Achievements in the development of plasmonic waveguide sensors for measuring the refractive index

Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and st...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 44; no. 3; pp. 295 - 318
Main Authors Kazanskiy, N.L., Butt, M.A., Degtyarev, S.A., Khonina, S.N.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and structure. In this review, we focused on the analysis of silicon waveguides as a promising component for optical sensor miniaturization, and plasmon refractive index sensors without fluorescent labeling. We presented the latest developments of special types of plasmon structures, such as metal-insulator-metal waveguides, and their application in refractive index sensors. We analyzed numerous types of plasmon waveguides, their geometry, materials and manufacturing processes, as well as possible energy losses. A discussion of the spectral characteristics of recently proposed refractive index sensors, with an emphasis on their sensitivity and quality indicators, is an important part of the review.
AbstractList Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and structure. In this review, we focused on the analysis of silicon waveguides as a promising component for optical sensor miniaturization, and plasmon refractive index sensors without fluorescent labeling. We presented the latest developments of special types of plasmon structures, such as metal-insulator-metal waveguides, and their application in refractive index sensors. We analyzed numerous types of plasmon waveguides, their geometry, materials and manufacturing processes, as well as possible energy losses. A discussion of the spectral characteristics of recently proposed refractive index sensors, with an emphasis on their sensitivity and quality indicators, is an important part of the review.
Author Degtyarev, S.A.
Butt, M.A.
Khonina, S.N.
Kazanskiy, N.L.
Author_xml – sequence: 1
  givenname: N.L.
  surname: Kazanskiy
  fullname: Kazanskiy, N.L.
– sequence: 2
  givenname: M.A.
  surname: Butt
  fullname: Butt, M.A.
– sequence: 3
  givenname: S.A.
  surname: Degtyarev
  fullname: Degtyarev, S.A.
– sequence: 4
  givenname: S.N.
  surname: Khonina
  fullname: Khonina, S.N.
BookMark eNp1kMtOwzAQRS1UJMrjA9j5BwJ-xUmWqOJRqVI3sLYm9rh1lcaVHQr8PWl5LJBYjeZK52rmnJNJH3sk5JqzG16LuroViotC86opZsuiUvKETH-jCZkyLlUhVCnOyFXOG8bYCGmu-JTAnV0H3OMW-yHT0NNhjdSNQRd3h4xGT3cd5G3sg6VvsMfVa3BIM_Y5pkx9THSLkF9T6FdHOKFPYIewx7HO4fslOfXQZbz6nhfk5eH-efZULJaP89ndorCiVkPBG1lDqbVUFYhSW99o5VsLyFFqBSDbupKt9IJVTnstuGt85bhGLYBJX8oLMv_qdRE2ZpfCFtKHiRDMMYhpZSANwXZokMvGM8VV3aDyDpp23IXWrW-Aa4djV_XVZVPMefzI2DDAEGI_JAid4cwcxZuDZXOwbGZLM4ofSf6H_Lnkf-YTpLqJCg
CitedBy_id crossref_primary_10_1088_1742_6596_2103_1_012174
crossref_primary_10_3390_bios12070497
crossref_primary_10_3390_bios12111038
crossref_primary_10_3390_electronics10080973
crossref_primary_10_3390_electronics10121419
crossref_primary_10_3390_s25051367
crossref_primary_10_1007_s11468_023_01795_z
crossref_primary_10_1016_j_ijleo_2021_168466
crossref_primary_10_3103_S1060992X22050034
crossref_primary_10_26896_1028_6861_2022_88_5_27_33
crossref_primary_10_1016_j_ijleo_2024_172209
crossref_primary_10_3103_S1060992X24700371
crossref_primary_10_3103_S1060992X23050156
crossref_primary_10_1016_j_mtcomm_2023_106036
crossref_primary_10_1364_OE_423141
crossref_primary_10_3367_UFNr_2021_07_039028
crossref_primary_10_1016_j_optlastec_2020_106863
crossref_primary_10_1088_1742_6596_1745_1_012028
crossref_primary_10_3103_S1060992X24700632
crossref_primary_10_3103_S1060992X23050119
crossref_primary_10_1080_01468030_2021_1902590
crossref_primary_10_1088_1742_6596_1745_1_012027
crossref_primary_10_3390_bios13100933
crossref_primary_10_1016_j_rinp_2023_106733
Cites_doi 10.1364/ao.57.007798
10.1002/lpor.201300183
10.1088/2040-8978/18/6/065001
10.1364/oe.27.013252
10.1109/jsen.2020.2985840
10.20944/preprints201806.0274.v2
10.3390/s16050642
10.1364/oe.21.000698
10.1109/icraie.2016.7939557
10.1088/1555-6611/ab0372
10.3390/s17071494
10.1038/srep22428
10.1080/17455030.2018.1506191
10.1088/1367-2630/10/10/105018
10.3390/s18010116
10.1021/nl900505a
10.1063/1.3597620
10.1364/ol.34.000322
10.1063/1.1862340
10.1021/ac9708001
10.1016/j.optlastec.2019.03.044
10.1039/c0an00053a
10.1073/pnas.1101910108
10.1364/AO.58.004878
10.1364/oe.26.010109
10.1080/09500340.2019.1609613
10.1021/nl3000453
10.1109/jlt.2005.859856
10.1088/2040-8978/18/6/065004
10.3390/s17122879
10.1021/nl103007m
10.1116/1.4819316
10.1364/oe.21.000079
10.1063/1.1753060
10.1364/ol.29.001209
10.1364/oe.24.022908
10.1016/j.mee.2009.11.078
10.18287/2412-6179-2018-42-2-244-247
10.1016/j.ijleo.2018.04.134
10.1016/s0925-4005(98)00321-9
10.4302/plp.v12i1.902
10.1063/1.4875019
10.1021/ja904387j
10.1364/ao.24.004493
10.1088/1555-6611/ab5719
10.1007/s11468-019-00926-9
10.1021/acs.chemmater.9b04100
10.1364/oe.21.019029
10.1364/oe.25.012295
10.1088/1612-202x/ab5574
10.1016/j.photonics.2019.100714
10.18287/0134-2452-2015-39-2-158-162
10.1021/ja041017a
10.1002/adma.201100163
10.1109/jsen.2019.2906759
10.1021/ac2012976
10.1038/nmat2546
10.1103/physrevb.73.153405
10.1103/physrev.182.539
10.1016/j.optcom.2019.04.068
10.3390/nano9050678
10.1021/nn901457f
10.1088/1555-6611/ab1414
10.1039/c5nr06504f
10.1103/physrevlett.66.2593
10.1109/3.83406
10.1049/iet-opt.2018.0028
10.1364/oe.20.007516
10.1186/s11671-015-0913-4
10.1016/j.snb.2013.11.063
10.1364/oe.18.014474
10.1080/17455030.2019.1568609
10.1080/09500340.2019.1601272
10.1364/oe.22.007669
10.1109/JPHOT.2014.2368779
10.1038/s41598-017-10626-1
10.1088/1555-6611/aadf18
10.1109/icecube.2018.8610998
10.1063/1.1835997
10.1070/rc2013v082n07abeh004403
10.1080/09500340.2017.1382596
10.1080/09500340.2019.1683633
10.1117/12.2266783
10.1016/j.snb.2014.01.056
10.1021/ac0262210
10.1088/2040-8978/18/5/055002
10.3390/s19040791
10.1201/b21918
10.1039/c4nr06586g
10.1515/nanoph-2015-0017
10.1109/JPHOT.2019.2914483
10.1021/nn303643w
10.1080/09500340.2017.1325947
10.18287/2412-6179-2017-41-4-494-498
10.1016/j.rinp.2019.102420
10.1016/j.ijleo.2018.07.093
10.1016/j.bios.2004.09.025
10.1088/1555-6611/ab0371
10.1109/jsen.2019.2944391
10.1038/ncomms3381
10.3390/s18103181
10.1016/b978-044450974-1/50007-0
10.1088/0022-3727/48/32/325303
10.3390/s17040784
10.1002/andp.201700411
10.3788/gzxb20174604.0413002
10.1142/s0217984919500179
10.1364/josab.33.002480
10.3390/s19071559
10.1126/science.1199958
10.1038/s41598-019-38708-2
10.1080/09500340.2018.1427290
10.1016/j.physe.2019.113798
10.1155/2012/258013
10.1038/nmat3537
10.1103/physrevb.73.035407
10.1109/50.337489
10.1080/17455030.2020.1744769
10.1103/physrevlett.95.257403
10.1109/JLT.2019.2906933
10.1103/physreva.85.053803
10.1134/s0367676518080069
10.18287/2412-6179-2019-43-6-1079-1083
10.1109/jsen.2015.2455534
10.1021/nn100760f
10.1364/OE.18.014474
10.1088/1367-2630/10/10/105010
10.1038/nature04594
10.15171/apb.2018.006
10.1016/j.ijleo.2019.163655
10.1364/oe.24.016224
ContentType Journal Article
CorporateAuthor IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS
Samara National Research University
CorporateAuthor_xml – name: Samara National Research University
– name: IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-743
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 318
ExternalDocumentID oai_doaj_org_article_e139f041489e4fda9b39f266bf9a16de
10_18287_2412_6179_CO_743
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c284t-1938a566347a256cf964fbcae1e364aa3b873b3f207d6f621d9f7d16e62a03f53
IEDL.DBID DOA
ISSN 0134-2452
IngestDate Wed Aug 27 01:17:35 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 03:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-1938a566347a256cf964fbcae1e364aa3b873b3f207d6f621d9f7d16e62a03f53
OpenAccessLink https://doaj.org/article/e139f041489e4fda9b39f266bf9a16de
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_e139f041489e4fda9b39f266bf9a16de
crossref_citationtrail_10_18287_2412_6179_CO_743
crossref_primary_10_18287_2412_6179_CO_743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2020
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref135
ref87
ref136
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref0
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref77
  doi: 10.1364/ao.57.007798
– ident: ref48
  doi: 10.1002/lpor.201300183
– ident: ref102
  doi: 10.1088/2040-8978/18/6/065001
– ident: ref99
  doi: 10.1364/oe.27.013252
– ident: ref13
  doi: 10.1109/jsen.2020.2985840
– ident: ref50
  doi: 10.20944/preprints201806.0274.v2
– ident: ref72
  doi: 10.3390/s16050642
– ident: ref115
  doi: 10.1364/oe.21.000698
– ident: ref71
  doi: 10.1109/icraie.2016.7939557
– ident: ref47
  doi: 10.1088/1555-6611/ab0372
– ident: ref75
  doi: 10.3390/s17071494
– ident: ref94
  doi: 10.1038/srep22428
– ident: ref19
  doi: 10.1080/17455030.2018.1506191
– ident: ref59
  doi: 10.1088/1367-2630/10/10/105018
– ident: ref67
  doi: 10.3390/s18010116
– ident: ref131
  doi: 10.1021/nl900505a
– ident: ref56
  doi: 10.1063/1.3597620
– ident: ref105
  doi: 10.1364/ol.34.000322
– ident: ref58
  doi: 10.1063/1.1862340
– ident: ref60
  doi: 10.1021/ac9708001
– ident: ref97
  doi: 10.1016/j.optlastec.2019.03.044
– ident: ref43
  doi: 10.1039/c0an00053a
– ident: ref128
  doi: 10.1073/pnas.1101910108
– ident: ref100
  doi: 10.1364/AO.58.004878
– ident: ref21
  doi: 10.1364/oe.26.010109
– ident: ref17
  doi: 10.1080/09500340.2019.1609613
– ident: ref92
  doi: 10.1021/nl3000453
– ident: ref34
  doi: 10.1109/jlt.2005.859856
– ident: ref117
  doi: 10.1088/2040-8978/18/6/065004
– ident: ref74
  doi: 10.3390/s17122879
– ident: ref129
  doi: 10.1021/nl103007m
– ident: ref44
  doi: 10.1116/1.4819316
– ident: ref120
– ident: ref122
  doi: 10.1364/oe.21.000079
– ident: ref54
  doi: 10.1063/1.1753060
– ident: ref15
  doi: 10.1364/ol.29.001209
– ident: ref6
  doi: 10.1364/oe.24.022908
– ident: ref114
  doi: 10.1016/j.mee.2009.11.078
– ident: ref52
  doi: 10.18287/2412-6179-2018-42-2-244-247
– ident: ref12
  doi: 10.1016/j.ijleo.2018.04.134
– ident: ref65
  doi: 10.1016/s0925-4005(98)00321-9
– ident: ref27
  doi: 10.4302/plp.v12i1.902
– ident: ref55
– ident: ref62
  doi: 10.1063/1.4875019
– ident: ref133
  doi: 10.1021/ja904387j
– ident: ref41
  doi: 10.1364/ao.24.004493
– ident: ref53
  doi: 10.1088/1555-6611/ab5719
– ident: ref88
  doi: 10.1007/s11468-019-00926-9
– ident: ref119
– ident: ref132
  doi: 10.1021/acs.chemmater.9b04100
– ident: ref16
  doi: 10.1364/oe.21.019029
– ident: ref22
  doi: 10.1364/oe.25.012295
– ident: ref86
  doi: 10.1088/1612-202x/ab5574
– ident: ref111
  doi: 10.1016/j.photonics.2019.100714
– ident: ref11
  doi: 10.18287/0134-2452-2015-39-2-158-162
– ident: ref40
  doi: 10.1021/ja041017a
– ident: ref127
  doi: 10.1002/adma.201100163
– ident: ref83
  doi: 10.1109/jsen.2019.2906759
– ident: ref136
  doi: 10.1021/ac2012976
– ident: ref0
– ident: ref87
  doi: 10.1038/nmat2546
– ident: ref29
  doi: 10.1103/physrevb.73.153405
– ident: ref32
  doi: 10.1103/physrev.182.539
– ident: ref96
  doi: 10.1016/j.optcom.2019.04.068
– ident: ref91
  doi: 10.3390/nano9050678
– ident: ref134
  doi: 10.1021/nn901457f
– ident: ref23
  doi: 10.1088/1555-6611/ab1414
– ident: ref89
  doi: 10.1039/c5nr06504f
– ident: ref110
  doi: 10.1103/physrevlett.66.2593
– ident: ref14
  doi: 10.1109/3.83406
– ident: ref108
  doi: 10.1049/iet-opt.2018.0028
– ident: ref126
  doi: 10.1364/oe.20.007516
– ident: ref69
  doi: 10.1186/s11671-015-0913-4
– ident: ref104
  doi: 10.1016/j.snb.2013.11.063
– ident: ref46
  doi: 10.1364/oe.18.014474
– ident: ref66
  doi: 10.1080/17455030.2019.1568609
– ident: ref25
  doi: 10.1080/09500340.2019.1601272
– ident: ref68
  doi: 10.1364/oe.22.007669
– ident: ref70
  doi: 10.1109/JPHOT.2014.2368779
– ident: ref95
  doi: 10.1038/s41598-017-10626-1
– ident: ref49
  doi: 10.1088/1555-6611/aadf18
– ident: ref79
  doi: 10.1109/icecube.2018.8610998
– ident: ref33
  doi: 10.1063/1.1835997
– ident: ref1
  doi: 10.1070/rc2013v082n07abeh004403
– ident: ref51
  doi: 10.1080/09500340.2017.1382596
– ident: ref28
  doi: 10.1080/09500340.2019.1683633
– ident: ref8
  doi: 10.1117/12.2266783
– ident: ref45
  doi: 10.1016/j.snb.2014.01.056
– ident: ref123
  doi: 10.1021/ac0262210
– ident: ref73
  doi: 10.1088/2040-8978/18/5/055002
– ident: ref101
  doi: 10.3390/s19040791
– ident: ref42
  doi: 10.1201/b21918
– ident: ref63
  doi: 10.1039/c4nr06586g
– ident: ref124
  doi: 10.1515/nanoph-2015-0017
– ident: ref80
  doi: 10.1109/JPHOT.2019.2914483
– ident: ref90
  doi: 10.1021/nn303643w
– ident: ref2
  doi: 10.1080/09500340.2017.1325947
– ident: ref10
  doi: 10.18287/2412-6179-2017-41-4-494-498
– ident: ref81
  doi: 10.1016/j.rinp.2019.102420
– ident: ref78
  doi: 10.1016/j.ijleo.2018.07.093
– ident: ref61
  doi: 10.1016/j.bios.2004.09.025
– ident: ref18
  doi: 10.1088/1555-6611/ab0371
– ident: ref24
  doi: 10.1109/jsen.2019.2944391
– ident: ref106
  doi: 10.1038/ncomms3381
– ident: ref39
– ident: ref112
  doi: 10.3390/s18103181
– ident: ref3
  doi: 10.1016/b978-044450974-1/50007-0
– ident: ref116
  doi: 10.1088/0022-3727/48/32/325303
– ident: ref107
  doi: 10.3390/s17040784
– ident: ref118
  doi: 10.1002/andp.201700411
– ident: ref84
  doi: 10.3788/gzxb20174604.0413002
– ident: ref103
  doi: 10.1142/s0217984919500179
– ident: ref35
  doi: 10.1364/josab.33.002480
– ident: ref82
  doi: 10.3390/s19071559
– ident: ref135
  doi: 10.1126/science.1199958
– ident: ref93
  doi: 10.1038/s41598-019-38708-2
– ident: ref76
  doi: 10.1080/09500340.2018.1427290
– ident: ref9
  doi: 10.1016/j.physe.2019.113798
– ident: ref36
  doi: 10.1155/2012/258013
– ident: ref64
  doi: 10.1038/nmat3537
– ident: ref30
  doi: 10.1103/physrevb.73.035407
– ident: ref7
  doi: 10.1109/50.337489
– ident: ref20
  doi: 10.1080/17455030.2020.1744769
– ident: ref38
  doi: 10.1103/physrevlett.95.257403
– ident: ref121
– ident: ref98
  doi: 10.1109/JLT.2019.2906933
– ident: ref109
  doi: 10.1103/physreva.85.053803
– ident: ref57
  doi: 10.1134/s0367676518080069
– ident: ref4
  doi: 10.18287/2412-6179-2019-43-6-1079-1083
– ident: ref85
  doi: 10.1109/jsen.2015.2455534
– ident: ref130
  doi: 10.1021/nn100760f
– ident: ref5
  doi: 10.1364/OE.18.014474
– ident: ref113
  doi: 10.1088/1367-2630/10/10/105010
– ident: ref31
  doi: 10.1038/nature04594
– ident: ref125
  doi: 10.15171/apb.2018.006
– ident: ref26
  doi: 10.1016/j.ijleo.2019.163655
– ident: ref37
  doi: 10.1364/oe.24.016224
SSID ssj0002876141
Score 2.3783195
Snippet Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 295
SubjectTerms lorentz and fano resonances
metal-dielectric-metal structures
plasmonic waveguides
refractive index sensors
Title Achievements in the development of plasmonic waveguide sensors for measuring the refractive index
URI https://doaj.org/article/e139f041489e4fda9b39f266bf9a16de
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxa-EeVLHpiQrDax48RjqagqJOhCpW6RHdtQRD_UpuXvc-eEUhZYGJPYkXW55L1nx-8IuZFSxV7YmBWFNQzwOmPaoljRCVqtwKVgpfT4JPtD8TBKRlulvvCfsMoeuApcywFF8W0BrF054a1WBo4BVYxXOpLW4dcXMG9LTL2FKSOQ56IqRsgFw-XFekkTDd5bAFsxbo5TrDtgqeA_QGnLuz-ATO-A7NXskHaqUR2SHTc9Ivs1U6T1e7g8JrpTvI5dsPoul3Q8pUDjqP3-_4fOPJ0DL56g8S390Gv3shpbR5cgWmeLJQWmSidhdhCQK3SGMYX9UmtHg4HiCRn27p-7fVYXS2AFIEzJgIhlGrgZF6kGGlN4JYU3hXaR41JozU2WcsN93E6t9DKOrPKpjaSTsW5zn_BT0pjOpu6M0NSBisrQ6EtwkZnC2MjKxKskk1aBpG2S9le08qJ2EseCFu85KgoMcI4BzjHAeXeQQ4Cb5HbTZV7ZaPzW-A4fwaYhOmCHE5AXeZ0X-V95cf4fN7kguzHq6zDrckka5WLlroCElOY65NsnjQfXBQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achievements+in+the+development+of+plasmonic+waveguide+sensors+for+measuring+the+refractive+index&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Kazanskiy%2C+N.L.&rft.au=Butt%2C+M.A.&rft.au=Degtyarev%2C+S.A.&rft.au=Khonina%2C+S.N.&rft.date=2020-06-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=44&rft.issue=3&rft_id=info:doi/10.18287%2F2412-6179-CO-743&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon