vQBiVPUxLHd9Lg8SnktSLASN8uPcS8lWbVdUP8DP5oZNxte4sLVySRWPlsz32TmM8DjOmlfop4WHiMWCtEUXulYqCSrOlYuJM95yHfHZnGiXn_W59WEm76sMuJyfbbb7hVSJ7ELZ5woG7QGyANPmPYTwESkuLlzchrTRTgwZlarERwcLV5-fP8z0aJron-qF2z82_g3h5R1-6_C4bf8r3qYyC8uZ34NDvtYURztwb0OF7C9AZdyzWbY3ITvXAO4E10rEoWKIgzSy_vOSuHaKDLfHTRiRT73hpyV6JKgwJtYv8itI4KdWeRHbbjC2q1Wu4J4eLf6SqMtSx67tfjili23PAq-wjodKLZDYv4WnMxffHq2KPrDFYpAHmlbKDclqiNLL0PTKF-nKsngEQOFiEbiNDXR6RSDrmId-OzBFEra_qGOpWumGOvbMGq7Fu-AaJynqDLhTLuZkpVyGGJJRkY2yZW6HMOT8y9sT_caGpa5B2FhGQvLWFjGYgxPGYDhLta-zgPdemn7rWQbYu2RpueNdqpyxkmNWodKSkStlByD-QM-2-_LzT9em4Mg1dz9X8NHcPnD87l9--r4zT24klcWJ57lfRgRwPiAwpatf9gvzB98fO_K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+fine+characterization+and+reconstruction+modeling+of+porous+media+based+on+spatially-resolved+nuclear+magnetic+resonance+technology&rft.jtitle=Open+Physics&rft.au=Niu%2C+Zhongkun&rft.au=Yang%2C+Zhengming&rft.au=Luo%2C+Yutian&rft.au=Zhang%2C+Yapu&rft.date=2022-11-02&rft.issn=2391-5471&rft.eissn=2391-5471&rft.volume=20&rft.issue=1&rft.spage=1048&rft.epage=1061&rft_id=info:doi/10.1515%2Fphys-2022-0204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_phys_2022_0204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5471&client=summon