Development of a Maximum Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—A Case Study of the Kaidu River Basin, China

Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of month...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 11; no. 1; p. 42
Main Authors Kong, Xiangming, Zeng, Xueting, Chen, Cong, Fan, Yurui, Huang, Guohe, Li, Yongping, Wang, Chunxiao
Format Journal Article
LanguageEnglish
Published MDPI AG 27.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of monthly streamflow in the Kaidu River Basin, which integrates the maximum entropy-Archimedean copula (MEAC) and Bayesian network methods into a general framework. MECBN is effective for representing the uncertainties that exist in model representation, preserving the distributional characteristics of streamflow records and addressing the correlation structure between streamflow pairs. Application to the Kaidu River Basin shows a good performance of MECBN in describing the historical data of this basin in China. The results indicate that the interactions between two adjacent monthly streamflow pairs are non-linear. There is upper tail dependence between monthly streamflow pairs. The dependence coefficients including Spearman’s rho, Kendall’s tau, and the upper tail dependence coefficient are in inverse proportion of monthly streamflow values in the Kaidu River Basin, due to the fact that other factors (i.e., rainfall, snow melting, evapotranspiration rate and requirement of water use) provide more contributions to the streamflow in the flooding season. These findings can be used for providing vital information in the prevention and control of hydrological extremes and to further water resources planning in Kaidu River Basin.
AbstractList Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of monthly streamflow in the Kaidu River Basin, which integrates the maximum entropy-Archimedean copula (MEAC) and Bayesian network methods into a general framework. MECBN is effective for representing the uncertainties that exist in model representation, preserving the distributional characteristics of streamflow records and addressing the correlation structure between streamflow pairs. Application to the Kaidu River Basin shows a good performance of MECBN in describing the historical data of this basin in China. The results indicate that the interactions between two adjacent monthly streamflow pairs are non-linear. There is upper tail dependence between monthly streamflow pairs. The dependence coefficients including Spearman's rho, Kendall's tau, and the upper tail dependence coefficient are in inverse proportion of monthly streamflow values in the Kaidu River Basin, due to the fact that other factors (i.e., rainfall, snow melting, evapotranspiration rate and requirement of water use) provide more contributions to the streamflow in the flooding season. These findings can be used for providing vital information in the prevention and control of hydrological extremes and to further water resources planning in Kaidu River Basin.
Audience Academic
Author Huang, Guohe
Chen, Cong
Kong, Xiangming
Li, Yongping
Wang, Chunxiao
Fan, Yurui
Zeng, Xueting
Author_xml – sequence: 1
  givenname: Xiangming
  surname: Kong
  fullname: Kong, Xiangming
– sequence: 2
  givenname: Xueting
  surname: Zeng
  fullname: Zeng, Xueting
– sequence: 3
  givenname: Cong
  surname: Chen
  fullname: Chen, Cong
– sequence: 4
  givenname: Yurui
  surname: Fan
  fullname: Fan, Yurui
– sequence: 5
  givenname: Guohe
  surname: Huang
  fullname: Huang, Guohe
– sequence: 6
  givenname: Yongping
  surname: Li
  fullname: Li, Yongping
– sequence: 7
  givenname: Chunxiao
  surname: Wang
  fullname: Wang, Chunxiao
BookMark eNpNkctu1TAQhi1UJErpgjfwFokUX5ImXqahhYoWJC7raGKPe1wS-2AnPWTHQ_AEPBpPgstBFTOLsf6Z-cbS_5Qc-OCRkOecnUip2Ksd54wzVopH5FCwWhZlWfKD_95PyHFKtyxHqZqmYofk12u8wzFsJ_QzDZYCvYbvblomeu7nGLZr0Ua9cRMaBE-7sF1GKM4goaFnsGJyWX2P8y7Er_Qa500w1IZIP80RYbJj2NGLiN8W9HqlrYdxTS79_vGzpV1m5LHFrPdn5w3Sd-DMQj-6O4yZnZx_SbuN8_CMPLYwJjz-V4_Il4vzz93b4urDm8uuvSq0aEpRcNkM1VAzrU6tAlsPHFFyUQ-CQ43cItOWcz2gbMwgjREDgEKuqtyojDDyiFzuuSbAbb-NboK49gFc_1cI8aaHODs9Ym-kBallZta6rBWoxgKv4NTk-zUXKrNO9qwbyOPO2zBH0DkNTk5n16zLelsrLprsXJMXXuwXdAwpRbQPH-Csvze3fzBX_gG1VJs_
CitedBy_id crossref_primary_10_1007_s11269_022_03229_7
crossref_primary_10_1088_1742_6596_1670_1_012042
crossref_primary_10_3390_w11081534
crossref_primary_10_5194_hess_24_4601_2020
crossref_primary_10_1016_j_jhydrol_2023_129434
crossref_primary_10_1088_1742_6596_1637_1_012090
crossref_primary_10_2166_wcc_2024_624
crossref_primary_10_1007_s12665_020_09233_7
crossref_primary_10_1016_j_jhydrol_2023_129681
crossref_primary_10_1016_j_apenergy_2019_114127
crossref_primary_10_3390_w15020236
Cites_doi 10.1061/(ASCE)1084-0699(2007)12:4(394)
10.2166/nh.2015.226
10.3808/jei.201500312
10.3808/jei.201500313
10.1016/j.jhydrol.2014.05.029
10.1175/JHM-D-13-010.1
10.3354/cr030079
10.13031/2013.27795
10.3808/jei.201400283
10.1109/TGRS.2010.2049115
10.1016/j.jhydrol.2014.02.039
10.1016/j.quaint.2013.08.041
10.1006/jema.1996.0065
10.1061/(ASCE)WR.1943-5452.0000987
10.1007/s00704-015-1505-z
10.1007/s00477-011-0503-7
10.1002/hyp.10278
10.3808/jei.201600339
10.1016/j.jenvman.2007.01.056
10.1007/s00477-013-0792-0
10.1002/2016WR020144
10.1016/j.advwatres.2015.12.017
10.1080/0305215X.2015.1025772
10.3808/jei.201500293
10.3808/jei.201500308
10.1007/s00477-017-1382-3
10.1002/rra.1456
10.1007/s00477-014-0978-0
10.1002/hyp.7790
10.1016/j.eng.2018.06.006
10.1016/j.ress.2013.04.006
10.1016/j.jhydrol.2009.12.045
10.1080/01621459.1951.10500769
10.1061/(ASCE)1084-0699(2007)12:4(347)
10.1007/s00477-014-0954-8
ContentType Journal Article
Copyright COPYRIGHT 2019 MDPI AG
Copyright_xml – notice: COPYRIGHT 2019 MDPI AG
DBID AAYXX
CITATION
DOA
DOI 10.3390/w11010042
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129
A791283908
10_3390_w11010042
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GROUPED_DOAJ
GX1
HCIFZ
IAO
IPNFZ
ITC
KQ8
MODMG
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
RIG
ID FETCH-LOGICAL-c2842-138b5b70c96f9af7b1ee3127b21a7e1fe0cf11cbe38db3dd2baa9e195e0c5d2d3
IEDL.DBID DOA
ISSN 2073-4441
IngestDate Tue Oct 22 15:13:47 EDT 2024
Tue Apr 30 04:55:14 EDT 2024
Thu Sep 26 18:37:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2842-138b5b70c96f9af7b1ee3127b21a7e1fe0cf11cbe38db3dd2baa9e195e0c5d2d3
OpenAccessLink https://doaj.org/article/d3fa3c3fe07c479a98fa15a6db707129
ParticipantIDs doaj_primary_oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129
gale_infotracacademiconefile_A791283908
crossref_primary_10_3390_w11010042
PublicationCentury 2000
PublicationDate 2018-12-27
PublicationDateYYYYMMDD 2018-12-27
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-27
  day: 27
PublicationDecade 2010
PublicationTitle Water (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref15
Genest (ref34) 1986; 40
ref37
ref14
ref36
ref31
ref30
ref11
Mediero (ref26) 2012; 14
ref33
Razali (ref42) 2011; 2
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
D’Addabbo (ref28) 2014; 9224
Erro (ref21) 2012; 14
Li (ref12) 2016; 26
ref24
ref23
ref25
ref20
ref41
ref22
ref27
ref29
ref8
ref7
Nelsen (ref35) 1999
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref39
  doi: 10.1061/(ASCE)1084-0699(2007)12:4(394)
– ident: ref36
  doi: 10.2166/nh.2015.226
– ident: ref3
  doi: 10.3808/jei.201500312
– volume: 9224
  start-page: 9244
  year: 2014
  ident: ref28
  article-title: A Bayesian network approach to perform SAR/InSAR data fusion in a flood detection problem
  publication-title: Proc. SPIE
  contributor:
    fullname: D’Addabbo
– ident: ref10
  doi: 10.3808/jei.201500313
– ident: ref22
  doi: 10.1016/j.jhydrol.2014.05.029
– ident: ref29
  doi: 10.1175/JHM-D-13-010.1
– ident: ref40
  doi: 10.3354/cr030079
– ident: ref32
  doi: 10.13031/2013.27795
– ident: ref11
  doi: 10.3808/jei.201400283
– ident: ref25
  doi: 10.1109/TGRS.2010.2049115
– ident: ref30
  doi: 10.1016/j.jhydrol.2014.02.039
– ident: ref38
  doi: 10.1016/j.quaint.2013.08.041
– ident: ref2
  doi: 10.1006/jema.1996.0065
– volume: 40
  start-page: 280
  year: 1986
  ident: ref34
  article-title: The joy of copulas: Bivariate distributions with uniform marginal (Com: 87V41 P248)
  publication-title: Am. Stat.
  contributor:
    fullname: Genest
– ident: ref13
  doi: 10.1061/(ASCE)WR.1943-5452.0000987
– ident: ref15
  doi: 10.1007/s00704-015-1505-z
– volume: 14
  start-page: 11998
  year: 2012
  ident: ref26
  article-title: Flood quantile estimation at ungauged sites by Bayesian networks
  publication-title: Geophys. Res. Abstr.
  contributor:
    fullname: Mediero
– ident: ref1
  doi: 10.1007/s00477-011-0503-7
– volume: 14
  start-page: 8274
  year: 2012
  ident: ref21
  article-title: Regional frequency analysis of annual maximum streamflow in Gipuzkoa (Spain)
  publication-title: Geophys. Res. Abstr.
  contributor:
    fullname: Erro
– volume: 26
  start-page: 41
  year: 2016
  ident: ref12
  article-title: Hydrologic Risk Analysis for Nonstationary Streamflow Records under Uncertainty
  publication-title: J. Environ. Inform.
  contributor:
    fullname: Li
– ident: ref23
  doi: 10.1002/hyp.10278
– ident: ref4
  doi: 10.3808/jei.201600339
– ident: ref5
  doi: 10.1016/j.jenvman.2007.01.056
– ident: ref9
  doi: 10.1007/s00477-013-0792-0
– ident: ref6
  doi: 10.1002/2016WR020144
– ident: ref16
  doi: 10.1016/j.advwatres.2015.12.017
– ident: ref19
  doi: 10.1080/0305215X.2015.1025772
– ident: ref8
  doi: 10.3808/jei.201500293
– ident: ref17
  doi: 10.3808/jei.201500308
– ident: ref18
  doi: 10.1007/s00477-017-1382-3
– ident: ref24
  doi: 10.1002/rra.1456
– ident: ref31
  doi: 10.1007/s00477-014-0978-0
– ident: ref37
  doi: 10.1002/hyp.7790
– ident: ref14
  doi: 10.1016/j.eng.2018.06.006
– ident: ref27
  doi: 10.1016/j.ress.2013.04.006
– ident: ref20
  doi: 10.1016/j.jhydrol.2009.12.045
– year: 1999
  ident: ref35
  contributor:
    fullname: Nelsen
– volume: 2
  start-page: 21
  year: 2011
  ident: ref42
  article-title: Power comparisions of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests
  publication-title: J. Stat. Model. Anal.
  contributor:
    fullname: Razali
– ident: ref41
  doi: 10.1080/01621459.1951.10500769
– ident: ref33
  doi: 10.1061/(ASCE)1084-0699(2007)12:4(347)
– ident: ref7
  doi: 10.1007/s00477-014-0954-8
SSID ssj0000498850
Score 2.2098556
Snippet Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 42
SubjectTerms Aquatic resources
Archimedean Copula
Bayesian network
Case studies
China
frequency analysis
Kaidu River Basin
maximum entropy
Methods
Rain and rainfall
Streamflow
Water use
Title Development of a Maximum Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—A Case Study of the Kaidu River Basin, China
URI https://doaj.org/article/d3fa3c3fe07c479a98fa15a6db707129
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnuCA-BXlTyOExIVoayeO7WNbbVmBugfESr1F4z-piKarbqult32IfQIejSdhHGdX4cSFSw5JZFszk3zj5JtvGHtvna3SB7JC-toXleaxsIi-sJVEKz2BYte1ZHFWn55Xn5dyOWj1lThhWR44G-7YlxFLV8YwVq5SBo2OyCXW3ipCR5FL98ZmsJn6nvNereU4SwmVtK8_viKcS-po4i8A6nT6-7fxAFfmj9jDPiGESV7IY3YvtE_Yg4FM4FP2a8DsgU0EhAX-XK33azhJPPOLQ9HpxxKuBWxh1rXkKqYETx6meAipTBLOMt0bFl3HaKBUFdIPaVzHH5srmG8zo_oAtyIlv69vJjCjMSAxDQ9pWkoV4Quu_B6-JjIHjX25aj9C14H7GTufn3ybnRZ9b4XCESCJJD1oJZnQmToajMryEEoulBUcVeBkbhc5dzaU2tvSe0EeNIEbSRekF758zo7aTRteMLDKBi-0JVwzlSXwUzgOlMnVKK026Ebs3a3Bm4ssodHQ1iN5pbnzyohNkyvubkiq190JioWmj4XmX7EwYh-SI5v0bO626LAvMaB1JpWrZqIMwTHNq1_-j-lesfuUPulEbhHqNTvabffhDaUoO_u2i0Y6flryP_NR6XQ
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Maximum+Entropy-Archimedean+Copula-Based+Bayesian+Network+Method+for+Streamflow+Frequency+Analysis%E2%80%94A+Case+Study+of+the+Kaidu+River+Basin%2C+China&rft.jtitle=Water+%28Basel%29&rft.au=Xiangming+Kong&rft.au=Xueting+Zeng&rft.au=Cong+Chen&rft.au=Yurui+Fan&rft.date=2018-12-27&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=11&rft.issue=1&rft.spage=42&rft_id=info:doi/10.3390%2Fw11010042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d3fa3c3fe07c479a98fa15a6db707129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon