Magnetic outflows from turbulent accretion disks I. Vertical structure and secular evolution
Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets....
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 647; p. A192 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems.
Aims.
We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions.
Methods.
We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties.
Results.
We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models. |
---|---|
AbstractList | Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems.Aims. We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions.Methods. We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties.Results. We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models. Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems. Aims. We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions. Methods. We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties. Results. We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models. |
Author | Jacquemin-Ide, J. Lesur, G. Ferreira, J. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0003-2982-0005 surname: Jacquemin-Ide fullname: Jacquemin-Ide, J. – sequence: 2 givenname: G. surname: Lesur fullname: Lesur, G. – sequence: 3 givenname: J. surname: Ferreira fullname: Ferreira, J. |
BackLink | https://hal.science/hal-03187395$$DView record in HAL |
BookMark | eNp9kLFOwzAQhi1UJNrCE7BkZQg93yWOM1YVUKQgFpgtx3EgkMbIdkG8PYmKOjAwne70fSf9_4LNBjdYxi45XHPI-QoAslSQ4CsEBCoJ8YTNeUaYQpGJGZsfiTO2COFtXJFLmjN40C-DjZ1J3D62vfsKSevdLol7X-97O8REG-NHwA1J04X3cM5OW90He_E7l-z59uZps02rx7v7zbpKDUqKaSNznluZIwhCohrrTIpctBmBrWtjpZQCUTZSloXJhG14kWtAWwqsLW-Bluzq8PdV9-rDdzvtv5XTndquKzXdgLgsqMw_-cjSgTXeheBtexQ4qKkgNcVXU3x1LGi0yj-W6aKekkavu_5f9wdzhGm0 |
CitedBy_id | crossref_primary_10_1093_mnras_stac2835 crossref_primary_10_1051_0004_6361_202142847 crossref_primary_10_1051_0004_6361_202142946 crossref_primary_10_3847_1538_4365_ad5961 crossref_primary_10_1007_s10509_024_04318_2 crossref_primary_10_1093_mnras_stae860 crossref_primary_10_1093_mnras_stad914 crossref_primary_10_1093_mnras_stae1538 crossref_primary_10_3847_1538_4357_ad927b crossref_primary_10_1093_mnras_stad3299 crossref_primary_10_1002_asna_20230020 crossref_primary_10_1051_0004_6361_202040158 crossref_primary_10_1051_0004_6361_202450035 crossref_primary_10_1093_mnras_stae924 crossref_primary_10_1051_0004_6361_202040165 crossref_primary_10_1093_mnras_stad3712 crossref_primary_10_1051_0004_6361_202450940 crossref_primary_10_1051_0004_6361_202450501 crossref_primary_10_1051_0004_6361_202347708 crossref_primary_10_3847_1538_4357_abfbe6 crossref_primary_10_3847_1538_4357_ad09af crossref_primary_10_3847_1538_4365_adaea6 crossref_primary_10_1051_0004_6361_202141182 crossref_primary_10_3847_1538_4357_ad323d crossref_primary_10_1051_0004_6361_202141146 crossref_primary_10_1093_mnras_stae1105 crossref_primary_10_1093_mnras_stac835 crossref_primary_10_1093_mnras_stae959 crossref_primary_10_3847_1538_4357_acfb88 crossref_primary_10_3847_1538_4357_acf839 crossref_primary_10_1051_0004_6361_202245251 crossref_primary_10_3847_1538_4357_abedaf crossref_primary_10_1051_0004_6361_202451568 crossref_primary_10_3847_1538_4357_ad435a crossref_primary_10_3847_1538_4357_ad02f0 crossref_primary_10_3847_2041_8213_ad8563 crossref_primary_10_1051_0004_6361_202039524 crossref_primary_10_3847_1538_4357_ad9a86 crossref_primary_10_1051_0004_6361_202141375 crossref_primary_10_1051_0004_6361_202449219 crossref_primary_10_1093_mnras_staf250 crossref_primary_10_3847_1538_4357_ad344a crossref_primary_10_1093_mnras_stac3792 crossref_primary_10_1093_pasj_psae036 crossref_primary_10_3847_1538_4357_ac9388 crossref_primary_10_1051_0004_6361_202245804 crossref_primary_10_1093_mnras_stac2580 crossref_primary_10_3847_1538_4357_ac9eb1 |
Cites_doi | 10.1086/161178 10.1086/309293 10.1093/mnras/267.2.235 10.1086/178156 10.1051/0004-6361:20078734 10.1093/mnras/stv1225 10.1086/175311 10.1086/310239 10.1111/j.1365-2966.2011.19779.x 10.1051/0004-6361:20021497 10.1146/annurev.astro.37.1.409 10.1086/170270 10.1086/306900 10.1111/j.1365-8711.1998.01303.x 10.1086/175657 10.1146/annurev-astro-081817-051948 10.1086/176735 10.3847/1538-4357/aaafc9 10.1093/mnras/staa955 10.1086/181377 10.3847/1538-4357/835/1/59 10.1086/513316 10.1111/j.1365-2966.2012.21361.x 10.1051/0004-6361/200912633 10.1051/0004-6361/201834813 10.1086/172739 10.1088/0004-637X/807/1/107 10.3847/0004-637X/825/1/14 10.1051/0004-6361/201220016 10.1111/j.1365-2966.2009.14800.x 10.1093/mnras/stt1475 10.1051/0004-6361/202037903 10.1109/MCSE.2011.37 10.1051/eas:2002052 10.1111/j.1365-2966.2009.14799.x 10.1046/j.1365-2966.2003.07017.x 10.1051/0004-6361/201834781 10.1086/307594 10.1093/mnras/sts551 10.1051/0004-6361:20054231 10.1051/0004-6361/201220395 10.1093/mnras/stz2393 10.1093/mnras/stu532 10.3847/1538-4357/ab91b7 10.1088/0004-637X/691/1/L49 10.1093/mnras/stw029 10.1051/0004-6361/201833124 10.1086/529128 10.1093/mnras/199.4.883 10.1086/345848 10.1111/j.1365-2966.2012.21074.x 10.1086/522585 10.3847/1538-4357/ab0c0c 10.1051/0004-6361/201731691 10.1038/s41592-019-0686-2 10.1093/mnras/122.6.473 10.1051/0004-6361/201731580 10.1088/0004-637X/767/1/30 10.1086/168725 10.1093/mnras/stz2749 10.1051/0004-6361/201731733 10.1088/0004-637X/712/2/1241 10.1086/176344 10.1051/0004-6361/201935060 10.1051/0004-6361/201630056 10.1088/0004-637X/697/2/1269 10.1093/mnras/staa952 10.1051/0004-6361/201936950 10.1103/RevModPhys.32.898 10.1051/0004-6361:20052689 10.1088/0004-637X/784/2/121 10.1088/0004-637X/796/1/31 10.1051/0004-6361/201322464 10.1093/mnras/stz3572 10.1051/aas:1997275 10.1046/j.1365-8711.2003.06791.x 10.1088/0004-637X/809/2/118 10.1086/166684 10.1088/0004-637X/801/2/84 10.1038/nature25159 10.1086/321348 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1051/0004-6361/202039322 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_HAL_hal_03187395v1 10_1051_0004_6361_202039322 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 1XC VOOES |
ID | FETCH-LOGICAL-c283t-d8515e852063233b2b48656f430ebbce8886228d8897c46ed175a02e962be1f03 |
ISSN | 0004-6361 |
IngestDate | Wed Aug 20 06:51:00 EDT 2025 Tue Jul 01 03:53:50 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | accretion ISM: jets and outflows X-rays: binaries protoplanetary disks turbulence magnetohydrodynamics (MHD) accretion disks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c283t-d8515e852063233b2b48656f430ebbce8886228d8897c46ed175a02e962be1f03 |
ORCID | 0000-0003-2982-0005 0000-0002-7834-7341 0000-0002-8896-9435 |
OpenAccessLink | https://hal.science/hal-03187395 |
ParticipantIDs | hal_primary_oai_HAL_hal_03187395v1 crossref_primary_10_1051_0004_6361_202039322 crossref_citationtrail_10_1051_0004_6361_202039322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Guilet (R35) 2012; 424 Begelman (R7) 2015; 809 Fleming (R27) 2003; 585 Scepi (R76) 2019; 626 Jacquemin-Ide (R45) 2019; 490 Louvet (R54) 2018; 618 Pessah (R69) 2007; 668 Combet (R15) 2008; 479 Virtanen (R87) 2020; 17 Rothstein (R74) 2008; 677 Scepi (R77) 2020; 641 Serjeant (R78) 1998; 294 Suzuki (R83) 2014; 784 Gressel (R33) 2015; 801 Sorathia (R80) 2010; 712 Begelman (R6) 1983; 271 Blandford (R10) 2019; 57 R23 Frieman (R28) 1960; 32 Zhu (R92) 2020; 495 Heinemann (R41) 2009; 397 White (R90) 2019; 874 Balbus (R3) 1991; 376 Ferreira (R24) 1995; 295 Hartigan (R38) 1995; 452 R68 Evans (R21) 1988; 332 Suzuki (R82) 2009; 691 Coppejans (R16) 2015; 451 Marcel (R58) 2019; 626 Corbel (R17) 2000; 359 Guilet (R37) 2014; 441 Kim (R48) 2000; 540 Gressel (R34) 2020; 896 Done (R19) 2012; 420 Lightman (R52) 1974; 187 Wardle (R89) 1993; 410 Burrows (R11) 1996; 473 Van Der Walt (R86) 2011; 13 Hawley (R40) 1995; 440 Lovelace (R55) 1999; 513 Markoff (R59) 2003; 397 R5 Jiménez-Ibarra (R46) 2019; 489 Bai (R1) 2013; 767 Higginbottom (R43) 2015; 807 R71 Murphy (R66) 2010; 512 Merloni (R61) 2003; 345 R31 Cabrit (R12) 1990; 354 Petrucci (R70) 2018; 611 Ray (R72) 1996; 468 Hirth (R44) 1997; 126 Mignone (R63) 2007; 170 Balbus (R4) 1999; 521 McKinney (R60) 2012; 423 Lesur (R50) 2013; 550 Heinemann (R42) 2009; 397 Tabone (R84) 2017; 607 Béthune (R8) 2017; 600 Liska (R53) 2020; 494 Blandford (R9) 1982; 199 Mishra (R65) 2020; 492 Casse (R13) 2000; 361 Cicone (R14) 2014; 562 Salvesen (R75) 2016; 457 Mestel (R62) 1961; 122 Marcel (R57) 2018; 617 Gallo (R30) 2003; 344 R49 Fromang (R29) 2013; 552 Ferreira (R25) 2006; 453 Guilet (R36) 2013; 430 Ferreira (R26) 2006; 447 de Valon (R18) 2020; 634 Nelson (R67) 2013; 435 Zhu (R91) 2018; 857 Johansen (R47) 2009; 697 Bai (R2) 2014; 796 Ferreira (R22) 1997; 319 Riols (R73) 2019; 625 Stepanovs (R81) 2016; 825 Tetarenko (R85) 2018; 554 Hawley (R39) 2001; 554 Li (R51) 1995; 444 Mirabel (R64) 1999; 37 Dougados (R20) 2000; 357 Wang (R88) 2017; 835 Gammie (R32) 1996; 457 Lubow (R56) 1994; 267 Shakura (R79) 1973; 24 |
References_xml | – volume: 271 start-page: 70 year: 1983 ident: R6 publication-title: ApJ doi: 10.1086/161178 – volume: 540 start-page: 372 year: 2000 ident: R48 publication-title: ApJ doi: 10.1086/309293 – volume: 267 start-page: 235 year: 1994 ident: R56 publication-title: MNRAS doi: 10.1093/mnras/267.2.235 – volume: 473 start-page: 437 year: 1996 ident: R11 publication-title: ApJ doi: 10.1086/178156 – volume: 479 start-page: 481 year: 2008 ident: R15 publication-title: A&A doi: 10.1051/0004-6361:20078734 – volume: 451 start-page: 3801 year: 2015 ident: R16 publication-title: MNRAS doi: 10.1093/mnras/stv1225 – volume: 440 start-page: 742 year: 1995 ident: R40 publication-title: ApJ doi: 10.1086/175311 – volume: 468 start-page: L103 year: 1996 ident: R72 publication-title: ApJ doi: 10.1086/310239 – volume: 420 start-page: 1848 year: 2012 ident: R19 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19779.x – volume: 397 start-page: 645 year: 2003 ident: R59 publication-title: A&A doi: 10.1051/0004-6361:20021497 – volume: 37 start-page: 409 year: 1999 ident: R64 publication-title: ARA&A doi: 10.1146/annurev.astro.37.1.409 – volume: 376 start-page: 214 year: 1991 ident: R3 publication-title: ApJ doi: 10.1086/170270 – volume: 319 start-page: 340 year: 1997 ident: R22 publication-title: A&A – volume: 513 start-page: 805 year: 1999 ident: R55 publication-title: ApJ doi: 10.1086/306900 – volume: 294 start-page: 494 year: 1998 ident: R78 publication-title: MNRAS doi: 10.1111/j.1365-8711.1998.01303.x – volume: 444 start-page: 848 year: 1995 ident: R51 publication-title: ApJ doi: 10.1086/175657 – volume: 57 start-page: 467 year: 2019 ident: R10 publication-title: ARA&A doi: 10.1146/annurev-astro-081817-051948 – volume: 457 start-page: 355 year: 1996 ident: R32 publication-title: ApJ doi: 10.1086/176735 – volume: 857 start-page: 34 year: 2018 ident: R91 publication-title: ApJ doi: 10.3847/1538-4357/aaafc9 – ident: R49 – volume: 494 start-page: 3656 year: 2020 ident: R53 publication-title: MNRAS doi: 10.1093/mnras/staa955 – volume: 187 start-page: L1 year: 1974 ident: R52 publication-title: ApJ doi: 10.1086/181377 – volume: 835 start-page: 59 year: 2017 ident: R88 publication-title: ApJ doi: 10.3847/1538-4357/835/1/59 – volume: 170 start-page: 228 year: 2007 ident: R63 publication-title: ApJS doi: 10.1086/513316 – volume: 424 start-page: 2097 year: 2012 ident: R35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21361.x – volume: 512 start-page: A82 year: 2010 ident: R66 publication-title: A&A doi: 10.1051/0004-6361/200912633 – volume: 625 start-page: A108 year: 2019 ident: R73 publication-title: A&A doi: 10.1051/0004-6361/201834813 – volume: 410 start-page: 218 year: 1993 ident: R89 publication-title: ApJ doi: 10.1086/172739 – ident: R5 – ident: R71 – volume: 295 start-page: 807 year: 1995 ident: R24 publication-title: A&A – volume: 807 start-page: 107 year: 2015 ident: R43 publication-title: ApJ doi: 10.1088/0004-637X/807/1/107 – volume: 825 start-page: 14 year: 2016 ident: R81 publication-title: ApJ doi: 10.3847/0004-637X/825/1/14 – volume: 552 start-page: A71 year: 2013 ident: R29 publication-title: A&A doi: 10.1051/0004-6361/201220016 – volume: 397 start-page: 64 year: 2009 ident: R42 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14800.x – volume: 435 start-page: 2610 year: 2013 ident: R67 publication-title: MNRAS doi: 10.1093/mnras/stt1475 – volume: 641 start-page: A133 year: 2020 ident: R77 publication-title: A&A doi: 10.1051/0004-6361/202037903 – ident: R68 – volume: 13 start-page: 22 year: 2011 ident: R86 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – ident: R23 doi: 10.1051/eas:2002052 – volume: 397 start-page: 52 year: 2009 ident: R41 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14799.x – volume: 345 start-page: 1057 year: 2003 ident: R61 publication-title: MNRAS doi: 10.1046/j.1365-2966.2003.07017.x – volume: 626 start-page: A116 year: 2019 ident: R76 publication-title: A&A doi: 10.1051/0004-6361/201834781 – volume: 521 start-page: 650 year: 1999 ident: R4 publication-title: ApJ doi: 10.1086/307594 – volume: 430 start-page: 822 year: 2013 ident: R36 publication-title: MNRAS doi: 10.1093/mnras/sts551 – volume: 453 start-page: 785 year: 2006 ident: R25 publication-title: A&A doi: 10.1051/0004-6361:20054231 – volume: 550 start-page: A61 year: 2013 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/201220395 – volume: 489 start-page: 3420 year: 2019 ident: R46 publication-title: MNRAS doi: 10.1093/mnras/stz2393 – volume: 441 start-page: 852 year: 2014 ident: R37 publication-title: MNRAS doi: 10.1093/mnras/stu532 – volume: 896 start-page: 126 year: 2020 ident: R34 publication-title: ApJ doi: 10.3847/1538-4357/ab91b7 – volume: 691 start-page: L49 year: 2009 ident: R82 publication-title: ApJ doi: 10.1088/0004-637X/691/1/L49 – volume: 457 start-page: 857 year: 2016 ident: R75 publication-title: MNRAS doi: 10.1093/mnras/stw029 – volume: 24 start-page: 337 year: 1973 ident: R79 publication-title: A&A – volume: 617 start-page: A46 year: 2018 ident: R57 publication-title: A&A doi: 10.1051/0004-6361/201833124 – volume: 677 start-page: 1221 year: 2008 ident: R74 publication-title: ApJ doi: 10.1086/529128 – volume: 199 start-page: 883 year: 1982 ident: R9 publication-title: MNRAS doi: 10.1093/mnras/199.4.883 – volume: 359 start-page: 251 year: 2000 ident: R17 publication-title: A&A – volume: 585 start-page: 908 year: 2003 ident: R27 publication-title: ApJ doi: 10.1086/345848 – volume: 423 start-page: 3083 year: 2012 ident: R60 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21074.x – volume: 668 start-page: L51 year: 2007 ident: R69 publication-title: ApJ doi: 10.1086/522585 – volume: 874 start-page: 168 year: 2019 ident: R90 publication-title: ApJ doi: 10.3847/1538-4357/ab0c0c – volume: 607 start-page: L6 year: 2017 ident: R84 publication-title: A&A doi: 10.1051/0004-6361/201731691 – volume: 17 start-page: 261 year: 2020 ident: R87 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 361 start-page: 1178 year: 2000 ident: R13 publication-title: A&A – volume: 122 start-page: 473 year: 1961 ident: R62 publication-title: MNRAS doi: 10.1093/mnras/122.6.473 – volume: 611 start-page: A59 year: 2018 ident: R70 publication-title: A&A doi: 10.1051/0004-6361/201731580 – volume: 767 start-page: 30 year: 2013 ident: R1 publication-title: ApJ doi: 10.1088/0004-637X/767/1/30 – volume: 354 start-page: 687 year: 1990 ident: R12 publication-title: ApJ doi: 10.1086/168725 – volume: 490 start-page: 3112 year: 2019 ident: R45 publication-title: MNRAS doi: 10.1093/mnras/stz2749 – volume: 618 start-page: A120 year: 2018 ident: R54 publication-title: A&A doi: 10.1051/0004-6361/201731733 – volume: 712 start-page: 1241 year: 2010 ident: R80 publication-title: ApJ doi: 10.1088/0004-637X/712/2/1241 – volume: 452 start-page: 736 year: 1995 ident: R38 publication-title: ApJ doi: 10.1086/176344 – volume: 626 start-page: A115 year: 2019 ident: R58 publication-title: A&A doi: 10.1051/0004-6361/201935060 – volume: 600 start-page: A75 year: 2017 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201630056 – ident: R31 – volume: 697 start-page: 1269 year: 2009 ident: R47 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1269 – volume: 495 start-page: 3494 year: 2020 ident: R92 publication-title: MNRAS doi: 10.1093/mnras/staa952 – volume: 634 start-page: L12 year: 2020 ident: R18 publication-title: A&A doi: 10.1051/0004-6361/201936950 – volume: 32 start-page: 898 year: 1960 ident: R28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.32.898 – volume: 447 start-page: 813 year: 2006 ident: R26 publication-title: A&A doi: 10.1051/0004-6361:20052689 – volume: 784 start-page: 121 year: 2014 ident: R83 publication-title: ApJ doi: 10.1088/0004-637X/784/2/121 – volume: 796 start-page: 31 year: 2014 ident: R2 publication-title: ApJ doi: 10.1088/0004-637X/796/1/31 – volume: 562 start-page: A21 year: 2014 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201322464 – volume: 492 start-page: 1855 year: 2020 ident: R65 publication-title: MNRAS doi: 10.1093/mnras/stz3572 – volume: 126 start-page: 437 year: 1997 ident: R44 publication-title: A&AS doi: 10.1051/aas:1997275 – volume: 357 start-page: L61 year: 2000 ident: R20 publication-title: A&A – volume: 344 start-page: 60 year: 2003 ident: R30 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06791.x – volume: 809 start-page: 118 year: 2015 ident: R7 publication-title: ApJ doi: 10.1088/0004-637X/809/2/118 – volume: 332 start-page: 659 year: 1988 ident: R21 publication-title: ApJ doi: 10.1086/166684 – volume: 801 start-page: 84 year: 2015 ident: R33 publication-title: ApJ doi: 10.1088/0004-637X/801/2/84 – volume: 554 start-page: 69 year: 2018 ident: R85 publication-title: Nature doi: 10.1038/nature25159 – volume: 554 start-page: 534 year: 2001 ident: R39 publication-title: ApJ doi: 10.1086/321348 |
SSID | ssj0002183 |
Score | 2.6144536 |
Snippet | Context.
Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive... Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | A192 |
SubjectTerms | Astrophysics Physics |
Subtitle | I. Vertical structure and secular evolution |
Title | Magnetic outflows from turbulent accretion disks |
URI | https://hal.science/hal-03187395 |
Volume | 647 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIvEwzQNmCKEOIF0iWOnbqP0UbXlm6qxCbtLYodh1V0KWoSkHjgb-cuTtxUTGjwEiWO80P-TufvzndnQt4mPk85HyiXiix1WZaBHgQbzJVDinWtM-FJzHc-vwjHV2x6za97vVknaqkqZV_9vDOv5H9QhTbAFbNk_wFZ-1JogHPAF46AMBzvhfF58iXHJMT3q6rMlqsfRZMtUsFQLevgcaUwSxEQThfF16LLRKMCneCrW1N_KcEr4-Wo3bCmClbHTTBNFMwgt4vcnZhCvdP-JpanqGrcz2zTSK_XerFOOh0bzwLthFYZd9fpvFUwxZYKZW4YmArqfW20JgswhLXxJTZqNTSVNP9Q0aAFTEyjeQ1mpOBqKPBIupmT2nX4cfQ5np-O4tnk4tP2XVsbexzN4huADrUTrjp-B1v4IQWjAfezOJv8svMykkFjDJkvtzWouH9s247tv2zxlAc3rZu9ph2XT8huYy84kQH_KenpfI_sW_Ccd07UgW6PPJqbs2fEa6XDaaXDQelwrHQ4VjqcWjqek6vRx8uTsdvsj-EqIIWlmwJb5lpwCjSTBoGkkgmg5xkLPC2l0kKAuUpFKsRwoFioU6CKiUf1MKRS-5kXvCA7-SrX-8ThPEx8PUhTX3hMDUTiJ9kwUxLYuFRSeQeEtqMRq6Z4PO5hsozrIAbuYxADi3EIYzuEB-SDfeibqZ3y9-5vEMe2593YHt6n00vyeCPPr8hOua70a-COpTyqReI31qVmwg |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+outflows+from+turbulent+accretion+disks&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Jacquemin-Ide%2C+J.&rft.au=Lesur%2C+G.&rft.au=Ferreira%2C+J.&rft.date=2021-03-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft_id=info:doi/10.1051%2F0004-6361%2F202039322&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03187395v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |