Magnetic outflows from turbulent accretion disks I. Vertical structure and secular evolution

Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets....

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 647; p. A192
Main Authors Jacquemin-Ide, J., Lesur, G., Ferreira, J.
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems. Aims. We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions. Methods. We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties. Results. We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models.
AbstractList Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems.Aims. We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions.Methods. We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties.Results. We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models.
Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive magneto-rotational turbulence in the disk bulk, but it is also responsible for launching magnetised outflows at the origin of astrophysical jets. Yet, the interplay between turbulence and outflows is not understood. In particular, the vertical structure and long-term (secular) evolution of such a system lack quantitative predictions. It is, nevertheless, this secular evolution which is proposed to explain time variability in many accreting systems such as FuOr, X-ray binaries, and novae like systems. Aims. We seek to constraint the structure and long-term evolution of turbulent astrophysical disks subject to magnetised outflows in the non-relativistic regime. More specifically we aim to characterise the mechanism driving accretion, the dynamics of the disk atmosphere, the role played by the outflow, and the long-term evolution of mass and magnetic flux distributions. Methods. We computed and analysed global 3D ideal magnetohydrynamic (MHD) simulations of an accretion disk threaded by a large-scale magnetic field. We measured the turbulent state of the system by Reynolds averaging the ideal MHD equations and evaluate the role of the turbulent terms in the equilibrium of the system. We then computed the transport of mass, angular momentum, and magnetic fields in the disk to characterise its secular evolution. Finally, we performed a parameter exploration survey in order to characterise how the transport properties depend on the disk properties. Results. We find that weakly magnetised disks drive jets that carry a small fraction of the disk angular momentum away. The mass-weighted accretion speed remains subsonic, although there is always an upper turbulent atmospheric region where transsonic accretion takes place. We show that this turbulence is driven by a strongly magnetised version of the magneto-rotational instability. The internal disk structure therefore appears drastically different from the conventional hydrostatic picture. We expect that the turbulent atmosphere region will lead to non-thermal features in the emission spectra from compact objects. In addition, we show that the disk is subject to a secular viscous-type instability, which leads to the formation of long-lived ring-like structures in the disk surface density distribution. This instability is likely connected to the magnetic field transport. Finally, we show that for all of the parameters explored, the ambient magnetic field is always dragged inward in the disk at a velocity which increases with the disk magnetisation. Beyond a threshold on the latter, the disk undergoes a profound radial readjustment. It leads to the formation of an inner accretion-ejection region with a supersonic mass-weighted accretion speed and where the magnetic field distribution becomes steady and reaches a magnitude near equipartition with the thermal pressure. This inner structure shares many properties with the jet emitting disk model. Overall, these results pave the way for quantitative self-consistent secular disk models.
Author Jacquemin-Ide, J.
Lesur, G.
Ferreira, J.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0003-2982-0005
  surname: Jacquemin-Ide
  fullname: Jacquemin-Ide, J.
– sequence: 2
  givenname: G.
  surname: Lesur
  fullname: Lesur, G.
– sequence: 3
  givenname: J.
  surname: Ferreira
  fullname: Ferreira, J.
BackLink https://hal.science/hal-03187395$$DView record in HAL
BookMark eNp9kLFOwzAQhi1UJNrCE7BkZQg93yWOM1YVUKQgFpgtx3EgkMbIdkG8PYmKOjAwne70fSf9_4LNBjdYxi45XHPI-QoAslSQ4CsEBCoJ8YTNeUaYQpGJGZsfiTO2COFtXJFLmjN40C-DjZ1J3D62vfsKSevdLol7X-97O8REG-NHwA1J04X3cM5OW90He_E7l-z59uZps02rx7v7zbpKDUqKaSNznluZIwhCohrrTIpctBmBrWtjpZQCUTZSloXJhG14kWtAWwqsLW-Bluzq8PdV9-rDdzvtv5XTndquKzXdgLgsqMw_-cjSgTXeheBtexQ4qKkgNcVXU3x1LGi0yj-W6aKekkavu_5f9wdzhGm0
CitedBy_id crossref_primary_10_1093_mnras_stac2835
crossref_primary_10_1051_0004_6361_202142847
crossref_primary_10_1051_0004_6361_202142946
crossref_primary_10_3847_1538_4365_ad5961
crossref_primary_10_1007_s10509_024_04318_2
crossref_primary_10_1093_mnras_stae860
crossref_primary_10_1093_mnras_stad914
crossref_primary_10_1093_mnras_stae1538
crossref_primary_10_3847_1538_4357_ad927b
crossref_primary_10_1093_mnras_stad3299
crossref_primary_10_1002_asna_20230020
crossref_primary_10_1051_0004_6361_202040158
crossref_primary_10_1051_0004_6361_202450035
crossref_primary_10_1093_mnras_stae924
crossref_primary_10_1051_0004_6361_202040165
crossref_primary_10_1093_mnras_stad3712
crossref_primary_10_1051_0004_6361_202450940
crossref_primary_10_1051_0004_6361_202450501
crossref_primary_10_1051_0004_6361_202347708
crossref_primary_10_3847_1538_4357_abfbe6
crossref_primary_10_3847_1538_4357_ad09af
crossref_primary_10_3847_1538_4365_adaea6
crossref_primary_10_1051_0004_6361_202141182
crossref_primary_10_3847_1538_4357_ad323d
crossref_primary_10_1051_0004_6361_202141146
crossref_primary_10_1093_mnras_stae1105
crossref_primary_10_1093_mnras_stac835
crossref_primary_10_1093_mnras_stae959
crossref_primary_10_3847_1538_4357_acfb88
crossref_primary_10_3847_1538_4357_acf839
crossref_primary_10_1051_0004_6361_202245251
crossref_primary_10_3847_1538_4357_abedaf
crossref_primary_10_1051_0004_6361_202451568
crossref_primary_10_3847_1538_4357_ad435a
crossref_primary_10_3847_1538_4357_ad02f0
crossref_primary_10_3847_2041_8213_ad8563
crossref_primary_10_1051_0004_6361_202039524
crossref_primary_10_3847_1538_4357_ad9a86
crossref_primary_10_1051_0004_6361_202141375
crossref_primary_10_1051_0004_6361_202449219
crossref_primary_10_1093_mnras_staf250
crossref_primary_10_3847_1538_4357_ad344a
crossref_primary_10_1093_mnras_stac3792
crossref_primary_10_1093_pasj_psae036
crossref_primary_10_3847_1538_4357_ac9388
crossref_primary_10_1051_0004_6361_202245804
crossref_primary_10_1093_mnras_stac2580
crossref_primary_10_3847_1538_4357_ac9eb1
Cites_doi 10.1086/161178
10.1086/309293
10.1093/mnras/267.2.235
10.1086/178156
10.1051/0004-6361:20078734
10.1093/mnras/stv1225
10.1086/175311
10.1086/310239
10.1111/j.1365-2966.2011.19779.x
10.1051/0004-6361:20021497
10.1146/annurev.astro.37.1.409
10.1086/170270
10.1086/306900
10.1111/j.1365-8711.1998.01303.x
10.1086/175657
10.1146/annurev-astro-081817-051948
10.1086/176735
10.3847/1538-4357/aaafc9
10.1093/mnras/staa955
10.1086/181377
10.3847/1538-4357/835/1/59
10.1086/513316
10.1111/j.1365-2966.2012.21361.x
10.1051/0004-6361/200912633
10.1051/0004-6361/201834813
10.1086/172739
10.1088/0004-637X/807/1/107
10.3847/0004-637X/825/1/14
10.1051/0004-6361/201220016
10.1111/j.1365-2966.2009.14800.x
10.1093/mnras/stt1475
10.1051/0004-6361/202037903
10.1109/MCSE.2011.37
10.1051/eas:2002052
10.1111/j.1365-2966.2009.14799.x
10.1046/j.1365-2966.2003.07017.x
10.1051/0004-6361/201834781
10.1086/307594
10.1093/mnras/sts551
10.1051/0004-6361:20054231
10.1051/0004-6361/201220395
10.1093/mnras/stz2393
10.1093/mnras/stu532
10.3847/1538-4357/ab91b7
10.1088/0004-637X/691/1/L49
10.1093/mnras/stw029
10.1051/0004-6361/201833124
10.1086/529128
10.1093/mnras/199.4.883
10.1086/345848
10.1111/j.1365-2966.2012.21074.x
10.1086/522585
10.3847/1538-4357/ab0c0c
10.1051/0004-6361/201731691
10.1038/s41592-019-0686-2
10.1093/mnras/122.6.473
10.1051/0004-6361/201731580
10.1088/0004-637X/767/1/30
10.1086/168725
10.1093/mnras/stz2749
10.1051/0004-6361/201731733
10.1088/0004-637X/712/2/1241
10.1086/176344
10.1051/0004-6361/201935060
10.1051/0004-6361/201630056
10.1088/0004-637X/697/2/1269
10.1093/mnras/staa952
10.1051/0004-6361/201936950
10.1103/RevModPhys.32.898
10.1051/0004-6361:20052689
10.1088/0004-637X/784/2/121
10.1088/0004-637X/796/1/31
10.1051/0004-6361/201322464
10.1093/mnras/stz3572
10.1051/aas:1997275
10.1046/j.1365-8711.2003.06791.x
10.1088/0004-637X/809/2/118
10.1086/166684
10.1088/0004-637X/801/2/84
10.1038/nature25159
10.1086/321348
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1051/0004-6361/202039322
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_HAL_hal_03187395v1
10_1051_0004_6361_202039322
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
1XC
VOOES
ID FETCH-LOGICAL-c283t-d8515e852063233b2b48656f430ebbce8886228d8897c46ed175a02e962be1f03
ISSN 0004-6361
IngestDate Wed Aug 20 06:51:00 EDT 2025
Tue Jul 01 03:53:50 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords accretion
ISM: jets and outflows
X-rays: binaries
protoplanetary disks
turbulence
magnetohydrodynamics (MHD)
accretion disks
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c283t-d8515e852063233b2b48656f430ebbce8886228d8897c46ed175a02e962be1f03
ORCID 0000-0003-2982-0005
0000-0002-7834-7341
0000-0002-8896-9435
OpenAccessLink https://hal.science/hal-03187395
ParticipantIDs hal_primary_oai_HAL_hal_03187395v1
crossref_primary_10_1051_0004_6361_202039322
crossref_citationtrail_10_1051_0004_6361_202039322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Guilet (R35) 2012; 424
Begelman (R7) 2015; 809
Fleming (R27) 2003; 585
Scepi (R76) 2019; 626
Jacquemin-Ide (R45) 2019; 490
Louvet (R54) 2018; 618
Pessah (R69) 2007; 668
Combet (R15) 2008; 479
Virtanen (R87) 2020; 17
Rothstein (R74) 2008; 677
Scepi (R77) 2020; 641
Serjeant (R78) 1998; 294
Suzuki (R83) 2014; 784
Gressel (R33) 2015; 801
Sorathia (R80) 2010; 712
Begelman (R6) 1983; 271
Blandford (R10) 2019; 57
R23
Frieman (R28) 1960; 32
Zhu (R92) 2020; 495
Heinemann (R41) 2009; 397
White (R90) 2019; 874
Balbus (R3) 1991; 376
Ferreira (R24) 1995; 295
Hartigan (R38) 1995; 452
R68
Evans (R21) 1988; 332
Suzuki (R82) 2009; 691
Coppejans (R16) 2015; 451
Marcel (R58) 2019; 626
Corbel (R17) 2000; 359
Guilet (R37) 2014; 441
Kim (R48) 2000; 540
Gressel (R34) 2020; 896
Done (R19) 2012; 420
Lightman (R52) 1974; 187
Wardle (R89) 1993; 410
Burrows (R11) 1996; 473
Van Der Walt (R86) 2011; 13
Hawley (R40) 1995; 440
Lovelace (R55) 1999; 513
Markoff (R59) 2003; 397
R5
Jiménez-Ibarra (R46) 2019; 489
Bai (R1) 2013; 767
Higginbottom (R43) 2015; 807
R71
Murphy (R66) 2010; 512
Merloni (R61) 2003; 345
R31
Cabrit (R12) 1990; 354
Petrucci (R70) 2018; 611
Ray (R72) 1996; 468
Hirth (R44) 1997; 126
Mignone (R63) 2007; 170
Balbus (R4) 1999; 521
McKinney (R60) 2012; 423
Lesur (R50) 2013; 550
Heinemann (R42) 2009; 397
Tabone (R84) 2017; 607
Béthune (R8) 2017; 600
Liska (R53) 2020; 494
Blandford (R9) 1982; 199
Mishra (R65) 2020; 492
Casse (R13) 2000; 361
Cicone (R14) 2014; 562
Salvesen (R75) 2016; 457
Mestel (R62) 1961; 122
Marcel (R57) 2018; 617
Gallo (R30) 2003; 344
R49
Fromang (R29) 2013; 552
Ferreira (R25) 2006; 453
Guilet (R36) 2013; 430
Ferreira (R26) 2006; 447
de Valon (R18) 2020; 634
Nelson (R67) 2013; 435
Zhu (R91) 2018; 857
Johansen (R47) 2009; 697
Bai (R2) 2014; 796
Ferreira (R22) 1997; 319
Riols (R73) 2019; 625
Stepanovs (R81) 2016; 825
Tetarenko (R85) 2018; 554
Hawley (R39) 2001; 554
Li (R51) 1995; 444
Mirabel (R64) 1999; 37
Dougados (R20) 2000; 357
Wang (R88) 2017; 835
Gammie (R32) 1996; 457
Lubow (R56) 1994; 267
Shakura (R79) 1973; 24
References_xml – volume: 271
  start-page: 70
  year: 1983
  ident: R6
  publication-title: ApJ
  doi: 10.1086/161178
– volume: 540
  start-page: 372
  year: 2000
  ident: R48
  publication-title: ApJ
  doi: 10.1086/309293
– volume: 267
  start-page: 235
  year: 1994
  ident: R56
  publication-title: MNRAS
  doi: 10.1093/mnras/267.2.235
– volume: 473
  start-page: 437
  year: 1996
  ident: R11
  publication-title: ApJ
  doi: 10.1086/178156
– volume: 479
  start-page: 481
  year: 2008
  ident: R15
  publication-title: A&A
  doi: 10.1051/0004-6361:20078734
– volume: 451
  start-page: 3801
  year: 2015
  ident: R16
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1225
– volume: 440
  start-page: 742
  year: 1995
  ident: R40
  publication-title: ApJ
  doi: 10.1086/175311
– volume: 468
  start-page: L103
  year: 1996
  ident: R72
  publication-title: ApJ
  doi: 10.1086/310239
– volume: 420
  start-page: 1848
  year: 2012
  ident: R19
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19779.x
– volume: 397
  start-page: 645
  year: 2003
  ident: R59
  publication-title: A&A
  doi: 10.1051/0004-6361:20021497
– volume: 37
  start-page: 409
  year: 1999
  ident: R64
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.37.1.409
– volume: 376
  start-page: 214
  year: 1991
  ident: R3
  publication-title: ApJ
  doi: 10.1086/170270
– volume: 319
  start-page: 340
  year: 1997
  ident: R22
  publication-title: A&A
– volume: 513
  start-page: 805
  year: 1999
  ident: R55
  publication-title: ApJ
  doi: 10.1086/306900
– volume: 294
  start-page: 494
  year: 1998
  ident: R78
  publication-title: MNRAS
  doi: 10.1111/j.1365-8711.1998.01303.x
– volume: 444
  start-page: 848
  year: 1995
  ident: R51
  publication-title: ApJ
  doi: 10.1086/175657
– volume: 57
  start-page: 467
  year: 2019
  ident: R10
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081817-051948
– volume: 457
  start-page: 355
  year: 1996
  ident: R32
  publication-title: ApJ
  doi: 10.1086/176735
– volume: 857
  start-page: 34
  year: 2018
  ident: R91
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaafc9
– ident: R49
– volume: 494
  start-page: 3656
  year: 2020
  ident: R53
  publication-title: MNRAS
  doi: 10.1093/mnras/staa955
– volume: 187
  start-page: L1
  year: 1974
  ident: R52
  publication-title: ApJ
  doi: 10.1086/181377
– volume: 835
  start-page: 59
  year: 2017
  ident: R88
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/1/59
– volume: 170
  start-page: 228
  year: 2007
  ident: R63
  publication-title: ApJS
  doi: 10.1086/513316
– volume: 424
  start-page: 2097
  year: 2012
  ident: R35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21361.x
– volume: 512
  start-page: A82
  year: 2010
  ident: R66
  publication-title: A&A
  doi: 10.1051/0004-6361/200912633
– volume: 625
  start-page: A108
  year: 2019
  ident: R73
  publication-title: A&A
  doi: 10.1051/0004-6361/201834813
– volume: 410
  start-page: 218
  year: 1993
  ident: R89
  publication-title: ApJ
  doi: 10.1086/172739
– ident: R5
– ident: R71
– volume: 295
  start-page: 807
  year: 1995
  ident: R24
  publication-title: A&A
– volume: 807
  start-page: 107
  year: 2015
  ident: R43
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/1/107
– volume: 825
  start-page: 14
  year: 2016
  ident: R81
  publication-title: ApJ
  doi: 10.3847/0004-637X/825/1/14
– volume: 552
  start-page: A71
  year: 2013
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361/201220016
– volume: 397
  start-page: 64
  year: 2009
  ident: R42
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14800.x
– volume: 435
  start-page: 2610
  year: 2013
  ident: R67
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1475
– volume: 641
  start-page: A133
  year: 2020
  ident: R77
  publication-title: A&A
  doi: 10.1051/0004-6361/202037903
– ident: R68
– volume: 13
  start-page: 22
  year: 2011
  ident: R86
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– ident: R23
  doi: 10.1051/eas:2002052
– volume: 397
  start-page: 52
  year: 2009
  ident: R41
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14799.x
– volume: 345
  start-page: 1057
  year: 2003
  ident: R61
  publication-title: MNRAS
  doi: 10.1046/j.1365-2966.2003.07017.x
– volume: 626
  start-page: A116
  year: 2019
  ident: R76
  publication-title: A&A
  doi: 10.1051/0004-6361/201834781
– volume: 521
  start-page: 650
  year: 1999
  ident: R4
  publication-title: ApJ
  doi: 10.1086/307594
– volume: 430
  start-page: 822
  year: 2013
  ident: R36
  publication-title: MNRAS
  doi: 10.1093/mnras/sts551
– volume: 453
  start-page: 785
  year: 2006
  ident: R25
  publication-title: A&A
  doi: 10.1051/0004-6361:20054231
– volume: 550
  start-page: A61
  year: 2013
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/201220395
– volume: 489
  start-page: 3420
  year: 2019
  ident: R46
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2393
– volume: 441
  start-page: 852
  year: 2014
  ident: R37
  publication-title: MNRAS
  doi: 10.1093/mnras/stu532
– volume: 896
  start-page: 126
  year: 2020
  ident: R34
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab91b7
– volume: 691
  start-page: L49
  year: 2009
  ident: R82
  publication-title: ApJ
  doi: 10.1088/0004-637X/691/1/L49
– volume: 457
  start-page: 857
  year: 2016
  ident: R75
  publication-title: MNRAS
  doi: 10.1093/mnras/stw029
– volume: 24
  start-page: 337
  year: 1973
  ident: R79
  publication-title: A&A
– volume: 617
  start-page: A46
  year: 2018
  ident: R57
  publication-title: A&A
  doi: 10.1051/0004-6361/201833124
– volume: 677
  start-page: 1221
  year: 2008
  ident: R74
  publication-title: ApJ
  doi: 10.1086/529128
– volume: 199
  start-page: 883
  year: 1982
  ident: R9
  publication-title: MNRAS
  doi: 10.1093/mnras/199.4.883
– volume: 359
  start-page: 251
  year: 2000
  ident: R17
  publication-title: A&A
– volume: 585
  start-page: 908
  year: 2003
  ident: R27
  publication-title: ApJ
  doi: 10.1086/345848
– volume: 423
  start-page: 3083
  year: 2012
  ident: R60
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21074.x
– volume: 668
  start-page: L51
  year: 2007
  ident: R69
  publication-title: ApJ
  doi: 10.1086/522585
– volume: 874
  start-page: 168
  year: 2019
  ident: R90
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab0c0c
– volume: 607
  start-page: L6
  year: 2017
  ident: R84
  publication-title: A&A
  doi: 10.1051/0004-6361/201731691
– volume: 17
  start-page: 261
  year: 2020
  ident: R87
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 361
  start-page: 1178
  year: 2000
  ident: R13
  publication-title: A&A
– volume: 122
  start-page: 473
  year: 1961
  ident: R62
  publication-title: MNRAS
  doi: 10.1093/mnras/122.6.473
– volume: 611
  start-page: A59
  year: 2018
  ident: R70
  publication-title: A&A
  doi: 10.1051/0004-6361/201731580
– volume: 767
  start-page: 30
  year: 2013
  ident: R1
  publication-title: ApJ
  doi: 10.1088/0004-637X/767/1/30
– volume: 354
  start-page: 687
  year: 1990
  ident: R12
  publication-title: ApJ
  doi: 10.1086/168725
– volume: 490
  start-page: 3112
  year: 2019
  ident: R45
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2749
– volume: 618
  start-page: A120
  year: 2018
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361/201731733
– volume: 712
  start-page: 1241
  year: 2010
  ident: R80
  publication-title: ApJ
  doi: 10.1088/0004-637X/712/2/1241
– volume: 452
  start-page: 736
  year: 1995
  ident: R38
  publication-title: ApJ
  doi: 10.1086/176344
– volume: 626
  start-page: A115
  year: 2019
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361/201935060
– volume: 600
  start-page: A75
  year: 2017
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201630056
– ident: R31
– volume: 697
  start-page: 1269
  year: 2009
  ident: R47
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1269
– volume: 495
  start-page: 3494
  year: 2020
  ident: R92
  publication-title: MNRAS
  doi: 10.1093/mnras/staa952
– volume: 634
  start-page: L12
  year: 2020
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201936950
– volume: 32
  start-page: 898
  year: 1960
  ident: R28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.32.898
– volume: 447
  start-page: 813
  year: 2006
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361:20052689
– volume: 784
  start-page: 121
  year: 2014
  ident: R83
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/2/121
– volume: 796
  start-page: 31
  year: 2014
  ident: R2
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/1/31
– volume: 562
  start-page: A21
  year: 2014
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201322464
– volume: 492
  start-page: 1855
  year: 2020
  ident: R65
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3572
– volume: 126
  start-page: 437
  year: 1997
  ident: R44
  publication-title: A&AS
  doi: 10.1051/aas:1997275
– volume: 357
  start-page: L61
  year: 2000
  ident: R20
  publication-title: A&A
– volume: 344
  start-page: 60
  year: 2003
  ident: R30
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06791.x
– volume: 809
  start-page: 118
  year: 2015
  ident: R7
  publication-title: ApJ
  doi: 10.1088/0004-637X/809/2/118
– volume: 332
  start-page: 659
  year: 1988
  ident: R21
  publication-title: ApJ
  doi: 10.1086/166684
– volume: 801
  start-page: 84
  year: 2015
  ident: R33
  publication-title: ApJ
  doi: 10.1088/0004-637X/801/2/84
– volume: 554
  start-page: 69
  year: 2018
  ident: R85
  publication-title: Nature
  doi: 10.1038/nature25159
– volume: 554
  start-page: 534
  year: 2001
  ident: R39
  publication-title: ApJ
  doi: 10.1086/321348
SSID ssj0002183
Score 2.6144536
Snippet Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive...
Context. Astrophysical disks are likely embedded in an ambient vertical magnetic field generated by its environment. This ambient field is known to drive...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage A192
SubjectTerms Astrophysics
Physics
Subtitle I. Vertical structure and secular evolution
Title Magnetic outflows from turbulent accretion disks
URI https://hal.science/hal-03187395
Volume 647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIvEwzQNmCKEOIF0iWOnbqP0UbXlm6qxCbtLYodh1V0KWoSkHjgb-cuTtxUTGjwEiWO80P-TufvzndnQt4mPk85HyiXiix1WZaBHgQbzJVDinWtM-FJzHc-vwjHV2x6za97vVknaqkqZV_9vDOv5H9QhTbAFbNk_wFZ-1JogHPAF46AMBzvhfF58iXHJMT3q6rMlqsfRZMtUsFQLevgcaUwSxEQThfF16LLRKMCneCrW1N_KcEr4-Wo3bCmClbHTTBNFMwgt4vcnZhCvdP-JpanqGrcz2zTSK_XerFOOh0bzwLthFYZd9fpvFUwxZYKZW4YmArqfW20JgswhLXxJTZqNTSVNP9Q0aAFTEyjeQ1mpOBqKPBIupmT2nX4cfQ5np-O4tnk4tP2XVsbexzN4huADrUTrjp-B1v4IQWjAfezOJv8svMykkFjDJkvtzWouH9s247tv2zxlAc3rZu9ph2XT8huYy84kQH_KenpfI_sW_Ccd07UgW6PPJqbs2fEa6XDaaXDQelwrHQ4VjqcWjqek6vRx8uTsdvsj-EqIIWlmwJb5lpwCjSTBoGkkgmg5xkLPC2l0kKAuUpFKsRwoFioU6CKiUf1MKRS-5kXvCA7-SrX-8ThPEx8PUhTX3hMDUTiJ9kwUxLYuFRSeQeEtqMRq6Z4PO5hsozrIAbuYxADi3EIYzuEB-SDfeibqZ3y9-5vEMe2593YHt6n00vyeCPPr8hOua70a-COpTyqReI31qVmwg
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+outflows+from+turbulent+accretion+disks&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Jacquemin-Ide%2C+J.&rft.au=Lesur%2C+G.&rft.au=Ferreira%2C+J.&rft.date=2021-03-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft_id=info:doi/10.1051%2F0004-6361%2F202039322&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03187395v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon