Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters

The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of t...

Full description

Saved in:
Bibliographic Details
Published inTsinghua science and technology Vol. 16; no. 4; pp. 440 - 448
Main Author 张帆 曹军威 刘连臣 吴澄
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2011
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China
National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Subjects
Online AccessGet full text
ISSN1007-0214
1878-7606
1007-0214
DOI10.1016/S1007-0214(11)70063-3

Cover

Abstract The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
AbstractList The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strategy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
TP338.6; The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files.Evolutionary strategies,with their ability to have a global view of the structural information,have been shown to effectively improve performance.However,most of these methods consume too much measurement time.This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters.The strategy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance.The method is compared with the covariance matrix algorithm.Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
Author 张帆 曹军威 刘连臣 吴澄
AuthorAffiliation National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China; Research Institute of Information Technology, Tsinghua University, Beijing 100084, China; Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
AuthorAffiliation_xml – name: National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Author_xml – sequence: 1
  fullname: 张帆 曹军威 刘连臣 吴澄
BookMark eNqFkMFu1DAQhi1UJNrCIyCFGz2kzMRJ7BUHVC0UKlWiUuGGZDnOeNdVY7e2U7pvj3e3cODSy3gO3z-_9R2xAx88MfYW4RQB-w_XCCBqaLB9j3giAHpe8xfsEKWQteihPyj7X-QVO0rpBoD3neCH7NcVRRvipL2h6mK6i-GBJvK5Crb67FKObpgzjdX1JmWaUjVsqrM5hzx751dbKK-pWgZv3WqOOrvgqysd9USZYnrNXlp9m-jN03vMfp5_-bH8Vl9-_3qxPLusTSPbrsx2QCkXZFs5LrDXRpBEMC0nggUfOPSCG2vRSNkh1y0ftMXGWm0a3Y2CH7OT_d3f2lvtV-omzNGXRnW_Hh8fB0UNIEIL2BX24541MaQUySrj8u7jOWp3qxDUVqraSVVbYwpR7aQqXtLdf-m76CYdN8_mPu1zVDQ8OIoqGUfF-egimazG4J698O6peR386r7Y_1fNZYFE3_A_FXedEw
CitedBy_id crossref_primary_10_1016_j_future_2020_05_005
crossref_primary_10_1109_TETC_2014_2348196
Cites_doi 10.1023/A:1008349927281
10.1016/j.cor.2008.06.003
10.1145/1667072.1667076
10.1016/j.ejor.2009.08.008
10.1145/988672.988711
10.1109/TASE.2007.906342
10.1109/ICDCS.2008.11
ClassificationCodes TP338.6
ContentType Journal Article
Copyright 2011 Tsinghua University Press
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2011 Tsinghua University Press
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1007-0214(11)70063-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters
EISSN 1878-7606
1007-0214
EndPage 448
ExternalDocumentID qhdxxb_e201104015
10_1016_S1007_0214_11_70063_3
S1007021411700633
38700762
GrantInformation_xml – fundername: the National Key Basic Research and Development (973) Program of China
  grantid: (Nos. 2011CB302505 and 2011CB302805)
– fundername: the National Natural Science Foundation of China
  grantid: (No. 60803017)
GroupedDBID --K
-03
-0C
-SC
-S~
-~X
.~1
0R~
123
1B1
1~5
2B.
2C.
2RA
2WC
4.4
4G.
5VR
5VS
6IK
7-5
71M
92E
92I
92L
92M
92Q
93N
9D9
9DC
AABNK
AAEDT
AAHTB
AALRI
AAQFI
AAXUO
ABPEJ
ACSFO
ADMUD
AEKER
AENEX
AFUIB
AGYEJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EJD
F5P
FA0
FDB
FEDTE
FKXTD
FNPLU
HVGLF
HZ~
IHE
IPLJI
J1W
JAVBF
JUIAU
M41
M43
N9A
O-L
O9-
OCL
OK1
OZT
Q--
Q-2
Q38
R-C
RBI
RIG
RNS
ROL
RPZ
RT3
SDC
SDF
SES
T8S
TCJ
TGP
U1F
U1G
U5C
U5M
~WA
AAYXX
ABAZT
ABVJJ
ABVLG
ABWVN
ACRPL
ADNMO
AIGII
CITATION
ESBDL
M48
4A8
PSX
ID FETCH-LOGICAL-c2845-c24b1889ef48d916ac7e810c43ee093b30673cff1c88513a43baf12ffac2a5d73
IEDL.DBID .~1
ISSN 1007-0214
IngestDate Thu May 29 03:58:29 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Tue Jul 01 00:20:08 EDT 2025
Fri Feb 23 02:34:10 EST 2024
Wed Feb 14 09:50:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords performance evaluation
autotune configuration parameters
covariance matrix algorithm
distributed systems
ordinal optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2845-c24b1889ef48d916ac7e810c43ee093b30673cff1c88513a43baf12ffac2a5d73
Notes 11-3745/N
The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
distributed systems; performance evaluation; autotune configuration parameters; ordinal optimization; covariance matrix algorithm
PageCount 9
ParticipantIDs wanfang_journals_qhdxxb_e201104015
crossref_citationtrail_10_1016_S1007_0214_11_70063_3
crossref_primary_10_1016_S1007_0214_11_70063_3
elsevier_sciencedirect_doi_10_1016_S1007_0214_11_70063_3
chongqing_primary_38700762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-00
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-00
PublicationDecade 2010
PublicationTitle Tsinghua science and technology
PublicationTitleAlternate Tsinghua Science and Technology
PublicationTitle_FL Tsinghua Science and Technology
PublicationYear 2011
Publisher Elsevier Ltd
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China
National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Publisher_xml – name: Elsevier Ltd
– name: National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
– name: Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China
– name: Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
References Jia Q, Zhao Q. A SVM-based method for engine maintenance strategy optimization. In: Proceedings of the 2006 IEEE International Confrence on Robotics and Automation. Orlando, FL, USA, 2006: 1066–1071.
Haykin (bib8) 1998
Foster, Kesselman (bib3) 1998
International Conference on World Wide Web. New York, NY, USA, 2004: 287–296.
Boss G, Malladi P, Quan D. IBM high performance on demand solutions. Technical report. IBM. Oct. 2007.
Hsieh, Chen, Chang (bib12) 2007; 4
Chen, Lin Ji, Yücesan (bib14) 2000; 10
Teng, Lee, Chew (bib10) 2010; 203
Ho, Zhao, Jia (bib9) 2007
He, Lee, Chen (bib11) 2010; 20
Hwang, Xu (bib1) 1998
Li, Lee, Ho (bib15) 1999; 5
Saboori A, Jiang G, Chen H. Autotuning configurations in distributed systems for performance improvements using evolutionary strategies. In: Proceedings of the 28
Xi B, Liu Z, Raghavachari M. A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 3
International Conference on Distributed Computing Systems. Beijing, China. 2008: 765–772.
Atkins D, Droegemeier K, Feldman S, et al. Revolutionizing science and engineering through cyberinfrastructure. Technical report. National Science Foundation Blue - Ribbon Advisory Panel on Cyberinfrastructure, 2003.
Chen, Lee (bib13) 2009; 36
Teng (10.1016/S1007-0214(11)70063-3_bib10) 2010; 203
Hsieh (10.1016/S1007-0214(11)70063-3_bib12) 2007; 4
Li (10.1016/S1007-0214(11)70063-3_bib15) 1999; 5
10.1016/S1007-0214(11)70063-3_bib2
He (10.1016/S1007-0214(11)70063-3_bib11) 2010; 20
Chen (10.1016/S1007-0214(11)70063-3_bib13) 2009; 36
Foster (10.1016/S1007-0214(11)70063-3_bib3) 1998
10.1016/S1007-0214(11)70063-3_bib7
Ho (10.1016/S1007-0214(11)70063-3_bib9) 2007
10.1016/S1007-0214(11)70063-3_bib6
10.1016/S1007-0214(11)70063-3_bib5
10.1016/S1007-0214(11)70063-3_bib4
Hwang (10.1016/S1007-0214(11)70063-3_bib1) 1998
Chen (10.1016/S1007-0214(11)70063-3_bib14) 2000; 10
Haykin (10.1016/S1007-0214(11)70063-3_bib8) 1998
References_xml – volume: 36
  start-page: 1872
  year: 2009
  end-page: 1879
  ident: bib13
  article-title: A multi-objective selection procedure of determining a Pareto set
  publication-title: Computers and Operations Research
– reference: Xi B, Liu Z, Raghavachari M. A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 3
– volume: 203
  start-page: 419
  year: 2010
  end-page: 429
  ident: bib10
  article-title: Integration of indifference-zone with multi-objective computing budget allocation
  publication-title: European Journal of Operational Research
– year: 2007
  ident: bib9
  publication-title: Ordinal Optimization, Soft Optimization for Hard Problems
– volume: 20
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib11
  article-title: Simulation optimization using the cross-entropy method with optimal computing budget allocation
  publication-title: ACM Transactions on Modeling and Computer Simulation
– volume: 4
  start-page: 553
  year: 2007
  end-page: 568
  ident: bib12
  article-title: Efficient simulation-based composition of dispatching policies by integrating ordinal optimization with design of experiment
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 1998
  ident: bib8
  publication-title: Neural Networks: A Comprehensive Foundation
– reference: Jia Q, Zhao Q. A SVM-based method for engine maintenance strategy optimization. In: Proceedings of the 2006 IEEE International Confrence on Robotics and Automation. Orlando, FL, USA, 2006: 1066–1071.
– reference: International Conference on World Wide Web. New York, NY, USA, 2004: 287–296.
– reference: Saboori A, Jiang G, Chen H. Autotuning configurations in distributed systems for performance improvements using evolutionary strategies. In: Proceedings of the 28
– reference: International Conference on Distributed Computing Systems. Beijing, China. 2008: 765–772.
– volume: 10
  start-page: 251
  year: 2000
  end-page: 270
  ident: bib14
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: Journal of Discrete Event Dynamic Systems: Theory and Applications
– reference: Boss G, Malladi P, Quan D. IBM high performance on demand solutions. Technical report. IBM. Oct. 2007.
– reference: Atkins D, Droegemeier K, Feldman S, et al. Revolutionizing science and engineering through cyberinfrastructure. Technical report. National Science Foundation Blue - Ribbon Advisory Panel on Cyberinfrastructure, 2003.
– volume: 5
  start-page: 211
  year: 1999
  end-page: 230
  ident: bib15
  article-title: Vector ordinal optimization–A new heuristic approach and its application to computer networks routing design problems
  publication-title: International Journal of Operations and Quantitative Management
– year: 1998
  ident: bib3
  publication-title: The Grid: Blueprint for a New Computing Infrastructure
– year: 1998
  ident: bib1
  publication-title: Scalable Parallel Computing
– year: 2007
  ident: 10.1016/S1007-0214(11)70063-3_bib9
– volume: 10
  start-page: 251
  year: 2000
  ident: 10.1016/S1007-0214(11)70063-3_bib14
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: Journal of Discrete Event Dynamic Systems: Theory and Applications
  doi: 10.1023/A:1008349927281
– volume: 36
  start-page: 1872
  issue: 6
  year: 2009
  ident: 10.1016/S1007-0214(11)70063-3_bib13
  article-title: A multi-objective selection procedure of determining a Pareto set
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2008.06.003
– volume: 20
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/S1007-0214(11)70063-3_bib11
  article-title: Simulation optimization using the cross-entropy method with optimal computing budget allocation
  publication-title: ACM Transactions on Modeling and Computer Simulation
  doi: 10.1145/1667072.1667076
– volume: 203
  start-page: 419
  issue: 2
  year: 2010
  ident: 10.1016/S1007-0214(11)70063-3_bib10
  article-title: Integration of indifference-zone with multi-objective computing budget allocation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.08.008
– year: 1998
  ident: 10.1016/S1007-0214(11)70063-3_bib3
– ident: 10.1016/S1007-0214(11)70063-3_bib6
  doi: 10.1145/988672.988711
– year: 1998
  ident: 10.1016/S1007-0214(11)70063-3_bib8
– volume: 4
  start-page: 553
  issue: 4
  year: 2007
  ident: 10.1016/S1007-0214(11)70063-3_bib12
  article-title: Efficient simulation-based composition of dispatching policies by integrating ordinal optimization with design of experiment
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2007.906342
– volume: 5
  start-page: 211
  year: 1999
  ident: 10.1016/S1007-0214(11)70063-3_bib15
  article-title: Vector ordinal optimization–A new heuristic approach and its application to computer networks routing design problems
  publication-title: International Journal of Operations and Quantitative Management
– year: 1998
  ident: 10.1016/S1007-0214(11)70063-3_bib1
– ident: 10.1016/S1007-0214(11)70063-3_bib7
  doi: 10.1109/ICDCS.2008.11
– ident: 10.1016/S1007-0214(11)70063-3_bib2
– ident: 10.1016/S1007-0214(11)70063-3_bib4
– ident: 10.1016/S1007-0214(11)70063-3_bib5
SSID ssj0036573
Score 1.8893245
Snippet The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies,...
TP338.6; The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files.Evolutionary...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 440
SubjectTerms autotune configuration parameters
covariance matrix algorithm
distributed systems
ordinal optimization
performance evaluation
分布式系统
分布式计算系统
性能改进
测试时间
网络配置参数
自动调整
进化策略
配置文件
Title Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters
URI http://lib.cqvip.com/qk/85782X/201104/38700762.html
https://dx.doi.org/10.1016/S1007-0214(11)70063-3
https://d.wanfangdata.com.cn/periodical/qhdxxb-e201104015
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yELyIn7j5QRAPeujWLOnaHsdUhqAIOthBCEmbzIF0m3Y4L_7tvtemmx5E8NJDaB4l7-V99b3fI-RMq7ZRWDYYM6E8ESvtacsSj0dWK5MaCIswNXB71-kPxM0wGK6RXtULg2WVTveXOr3Q1m6l5U6zNR2PWw_4fx8Rv3B2ChhaRPwUIkRZb34uyzx4JwjLIntMycHbqy6ekkKxeM7YRUHE44ix8DzJRjOwHL_ZqvV3lVmVjb5ZoustsulcSNotv3KbrJlsh2y7S_pGzx2S9MUuebpftQXQMn1QZAPpxNJLRMzFYVcmpQ62nOoP2p3nk3yOyRJ8CbxDij2B49G8lBR6r7CaCyE598jg-uqx1_fcOAUvARsUwFNoFkWxsSJKwStUSWgi5ieCG-PHXGPwwBMLnIrADeNKcK0sa1urkrYK0pDvk1o2ycwBoR2hYp6GaScGoiADyrS54ilid6EHyeqksTxEOS1hMyQH1eCD7q0TUZ2qTBwQOc7DeJHLirMCSBkZAwGKLBgjeZ00l9sqkn9siCqWyR8iJcFa_LX11LFYuiv9JmfP6WKhpSk8JohKg8b_6R-SjSo37bMjUstf5-YYnJtcnxTS-wWB2vDP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoRn7g-g3jQQ93NJt22R_HB-kRQwYMQkjZZF6TrYxf14m93pk1XPYjgpYfQDCUzmVdnvgHYMrppNZUNJlzqQCbaBMbxNBCxM9pmFsMiSg2cX7TaN_LkNrwdgf2qF4bKKr3uL3V6oa39St2fZv2x261f0f99Qvyi2SloaMUojMtQRFTXt_sxrPMQrTAqq-wpJ4evf7XxlCSKxW3OdwoqgSCQhfte3nlC0_GbsZp41bnTeeebKTqagWnvQ7K98jNnYcTmczDrb-kL2_ZQ0jvzcHf51RfAyvxBkQ5kPccOCDKXpl3ZjHnccmbe2d6g3-sPKFtCL6F7yKgpsNsZlKLCLjWVcxEm5wLcHB1e77cDP08hSNEIhfiUhsdxYp2MM3QLdRrZmDdSKaxtJMJQ9CBSh6yK0Q8TWgqjHW86p9OmDrNILMJY3svtErCW1InIoqyVIFEUAm2bQouMwLvIheQ1WB4eonoscTOUQN3QQOVbA1mdqko9EjkNxHhQw5KzAkmZGIMRiioYo0QNdofbKpJ_bIgrlqkfMqXQXPy1ddOzWPk7_aKe7rO3N6Ns4TJhWBou_5_-Bky2r8_P1NnxxekKTFWJ6gZfhbH-88CuoafTN-uFJH8CrKTz8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+distributed+systems+by+autotuning+of+the+configuration+parameters&rft.jtitle=Tsinghua+science+and+technology&rft.au=Zhang%2C+Fan&rft.au=Cao%2C+Junwei&rft.au=Liu%2C+Lianchen&rft.au=Wu%2C+Cheng&rft.date=2011-08-01&rft.issn=1007-0214&rft.eissn=1007-0214&rft.volume=16&rft.issue=4&rft.spage=440&rft.epage=448&rft_id=info:doi/10.1016%2FS1007-0214%2811%2970063-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1007_0214_11_70063_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85782X%2F85782X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqhdxxb-e%2Fqhdxxb-e.jpg