Achievements in the development of plasmonic waveguide sensors for measuring the refractive index
Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and st...
Saved in:
Published in | Kompʹûternaâ optika Vol. 44; no. 3; pp. 295 - 318 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and structure. In this review, we focused on the analysis of silicon waveguides as a promising component for optical sensor miniaturization, and plasmon refractive index sensors without fluorescent labeling. We presented the latest developments of special types of plasmon structures, such as metal-insulator-metal waveguides, and their application in refractive index sensors. We analyzed numerous types of plasmon waveguides, their geometry, materials and manufacturing processes, as well as possible energy losses. A discussion of the spectral characteristics of recently proposed refractive index sensors, with an emphasis on their sensitivity and quality indicators, is an important part of the review. |
---|---|
AbstractList | Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and structure. In this review, we focused on the analysis of silicon waveguides as a promising component for optical sensor miniaturization, and plasmon refractive index sensors without fluorescent labeling. We presented the latest developments of special types of plasmon structures, such as metal-insulator-metal waveguides, and their application in refractive index sensors. We analyzed numerous types of plasmon waveguides, their geometry, materials and manufacturing processes, as well as possible energy losses. A discussion of the spectral characteristics of recently proposed refractive index sensors, with an emphasis on their sensitivity and quality indicators, is an important part of the review. |
Author | Degtyarev, S.A. Butt, M.A. Khonina, S.N. Kazanskiy, N.L. |
Author_xml | – sequence: 1 givenname: N.L. surname: Kazanskiy fullname: Kazanskiy, N.L. – sequence: 2 givenname: M.A. surname: Butt fullname: Butt, M.A. – sequence: 3 givenname: S.A. surname: Degtyarev fullname: Degtyarev, S.A. – sequence: 4 givenname: S.N. surname: Khonina fullname: Khonina, S.N. |
BookMark | eNp1kMtOwzAQRS1UJMrjA9j5BwJ-xUmWqOJRqVI3sLYm9rh1lcaVHQr8PWl5LJBYjeZK52rmnJNJH3sk5JqzG16LuroViotC86opZsuiUvKETH-jCZkyLlUhVCnOyFXOG8bYCGmu-JTAnV0H3OMW-yHT0NNhjdSNQRd3h4xGT3cd5G3sg6VvsMfVa3BIM_Y5pkx9THSLkF9T6FdHOKFPYIewx7HO4fslOfXQZbz6nhfk5eH-efZULJaP89ndorCiVkPBG1lDqbVUFYhSW99o5VsLyFFqBSDbupKt9IJVTnstuGt85bhGLYBJX8oLMv_qdRE2ZpfCFtKHiRDMMYhpZSANwXZokMvGM8VV3aDyDpp23IXWrW-Aa4djV_XVZVPMefzI2DDAEGI_JAid4cwcxZuDZXOwbGZLM4ofSf6H_Lnkf-YTpLqJCg |
CitedBy_id | crossref_primary_10_1088_1742_6596_2103_1_012174 crossref_primary_10_3390_bios12070497 crossref_primary_10_3390_bios12111038 crossref_primary_10_3390_electronics10080973 crossref_primary_10_3390_electronics10121419 crossref_primary_10_3390_s25051367 crossref_primary_10_1007_s11468_023_01795_z crossref_primary_10_1016_j_ijleo_2021_168466 crossref_primary_10_3103_S1060992X22050034 crossref_primary_10_26896_1028_6861_2022_88_5_27_33 crossref_primary_10_1016_j_ijleo_2024_172209 crossref_primary_10_3103_S1060992X24700371 crossref_primary_10_3103_S1060992X23050156 crossref_primary_10_1016_j_mtcomm_2023_106036 crossref_primary_10_1364_OE_423141 crossref_primary_10_3367_UFNr_2021_07_039028 crossref_primary_10_1016_j_optlastec_2020_106863 crossref_primary_10_1088_1742_6596_1745_1_012028 crossref_primary_10_3103_S1060992X24700632 crossref_primary_10_3103_S1060992X23050119 crossref_primary_10_1080_01468030_2021_1902590 crossref_primary_10_1088_1742_6596_1745_1_012027 crossref_primary_10_3390_bios13100933 crossref_primary_10_1016_j_rinp_2023_106733 |
Cites_doi | 10.1364/ao.57.007798 10.1002/lpor.201300183 10.1088/2040-8978/18/6/065001 10.1364/oe.27.013252 10.1109/jsen.2020.2985840 10.20944/preprints201806.0274.v2 10.3390/s16050642 10.1364/oe.21.000698 10.1109/icraie.2016.7939557 10.1088/1555-6611/ab0372 10.3390/s17071494 10.1038/srep22428 10.1080/17455030.2018.1506191 10.1088/1367-2630/10/10/105018 10.3390/s18010116 10.1021/nl900505a 10.1063/1.3597620 10.1364/ol.34.000322 10.1063/1.1862340 10.1021/ac9708001 10.1016/j.optlastec.2019.03.044 10.1039/c0an00053a 10.1073/pnas.1101910108 10.1364/AO.58.004878 10.1364/oe.26.010109 10.1080/09500340.2019.1609613 10.1021/nl3000453 10.1109/jlt.2005.859856 10.1088/2040-8978/18/6/065004 10.3390/s17122879 10.1021/nl103007m 10.1116/1.4819316 10.1364/oe.21.000079 10.1063/1.1753060 10.1364/ol.29.001209 10.1364/oe.24.022908 10.1016/j.mee.2009.11.078 10.18287/2412-6179-2018-42-2-244-247 10.1016/j.ijleo.2018.04.134 10.1016/s0925-4005(98)00321-9 10.4302/plp.v12i1.902 10.1063/1.4875019 10.1021/ja904387j 10.1364/ao.24.004493 10.1088/1555-6611/ab5719 10.1007/s11468-019-00926-9 10.1021/acs.chemmater.9b04100 10.1364/oe.21.019029 10.1364/oe.25.012295 10.1088/1612-202x/ab5574 10.1016/j.photonics.2019.100714 10.18287/0134-2452-2015-39-2-158-162 10.1021/ja041017a 10.1002/adma.201100163 10.1109/jsen.2019.2906759 10.1021/ac2012976 10.1038/nmat2546 10.1103/physrevb.73.153405 10.1103/physrev.182.539 10.1016/j.optcom.2019.04.068 10.3390/nano9050678 10.1021/nn901457f 10.1088/1555-6611/ab1414 10.1039/c5nr06504f 10.1103/physrevlett.66.2593 10.1109/3.83406 10.1049/iet-opt.2018.0028 10.1364/oe.20.007516 10.1186/s11671-015-0913-4 10.1016/j.snb.2013.11.063 10.1364/oe.18.014474 10.1080/17455030.2019.1568609 10.1080/09500340.2019.1601272 10.1364/oe.22.007669 10.1109/JPHOT.2014.2368779 10.1038/s41598-017-10626-1 10.1088/1555-6611/aadf18 10.1109/icecube.2018.8610998 10.1063/1.1835997 10.1070/rc2013v082n07abeh004403 10.1080/09500340.2017.1382596 10.1080/09500340.2019.1683633 10.1117/12.2266783 10.1016/j.snb.2014.01.056 10.1021/ac0262210 10.1088/2040-8978/18/5/055002 10.3390/s19040791 10.1201/b21918 10.1039/c4nr06586g 10.1515/nanoph-2015-0017 10.1109/JPHOT.2019.2914483 10.1021/nn303643w 10.1080/09500340.2017.1325947 10.18287/2412-6179-2017-41-4-494-498 10.1016/j.rinp.2019.102420 10.1016/j.ijleo.2018.07.093 10.1016/j.bios.2004.09.025 10.1088/1555-6611/ab0371 10.1109/jsen.2019.2944391 10.1038/ncomms3381 10.3390/s18103181 10.1016/b978-044450974-1/50007-0 10.1088/0022-3727/48/32/325303 10.3390/s17040784 10.1002/andp.201700411 10.3788/gzxb20174604.0413002 10.1142/s0217984919500179 10.1364/josab.33.002480 10.3390/s19071559 10.1126/science.1199958 10.1038/s41598-019-38708-2 10.1080/09500340.2018.1427290 10.1016/j.physe.2019.113798 10.1155/2012/258013 10.1038/nmat3537 10.1103/physrevb.73.035407 10.1109/50.337489 10.1080/17455030.2020.1744769 10.1103/physrevlett.95.257403 10.1109/JLT.2019.2906933 10.1103/physreva.85.053803 10.1134/s0367676518080069 10.18287/2412-6179-2019-43-6-1079-1083 10.1109/jsen.2015.2455534 10.1021/nn100760f 10.1364/OE.18.014474 10.1088/1367-2630/10/10/105010 10.1038/nature04594 10.15171/apb.2018.006 10.1016/j.ijleo.2019.163655 10.1364/oe.24.016224 |
ContentType | Journal Article |
CorporateAuthor | IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS Samara National Research University |
CorporateAuthor_xml | – name: Samara National Research University – name: IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-743 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 318 |
ExternalDocumentID | oai_doaj_org_article_e139f041489e4fda9b39f266bf9a16de 10_18287_2412_6179_CO_743 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c284t-1938a566347a256cf964fbcae1e364aa3b873b3f207d6f621d9f7d16e62a03f53 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:17:35 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 03:11:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c284t-1938a566347a256cf964fbcae1e364aa3b873b3f207d6f621d9f7d16e62a03f53 |
OpenAccessLink | https://doaj.org/article/e139f041489e4fda9b39f266bf9a16de |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e139f041489e4fda9b39f266bf9a16de crossref_citationtrail_10_18287_2412_6179_CO_743 crossref_primary_10_18287_2412_6179_CO_743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2020 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref135 ref87 ref136 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref0 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref77 doi: 10.1364/ao.57.007798 – ident: ref48 doi: 10.1002/lpor.201300183 – ident: ref102 doi: 10.1088/2040-8978/18/6/065001 – ident: ref99 doi: 10.1364/oe.27.013252 – ident: ref13 doi: 10.1109/jsen.2020.2985840 – ident: ref50 doi: 10.20944/preprints201806.0274.v2 – ident: ref72 doi: 10.3390/s16050642 – ident: ref115 doi: 10.1364/oe.21.000698 – ident: ref71 doi: 10.1109/icraie.2016.7939557 – ident: ref47 doi: 10.1088/1555-6611/ab0372 – ident: ref75 doi: 10.3390/s17071494 – ident: ref94 doi: 10.1038/srep22428 – ident: ref19 doi: 10.1080/17455030.2018.1506191 – ident: ref59 doi: 10.1088/1367-2630/10/10/105018 – ident: ref67 doi: 10.3390/s18010116 – ident: ref131 doi: 10.1021/nl900505a – ident: ref56 doi: 10.1063/1.3597620 – ident: ref105 doi: 10.1364/ol.34.000322 – ident: ref58 doi: 10.1063/1.1862340 – ident: ref60 doi: 10.1021/ac9708001 – ident: ref97 doi: 10.1016/j.optlastec.2019.03.044 – ident: ref43 doi: 10.1039/c0an00053a – ident: ref128 doi: 10.1073/pnas.1101910108 – ident: ref100 doi: 10.1364/AO.58.004878 – ident: ref21 doi: 10.1364/oe.26.010109 – ident: ref17 doi: 10.1080/09500340.2019.1609613 – ident: ref92 doi: 10.1021/nl3000453 – ident: ref34 doi: 10.1109/jlt.2005.859856 – ident: ref117 doi: 10.1088/2040-8978/18/6/065004 – ident: ref74 doi: 10.3390/s17122879 – ident: ref129 doi: 10.1021/nl103007m – ident: ref44 doi: 10.1116/1.4819316 – ident: ref120 – ident: ref122 doi: 10.1364/oe.21.000079 – ident: ref54 doi: 10.1063/1.1753060 – ident: ref15 doi: 10.1364/ol.29.001209 – ident: ref6 doi: 10.1364/oe.24.022908 – ident: ref114 doi: 10.1016/j.mee.2009.11.078 – ident: ref52 doi: 10.18287/2412-6179-2018-42-2-244-247 – ident: ref12 doi: 10.1016/j.ijleo.2018.04.134 – ident: ref65 doi: 10.1016/s0925-4005(98)00321-9 – ident: ref27 doi: 10.4302/plp.v12i1.902 – ident: ref55 – ident: ref62 doi: 10.1063/1.4875019 – ident: ref133 doi: 10.1021/ja904387j – ident: ref41 doi: 10.1364/ao.24.004493 – ident: ref53 doi: 10.1088/1555-6611/ab5719 – ident: ref88 doi: 10.1007/s11468-019-00926-9 – ident: ref119 – ident: ref132 doi: 10.1021/acs.chemmater.9b04100 – ident: ref16 doi: 10.1364/oe.21.019029 – ident: ref22 doi: 10.1364/oe.25.012295 – ident: ref86 doi: 10.1088/1612-202x/ab5574 – ident: ref111 doi: 10.1016/j.photonics.2019.100714 – ident: ref11 doi: 10.18287/0134-2452-2015-39-2-158-162 – ident: ref40 doi: 10.1021/ja041017a – ident: ref127 doi: 10.1002/adma.201100163 – ident: ref83 doi: 10.1109/jsen.2019.2906759 – ident: ref136 doi: 10.1021/ac2012976 – ident: ref0 – ident: ref87 doi: 10.1038/nmat2546 – ident: ref29 doi: 10.1103/physrevb.73.153405 – ident: ref32 doi: 10.1103/physrev.182.539 – ident: ref96 doi: 10.1016/j.optcom.2019.04.068 – ident: ref91 doi: 10.3390/nano9050678 – ident: ref134 doi: 10.1021/nn901457f – ident: ref23 doi: 10.1088/1555-6611/ab1414 – ident: ref89 doi: 10.1039/c5nr06504f – ident: ref110 doi: 10.1103/physrevlett.66.2593 – ident: ref14 doi: 10.1109/3.83406 – ident: ref108 doi: 10.1049/iet-opt.2018.0028 – ident: ref126 doi: 10.1364/oe.20.007516 – ident: ref69 doi: 10.1186/s11671-015-0913-4 – ident: ref104 doi: 10.1016/j.snb.2013.11.063 – ident: ref46 doi: 10.1364/oe.18.014474 – ident: ref66 doi: 10.1080/17455030.2019.1568609 – ident: ref25 doi: 10.1080/09500340.2019.1601272 – ident: ref68 doi: 10.1364/oe.22.007669 – ident: ref70 doi: 10.1109/JPHOT.2014.2368779 – ident: ref95 doi: 10.1038/s41598-017-10626-1 – ident: ref49 doi: 10.1088/1555-6611/aadf18 – ident: ref79 doi: 10.1109/icecube.2018.8610998 – ident: ref33 doi: 10.1063/1.1835997 – ident: ref1 doi: 10.1070/rc2013v082n07abeh004403 – ident: ref51 doi: 10.1080/09500340.2017.1382596 – ident: ref28 doi: 10.1080/09500340.2019.1683633 – ident: ref8 doi: 10.1117/12.2266783 – ident: ref45 doi: 10.1016/j.snb.2014.01.056 – ident: ref123 doi: 10.1021/ac0262210 – ident: ref73 doi: 10.1088/2040-8978/18/5/055002 – ident: ref101 doi: 10.3390/s19040791 – ident: ref42 doi: 10.1201/b21918 – ident: ref63 doi: 10.1039/c4nr06586g – ident: ref124 doi: 10.1515/nanoph-2015-0017 – ident: ref80 doi: 10.1109/JPHOT.2019.2914483 – ident: ref90 doi: 10.1021/nn303643w – ident: ref2 doi: 10.1080/09500340.2017.1325947 – ident: ref10 doi: 10.18287/2412-6179-2017-41-4-494-498 – ident: ref81 doi: 10.1016/j.rinp.2019.102420 – ident: ref78 doi: 10.1016/j.ijleo.2018.07.093 – ident: ref61 doi: 10.1016/j.bios.2004.09.025 – ident: ref18 doi: 10.1088/1555-6611/ab0371 – ident: ref24 doi: 10.1109/jsen.2019.2944391 – ident: ref106 doi: 10.1038/ncomms3381 – ident: ref39 – ident: ref112 doi: 10.3390/s18103181 – ident: ref3 doi: 10.1016/b978-044450974-1/50007-0 – ident: ref116 doi: 10.1088/0022-3727/48/32/325303 – ident: ref107 doi: 10.3390/s17040784 – ident: ref118 doi: 10.1002/andp.201700411 – ident: ref84 doi: 10.3788/gzxb20174604.0413002 – ident: ref103 doi: 10.1142/s0217984919500179 – ident: ref35 doi: 10.1364/josab.33.002480 – ident: ref82 doi: 10.3390/s19071559 – ident: ref135 doi: 10.1126/science.1199958 – ident: ref93 doi: 10.1038/s41598-019-38708-2 – ident: ref76 doi: 10.1080/09500340.2018.1427290 – ident: ref9 doi: 10.1016/j.physe.2019.113798 – ident: ref36 doi: 10.1155/2012/258013 – ident: ref64 doi: 10.1038/nmat3537 – ident: ref30 doi: 10.1103/physrevb.73.035407 – ident: ref7 doi: 10.1109/50.337489 – ident: ref20 doi: 10.1080/17455030.2020.1744769 – ident: ref38 doi: 10.1103/physrevlett.95.257403 – ident: ref121 – ident: ref98 doi: 10.1109/JLT.2019.2906933 – ident: ref109 doi: 10.1103/physreva.85.053803 – ident: ref57 doi: 10.1134/s0367676518080069 – ident: ref4 doi: 10.18287/2412-6179-2019-43-6-1079-1083 – ident: ref85 doi: 10.1109/jsen.2015.2455534 – ident: ref130 doi: 10.1021/nn100760f – ident: ref5 doi: 10.1364/OE.18.014474 – ident: ref113 doi: 10.1088/1367-2630/10/10/105010 – ident: ref31 doi: 10.1038/nature04594 – ident: ref125 doi: 10.15171/apb.2018.006 – ident: ref26 doi: 10.1016/j.ijleo.2019.163655 – ident: ref37 doi: 10.1364/oe.24.016224 |
SSID | ssj0002876141 |
Score | 2.3783195 |
Snippet | Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 295 |
SubjectTerms | lorentz and fano resonances metal-dielectric-metal structures plasmonic waveguides refractive index sensors |
Title | Achievements in the development of plasmonic waveguide sensors for measuring the refractive index |
URI | https://doaj.org/article/e139f041489e4fda9b39f266bf9a16de |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxa-EeVLHpiQrDax48RjqagqJOhCpW6RHdtQRD_UpuXvc-eEUhZYGJPYkXW55L1nx-8IuZFSxV7YmBWFNQzwOmPaoljRCVqtwKVgpfT4JPtD8TBKRlulvvCfsMoeuApcywFF8W0BrF054a1WBo4BVYxXOpLW4dcXMG9LTL2FKSOQ56IqRsgFw-XFekkTDd5bAFsxbo5TrDtgqeA_QGnLuz-ATO-A7NXskHaqUR2SHTc9Ivs1U6T1e7g8JrpTvI5dsPoul3Q8pUDjqP3-_4fOPJ0DL56g8S390Gv3shpbR5cgWmeLJQWmSidhdhCQK3SGMYX9UmtHg4HiCRn27p-7fVYXS2AFIEzJgIhlGrgZF6kGGlN4JYU3hXaR41JozU2WcsN93E6t9DKOrPKpjaSTsW5zn_BT0pjOpu6M0NSBisrQ6EtwkZnC2MjKxKskk1aBpG2S9le08qJ2EseCFu85KgoMcI4BzjHAeXeQQ4Cb5HbTZV7ZaPzW-A4fwaYhOmCHE5AXeZ0X-V95cf4fN7kguzHq6zDrckka5WLlroCElOY65NsnjQfXBQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achievements+in+the+development+of+plasmonic+waveguide+sensors+for+measuring+the+refractive+index&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Kazanskiy%2C+N.L.&rft.au=Butt%2C+M.A.&rft.au=Degtyarev%2C+S.A.&rft.au=Khonina%2C+S.N.&rft.date=2020-06-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=44&rft.issue=3&rft_id=info:doi/10.18287%2F2412-6179-CO-743&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |