Development of a Maximum Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—A Case Study of the Kaidu River Basin, China
Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of month...
Saved in:
Published in | Water (Basel) Vol. 11; no. 1; p. 42 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
27.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of monthly streamflow in the Kaidu River Basin, which integrates the maximum entropy-Archimedean copula (MEAC) and Bayesian network methods into a general framework. MECBN is effective for representing the uncertainties that exist in model representation, preserving the distributional characteristics of streamflow records and addressing the correlation structure between streamflow pairs. Application to the Kaidu River Basin shows a good performance of MECBN in describing the historical data of this basin in China. The results indicate that the interactions between two adjacent monthly streamflow pairs are non-linear. There is upper tail dependence between monthly streamflow pairs. The dependence coefficients including Spearman’s rho, Kendall’s tau, and the upper tail dependence coefficient are in inverse proportion of monthly streamflow values in the Kaidu River Basin, due to the fact that other factors (i.e., rainfall, snow melting, evapotranspiration rate and requirement of water use) provide more contributions to the streamflow in the flooding season. These findings can be used for providing vital information in the prevention and control of hydrological extremes and to further water resources planning in Kaidu River Basin. |
---|---|
AbstractList | Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of monthly streamflow in the Kaidu River Basin, which integrates the maximum entropy-Archimedean copula (MEAC) and Bayesian network methods into a general framework. MECBN is effective for representing the uncertainties that exist in model representation, preserving the distributional characteristics of streamflow records and addressing the correlation structure between streamflow pairs. Application to the Kaidu River Basin shows a good performance of MECBN in describing the historical data of this basin in China. The results indicate that the interactions between two adjacent monthly streamflow pairs are non-linear. There is upper tail dependence between monthly streamflow pairs. The dependence coefficients including Spearman's rho, Kendall's tau, and the upper tail dependence coefficient are in inverse proportion of monthly streamflow values in the Kaidu River Basin, due to the fact that other factors (i.e., rainfall, snow melting, evapotranspiration rate and requirement of water use) provide more contributions to the streamflow in the flooding season. These findings can be used for providing vital information in the prevention and control of hydrological extremes and to further water resources planning in Kaidu River Basin. |
Audience | Academic |
Author | Huang, Guohe Chen, Cong Kong, Xiangming Li, Yongping Wang, Chunxiao Fan, Yurui Zeng, Xueting |
Author_xml | – sequence: 1 givenname: Xiangming surname: Kong fullname: Kong, Xiangming – sequence: 2 givenname: Xueting surname: Zeng fullname: Zeng, Xueting – sequence: 3 givenname: Cong surname: Chen fullname: Chen, Cong – sequence: 4 givenname: Yurui surname: Fan fullname: Fan, Yurui – sequence: 5 givenname: Guohe surname: Huang fullname: Huang, Guohe – sequence: 6 givenname: Yongping surname: Li fullname: Li, Yongping – sequence: 7 givenname: Chunxiao surname: Wang fullname: Wang, Chunxiao |
BookMark | eNpNkctu1TAQhi1UJErpgjfwFokUX5ImXqahhYoWJC7raGKPe1wS-2AnPWTHQ_AEPBpPgstBFTOLsf6Z-cbS_5Qc-OCRkOecnUip2Ksd54wzVopH5FCwWhZlWfKD_95PyHFKtyxHqZqmYofk12u8wzFsJ_QzDZYCvYbvblomeu7nGLZr0Ua9cRMaBE-7sF1GKM4goaFnsGJyWX2P8y7Er_Qa500w1IZIP80RYbJj2NGLiN8W9HqlrYdxTS79_vGzpV1m5LHFrPdn5w3Sd-DMQj-6O4yZnZx_SbuN8_CMPLYwJjz-V4_Il4vzz93b4urDm8uuvSq0aEpRcNkM1VAzrU6tAlsPHFFyUQ-CQ43cItOWcz2gbMwgjREDgEKuqtyojDDyiFzuuSbAbb-NboK49gFc_1cI8aaHODs9Ym-kBallZta6rBWoxgKv4NTk-zUXKrNO9qwbyOPO2zBH0DkNTk5n16zLelsrLprsXJMXXuwXdAwpRbQPH-Csvze3fzBX_gG1VJs_ |
CitedBy_id | crossref_primary_10_1007_s11269_022_03229_7 crossref_primary_10_1088_1742_6596_1670_1_012042 crossref_primary_10_3390_w11081534 crossref_primary_10_5194_hess_24_4601_2020 crossref_primary_10_1016_j_jhydrol_2023_129434 crossref_primary_10_1088_1742_6596_1637_1_012090 crossref_primary_10_2166_wcc_2024_624 crossref_primary_10_1007_s12665_020_09233_7 crossref_primary_10_1016_j_jhydrol_2023_129681 crossref_primary_10_1016_j_apenergy_2019_114127 crossref_primary_10_3390_w15020236 |
Cites_doi | 10.1061/(ASCE)1084-0699(2007)12:4(394) 10.2166/nh.2015.226 10.3808/jei.201500312 10.3808/jei.201500313 10.1016/j.jhydrol.2014.05.029 10.1175/JHM-D-13-010.1 10.3354/cr030079 10.13031/2013.27795 10.3808/jei.201400283 10.1109/TGRS.2010.2049115 10.1016/j.jhydrol.2014.02.039 10.1016/j.quaint.2013.08.041 10.1006/jema.1996.0065 10.1061/(ASCE)WR.1943-5452.0000987 10.1007/s00704-015-1505-z 10.1007/s00477-011-0503-7 10.1002/hyp.10278 10.3808/jei.201600339 10.1016/j.jenvman.2007.01.056 10.1007/s00477-013-0792-0 10.1002/2016WR020144 10.1016/j.advwatres.2015.12.017 10.1080/0305215X.2015.1025772 10.3808/jei.201500293 10.3808/jei.201500308 10.1007/s00477-017-1382-3 10.1002/rra.1456 10.1007/s00477-014-0978-0 10.1002/hyp.7790 10.1016/j.eng.2018.06.006 10.1016/j.ress.2013.04.006 10.1016/j.jhydrol.2009.12.045 10.1080/01621459.1951.10500769 10.1061/(ASCE)1084-0699(2007)12:4(347) 10.1007/s00477-014-0954-8 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2019 MDPI AG |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/w11010042 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129 A791283908 10_3390_w11010042 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GROUPED_DOAJ GX1 HCIFZ IAO IPNFZ ITC KQ8 MODMG M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY RIG |
ID | FETCH-LOGICAL-c2842-138b5b70c96f9af7b1ee3127b21a7e1fe0cf11cbe38db3dd2baa9e195e0c5d2d3 |
IEDL.DBID | DOA |
ISSN | 2073-4441 |
IngestDate | Tue Oct 22 15:13:47 EDT 2024 Tue Apr 30 04:55:14 EDT 2024 Thu Sep 26 18:37:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2842-138b5b70c96f9af7b1ee3127b21a7e1fe0cf11cbe38db3dd2baa9e195e0c5d2d3 |
OpenAccessLink | https://doaj.org/article/d3fa3c3fe07c479a98fa15a6db707129 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129 gale_infotracacademiconefile_A791283908 crossref_primary_10_3390_w11010042 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-27 |
PublicationDateYYYYMMDD | 2018-12-27 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | Water (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref13 ref15 Genest (ref34) 1986; 40 ref37 ref14 ref36 ref31 ref30 ref11 Mediero (ref26) 2012; 14 ref33 Razali (ref42) 2011; 2 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 D’Addabbo (ref28) 2014; 9224 Erro (ref21) 2012; 14 Li (ref12) 2016; 26 ref24 ref23 ref25 ref20 ref41 ref22 ref27 ref29 ref8 ref7 Nelsen (ref35) 1999 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref39 doi: 10.1061/(ASCE)1084-0699(2007)12:4(394) – ident: ref36 doi: 10.2166/nh.2015.226 – ident: ref3 doi: 10.3808/jei.201500312 – volume: 9224 start-page: 9244 year: 2014 ident: ref28 article-title: A Bayesian network approach to perform SAR/InSAR data fusion in a flood detection problem publication-title: Proc. SPIE contributor: fullname: D’Addabbo – ident: ref10 doi: 10.3808/jei.201500313 – ident: ref22 doi: 10.1016/j.jhydrol.2014.05.029 – ident: ref29 doi: 10.1175/JHM-D-13-010.1 – ident: ref40 doi: 10.3354/cr030079 – ident: ref32 doi: 10.13031/2013.27795 – ident: ref11 doi: 10.3808/jei.201400283 – ident: ref25 doi: 10.1109/TGRS.2010.2049115 – ident: ref30 doi: 10.1016/j.jhydrol.2014.02.039 – ident: ref38 doi: 10.1016/j.quaint.2013.08.041 – ident: ref2 doi: 10.1006/jema.1996.0065 – volume: 40 start-page: 280 year: 1986 ident: ref34 article-title: The joy of copulas: Bivariate distributions with uniform marginal (Com: 87V41 P248) publication-title: Am. Stat. contributor: fullname: Genest – ident: ref13 doi: 10.1061/(ASCE)WR.1943-5452.0000987 – ident: ref15 doi: 10.1007/s00704-015-1505-z – volume: 14 start-page: 11998 year: 2012 ident: ref26 article-title: Flood quantile estimation at ungauged sites by Bayesian networks publication-title: Geophys. Res. Abstr. contributor: fullname: Mediero – ident: ref1 doi: 10.1007/s00477-011-0503-7 – volume: 14 start-page: 8274 year: 2012 ident: ref21 article-title: Regional frequency analysis of annual maximum streamflow in Gipuzkoa (Spain) publication-title: Geophys. Res. Abstr. contributor: fullname: Erro – volume: 26 start-page: 41 year: 2016 ident: ref12 article-title: Hydrologic Risk Analysis for Nonstationary Streamflow Records under Uncertainty publication-title: J. Environ. Inform. contributor: fullname: Li – ident: ref23 doi: 10.1002/hyp.10278 – ident: ref4 doi: 10.3808/jei.201600339 – ident: ref5 doi: 10.1016/j.jenvman.2007.01.056 – ident: ref9 doi: 10.1007/s00477-013-0792-0 – ident: ref6 doi: 10.1002/2016WR020144 – ident: ref16 doi: 10.1016/j.advwatres.2015.12.017 – ident: ref19 doi: 10.1080/0305215X.2015.1025772 – ident: ref8 doi: 10.3808/jei.201500293 – ident: ref17 doi: 10.3808/jei.201500308 – ident: ref18 doi: 10.1007/s00477-017-1382-3 – ident: ref24 doi: 10.1002/rra.1456 – ident: ref31 doi: 10.1007/s00477-014-0978-0 – ident: ref37 doi: 10.1002/hyp.7790 – ident: ref14 doi: 10.1016/j.eng.2018.06.006 – ident: ref27 doi: 10.1016/j.ress.2013.04.006 – ident: ref20 doi: 10.1016/j.jhydrol.2009.12.045 – year: 1999 ident: ref35 contributor: fullname: Nelsen – volume: 2 start-page: 21 year: 2011 ident: ref42 article-title: Power comparisions of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests publication-title: J. Stat. Model. Anal. contributor: fullname: Razali – ident: ref41 doi: 10.1080/01621459.1951.10500769 – ident: ref33 doi: 10.1061/(ASCE)1084-0699(2007)12:4(347) – ident: ref7 doi: 10.1007/s00477-014-0954-8 |
SSID | ssj0000498850 |
Score | 2.2098556 |
Snippet | Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes... |
SourceID | doaj gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 42 |
SubjectTerms | Aquatic resources Archimedean Copula Bayesian network Case studies China frequency analysis Kaidu River Basin maximum entropy Methods Rain and rainfall Streamflow Water use |
Title | Development of a Maximum Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—A Case Study of the Kaidu River Basin, China |
URI | https://doaj.org/article/d3fa3c3fe07c479a98fa15a6db707129 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnuCA-BXlTyOExIVoayeO7WNbbVmBugfESr1F4z-piKarbqult32IfQIejSdhHGdX4cSFSw5JZFszk3zj5JtvGHtvna3SB7JC-toXleaxsIi-sJVEKz2BYte1ZHFWn55Xn5dyOWj1lThhWR44G-7YlxFLV8YwVq5SBo2OyCXW3ipCR5FL98ZmsJn6nvNereU4SwmVtK8_viKcS-po4i8A6nT6-7fxAFfmj9jDPiGESV7IY3YvtE_Yg4FM4FP2a8DsgU0EhAX-XK33azhJPPOLQ9HpxxKuBWxh1rXkKqYETx6meAipTBLOMt0bFl3HaKBUFdIPaVzHH5srmG8zo_oAtyIlv69vJjCjMSAxDQ9pWkoV4Quu_B6-JjIHjX25aj9C14H7GTufn3ybnRZ9b4XCESCJJD1oJZnQmToajMryEEoulBUcVeBkbhc5dzaU2tvSe0EeNIEbSRekF758zo7aTRteMLDKBi-0JVwzlSXwUzgOlMnVKK026Ebs3a3Bm4ssodHQ1iN5pbnzyohNkyvubkiq190JioWmj4XmX7EwYh-SI5v0bO626LAvMaB1JpWrZqIMwTHNq1_-j-lesfuUPulEbhHqNTvabffhDaUoO_u2i0Y6flryP_NR6XQ |
link.rule.ids | 315,783,787,867,2109,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Maximum+Entropy-Archimedean+Copula-Based+Bayesian+Network+Method+for+Streamflow+Frequency+Analysis%E2%80%94A+Case+Study+of+the+Kaidu+River+Basin%2C+China&rft.jtitle=Water+%28Basel%29&rft.au=Xiangming+Kong&rft.au=Xueting+Zeng&rft.au=Cong+Chen&rft.au=Yurui+Fan&rft.date=2018-12-27&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=11&rft.issue=1&rft.spage=42&rft_id=info:doi/10.3390%2Fw11010042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |