Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters
The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of t...
Saved in:
Published in | Tsinghua science and technology Vol. 16; no. 4; pp. 440 - 448 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2011
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
Subjects | |
Online Access | Get full text |
ISSN | 1007-0214 1878-7606 1007-0214 |
DOI | 10.1016/S1007-0214(11)70063-3 |
Cover
Abstract | The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost. |
---|---|
AbstractList | The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strategy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost. TP338.6; The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files.Evolutionary strategies,with their ability to have a global view of the structural information,have been shown to effectively improve performance.However,most of these methods consume too much measurement time.This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters.The strategy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance.The method is compared with the covariance matrix algorithm.Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost. The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost. |
Author | 张帆 曹军威 刘连臣 吴澄 |
AuthorAffiliation | National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China; Research Institute of Information Technology, Tsinghua University, Beijing 100084, China; Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
AuthorAffiliation_xml | – name: National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
Author_xml | – sequence: 1 fullname: 张帆 曹军威 刘连臣 吴澄 |
BookMark | eNqFkMFu1DAQhi1UJNrCIyCFGz2kzMRJ7BUHVC0UKlWiUuGGZDnOeNdVY7e2U7pvj3e3cODSy3gO3z-_9R2xAx88MfYW4RQB-w_XCCBqaLB9j3giAHpe8xfsEKWQteihPyj7X-QVO0rpBoD3neCH7NcVRRvipL2h6mK6i-GBJvK5Crb67FKObpgzjdX1JmWaUjVsqrM5hzx751dbKK-pWgZv3WqOOrvgqysd9USZYnrNXlp9m-jN03vMfp5_-bH8Vl9-_3qxPLusTSPbrsx2QCkXZFs5LrDXRpBEMC0nggUfOPSCG2vRSNkh1y0ftMXGWm0a3Y2CH7OT_d3f2lvtV-omzNGXRnW_Hh8fB0UNIEIL2BX24541MaQUySrj8u7jOWp3qxDUVqraSVVbYwpR7aQqXtLdf-m76CYdN8_mPu1zVDQ8OIoqGUfF-egimazG4J698O6peR386r7Y_1fNZYFE3_A_FXedEw |
CitedBy_id | crossref_primary_10_1016_j_future_2020_05_005 crossref_primary_10_1109_TETC_2014_2348196 |
Cites_doi | 10.1023/A:1008349927281 10.1016/j.cor.2008.06.003 10.1145/1667072.1667076 10.1016/j.ejor.2009.08.008 10.1145/988672.988711 10.1109/TASE.2007.906342 10.1109/ICDCS.2008.11 |
ClassificationCodes | TP338.6 |
ContentType | Journal Article |
Copyright | 2011 Tsinghua University Press Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2011 Tsinghua University Press – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1007-0214(11)70063-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters |
EISSN | 1878-7606 1007-0214 |
EndPage | 448 |
ExternalDocumentID | qhdxxb_e201104015 10_1016_S1007_0214_11_70063_3 S1007021411700633 38700762 |
GrantInformation_xml | – fundername: the National Key Basic Research and Development (973) Program of China grantid: (Nos. 2011CB302505 and 2011CB302805) – fundername: the National Natural Science Foundation of China grantid: (No. 60803017) |
GroupedDBID | --K -03 -0C -SC -S~ -~X .~1 0R~ 123 1B1 1~5 2B. 2C. 2RA 2WC 4.4 4G. 5VR 5VS 6IK 7-5 71M 92E 92I 92L 92M 92Q 93N 9D9 9DC AABNK AAEDT AAHTB AALRI AAQFI AAXUO ABPEJ ACSFO ADMUD AEKER AENEX AFUIB AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS CAJEC CAJUS CCEZO CEKLB CHBEP CQIGP CS3 CW9 DU5 EBS EJD F5P FA0 FDB FEDTE FKXTD FNPLU HVGLF HZ~ IHE IPLJI J1W JAVBF JUIAU M41 M43 N9A O-L O9- OCL OK1 OZT Q-- Q-2 Q38 R-C RBI RIG RNS ROL RPZ RT3 SDC SDF SES T8S TCJ TGP U1F U1G U5C U5M ~WA AAYXX ABAZT ABVJJ ABVLG ABWVN ACRPL ADNMO AIGII CITATION ESBDL M48 4A8 PSX |
ID | FETCH-LOGICAL-c2845-c24b1889ef48d916ac7e810c43ee093b30673cff1c88513a43baf12ffac2a5d73 |
IEDL.DBID | .~1 |
ISSN | 1007-0214 |
IngestDate | Thu May 29 03:58:29 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Tue Jul 01 00:20:08 EDT 2025 Fri Feb 23 02:34:10 EST 2024 Wed Feb 14 09:50:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | performance evaluation autotune configuration parameters covariance matrix algorithm distributed systems ordinal optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2845-c24b1889ef48d916ac7e810c43ee093b30673cff1c88513a43baf12ffac2a5d73 |
Notes | 11-3745/N The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost. distributed systems; performance evaluation; autotune configuration parameters; ordinal optimization; covariance matrix algorithm |
PageCount | 9 |
ParticipantIDs | wanfang_journals_qhdxxb_e201104015 crossref_citationtrail_10_1016_S1007_0214_11_70063_3 crossref_primary_10_1016_S1007_0214_11_70063_3 elsevier_sciencedirect_doi_10_1016_S1007_0214_11_70063_3 chongqing_primary_38700762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-00 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-00 |
PublicationDecade | 2010 |
PublicationTitle | Tsinghua science and technology |
PublicationTitleAlternate | Tsinghua Science and Technology |
PublicationTitle_FL | Tsinghua Science and Technology |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
Publisher_xml | – name: Elsevier Ltd – name: National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China%Research Institute of Information Technology, Tsinghua University, Beijing 100084, China – name: Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China%National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, China – name: Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China |
References | Jia Q, Zhao Q. A SVM-based method for engine maintenance strategy optimization. In: Proceedings of the 2006 IEEE International Confrence on Robotics and Automation. Orlando, FL, USA, 2006: 1066–1071. Haykin (bib8) 1998 Foster, Kesselman (bib3) 1998 International Conference on World Wide Web. New York, NY, USA, 2004: 287–296. Boss G, Malladi P, Quan D. IBM high performance on demand solutions. Technical report. IBM. Oct. 2007. Hsieh, Chen, Chang (bib12) 2007; 4 Chen, Lin Ji, Yücesan (bib14) 2000; 10 Teng, Lee, Chew (bib10) 2010; 203 Ho, Zhao, Jia (bib9) 2007 He, Lee, Chen (bib11) 2010; 20 Hwang, Xu (bib1) 1998 Li, Lee, Ho (bib15) 1999; 5 Saboori A, Jiang G, Chen H. Autotuning configurations in distributed systems for performance improvements using evolutionary strategies. In: Proceedings of the 28 Xi B, Liu Z, Raghavachari M. A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 3 International Conference on Distributed Computing Systems. Beijing, China. 2008: 765–772. Atkins D, Droegemeier K, Feldman S, et al. Revolutionizing science and engineering through cyberinfrastructure. Technical report. National Science Foundation Blue - Ribbon Advisory Panel on Cyberinfrastructure, 2003. Chen, Lee (bib13) 2009; 36 Teng (10.1016/S1007-0214(11)70063-3_bib10) 2010; 203 Hsieh (10.1016/S1007-0214(11)70063-3_bib12) 2007; 4 Li (10.1016/S1007-0214(11)70063-3_bib15) 1999; 5 10.1016/S1007-0214(11)70063-3_bib2 He (10.1016/S1007-0214(11)70063-3_bib11) 2010; 20 Chen (10.1016/S1007-0214(11)70063-3_bib13) 2009; 36 Foster (10.1016/S1007-0214(11)70063-3_bib3) 1998 10.1016/S1007-0214(11)70063-3_bib7 Ho (10.1016/S1007-0214(11)70063-3_bib9) 2007 10.1016/S1007-0214(11)70063-3_bib6 10.1016/S1007-0214(11)70063-3_bib5 10.1016/S1007-0214(11)70063-3_bib4 Hwang (10.1016/S1007-0214(11)70063-3_bib1) 1998 Chen (10.1016/S1007-0214(11)70063-3_bib14) 2000; 10 Haykin (10.1016/S1007-0214(11)70063-3_bib8) 1998 |
References_xml | – volume: 36 start-page: 1872 year: 2009 end-page: 1879 ident: bib13 article-title: A multi-objective selection procedure of determining a Pareto set publication-title: Computers and Operations Research – reference: Xi B, Liu Z, Raghavachari M. A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 3 – volume: 203 start-page: 419 year: 2010 end-page: 429 ident: bib10 article-title: Integration of indifference-zone with multi-objective computing budget allocation publication-title: European Journal of Operational Research – year: 2007 ident: bib9 publication-title: Ordinal Optimization, Soft Optimization for Hard Problems – volume: 20 start-page: 1 year: 2010 end-page: 22 ident: bib11 article-title: Simulation optimization using the cross-entropy method with optimal computing budget allocation publication-title: ACM Transactions on Modeling and Computer Simulation – volume: 4 start-page: 553 year: 2007 end-page: 568 ident: bib12 article-title: Efficient simulation-based composition of dispatching policies by integrating ordinal optimization with design of experiment publication-title: IEEE Transactions on Automation Science and Engineering – year: 1998 ident: bib8 publication-title: Neural Networks: A Comprehensive Foundation – reference: Jia Q, Zhao Q. A SVM-based method for engine maintenance strategy optimization. In: Proceedings of the 2006 IEEE International Confrence on Robotics and Automation. Orlando, FL, USA, 2006: 1066–1071. – reference: International Conference on World Wide Web. New York, NY, USA, 2004: 287–296. – reference: Saboori A, Jiang G, Chen H. Autotuning configurations in distributed systems for performance improvements using evolutionary strategies. In: Proceedings of the 28 – reference: International Conference on Distributed Computing Systems. Beijing, China. 2008: 765–772. – volume: 10 start-page: 251 year: 2000 end-page: 270 ident: bib14 article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization publication-title: Journal of Discrete Event Dynamic Systems: Theory and Applications – reference: Boss G, Malladi P, Quan D. IBM high performance on demand solutions. Technical report. IBM. Oct. 2007. – reference: Atkins D, Droegemeier K, Feldman S, et al. Revolutionizing science and engineering through cyberinfrastructure. Technical report. National Science Foundation Blue - Ribbon Advisory Panel on Cyberinfrastructure, 2003. – volume: 5 start-page: 211 year: 1999 end-page: 230 ident: bib15 article-title: Vector ordinal optimization–A new heuristic approach and its application to computer networks routing design problems publication-title: International Journal of Operations and Quantitative Management – year: 1998 ident: bib3 publication-title: The Grid: Blueprint for a New Computing Infrastructure – year: 1998 ident: bib1 publication-title: Scalable Parallel Computing – year: 2007 ident: 10.1016/S1007-0214(11)70063-3_bib9 – volume: 10 start-page: 251 year: 2000 ident: 10.1016/S1007-0214(11)70063-3_bib14 article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization publication-title: Journal of Discrete Event Dynamic Systems: Theory and Applications doi: 10.1023/A:1008349927281 – volume: 36 start-page: 1872 issue: 6 year: 2009 ident: 10.1016/S1007-0214(11)70063-3_bib13 article-title: A multi-objective selection procedure of determining a Pareto set publication-title: Computers and Operations Research doi: 10.1016/j.cor.2008.06.003 – volume: 20 start-page: 1 issue: 1 year: 2010 ident: 10.1016/S1007-0214(11)70063-3_bib11 article-title: Simulation optimization using the cross-entropy method with optimal computing budget allocation publication-title: ACM Transactions on Modeling and Computer Simulation doi: 10.1145/1667072.1667076 – volume: 203 start-page: 419 issue: 2 year: 2010 ident: 10.1016/S1007-0214(11)70063-3_bib10 article-title: Integration of indifference-zone with multi-objective computing budget allocation publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.08.008 – year: 1998 ident: 10.1016/S1007-0214(11)70063-3_bib3 – ident: 10.1016/S1007-0214(11)70063-3_bib6 doi: 10.1145/988672.988711 – year: 1998 ident: 10.1016/S1007-0214(11)70063-3_bib8 – volume: 4 start-page: 553 issue: 4 year: 2007 ident: 10.1016/S1007-0214(11)70063-3_bib12 article-title: Efficient simulation-based composition of dispatching policies by integrating ordinal optimization with design of experiment publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2007.906342 – volume: 5 start-page: 211 year: 1999 ident: 10.1016/S1007-0214(11)70063-3_bib15 article-title: Vector ordinal optimization–A new heuristic approach and its application to computer networks routing design problems publication-title: International Journal of Operations and Quantitative Management – year: 1998 ident: 10.1016/S1007-0214(11)70063-3_bib1 – ident: 10.1016/S1007-0214(11)70063-3_bib7 doi: 10.1109/ICDCS.2008.11 – ident: 10.1016/S1007-0214(11)70063-3_bib2 – ident: 10.1016/S1007-0214(11)70063-3_bib4 – ident: 10.1016/S1007-0214(11)70063-3_bib5 |
SSID | ssj0036573 |
Score | 1.8893245 |
Snippet | The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies,... TP338.6; The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files.Evolutionary... |
SourceID | wanfang crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 440 |
SubjectTerms | autotune configuration parameters covariance matrix algorithm distributed systems ordinal optimization performance evaluation 分布式系统 分布式计算系统 性能改进 测试时间 网络配置参数 自动调整 进化策略 配置文件 |
Title | Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters |
URI | http://lib.cqvip.com/qk/85782X/201104/38700762.html https://dx.doi.org/10.1016/S1007-0214(11)70063-3 https://d.wanfangdata.com.cn/periodical/qhdxxb-e201104015 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yELyIn7j5QRAPeujWLOnaHsdUhqAIOthBCEmbzIF0m3Y4L_7tvtemmx5E8NJDaB4l7-V99b3fI-RMq7ZRWDYYM6E8ESvtacsSj0dWK5MaCIswNXB71-kPxM0wGK6RXtULg2WVTveXOr3Q1m6l5U6zNR2PWw_4fx8Rv3B2ChhaRPwUIkRZb34uyzx4JwjLIntMycHbqy6ekkKxeM7YRUHE44ix8DzJRjOwHL_ZqvV3lVmVjb5ZoustsulcSNotv3KbrJlsh2y7S_pGzx2S9MUuebpftQXQMn1QZAPpxNJLRMzFYVcmpQ62nOoP2p3nk3yOyRJ8CbxDij2B49G8lBR6r7CaCyE598jg-uqx1_fcOAUvARsUwFNoFkWxsSJKwStUSWgi5ieCG-PHXGPwwBMLnIrADeNKcK0sa1urkrYK0pDvk1o2ycwBoR2hYp6GaScGoiADyrS54ilid6EHyeqksTxEOS1hMyQH1eCD7q0TUZ2qTBwQOc7DeJHLirMCSBkZAwGKLBgjeZ00l9sqkn9siCqWyR8iJcFa_LX11LFYuiv9JmfP6WKhpSk8JohKg8b_6R-SjSo37bMjUstf5-YYnJtcnxTS-wWB2vDP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoRn7g-g3jQQ93NJt22R_HB-kRQwYMQkjZZF6TrYxf14m93pk1XPYjgpYfQDCUzmVdnvgHYMrppNZUNJlzqQCbaBMbxNBCxM9pmFsMiSg2cX7TaN_LkNrwdgf2qF4bKKr3uL3V6oa39St2fZv2x261f0f99Qvyi2SloaMUojMtQRFTXt_sxrPMQrTAqq-wpJ4evf7XxlCSKxW3OdwoqgSCQhfte3nlC0_GbsZp41bnTeeebKTqagWnvQ7K98jNnYcTmczDrb-kL2_ZQ0jvzcHf51RfAyvxBkQ5kPccOCDKXpl3ZjHnccmbe2d6g3-sPKFtCL6F7yKgpsNsZlKLCLjWVcxEm5wLcHB1e77cDP08hSNEIhfiUhsdxYp2MM3QLdRrZmDdSKaxtJMJQ9CBSh6yK0Q8TWgqjHW86p9OmDrNILMJY3svtErCW1InIoqyVIFEUAm2bQouMwLvIheQ1WB4eonoscTOUQN3QQOVbA1mdqko9EjkNxHhQw5KzAkmZGIMRiioYo0QNdofbKpJ_bIgrlqkfMqXQXPy1ddOzWPk7_aKe7rO3N6Ns4TJhWBou_5_-Bky2r8_P1NnxxekKTFWJ6gZfhbH-88CuoafTN-uFJH8CrKTz8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+improvement+of+distributed+systems+by+autotuning+of+the+configuration+parameters&rft.jtitle=Tsinghua+science+and+technology&rft.au=Zhang%2C+Fan&rft.au=Cao%2C+Junwei&rft.au=Liu%2C+Lianchen&rft.au=Wu%2C+Cheng&rft.date=2011-08-01&rft.issn=1007-0214&rft.eissn=1007-0214&rft.volume=16&rft.issue=4&rft.spage=440&rft.epage=448&rft_id=info:doi/10.1016%2FS1007-0214%2811%2970063-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1007_0214_11_70063_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85782X%2F85782X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqhdxxb-e%2Fqhdxxb-e.jpg |