Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer’s disease
One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroi...
Saved in:
Published in | Journal of neuroscience methods Vol. 375; p. 109582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2022.109582 |
Cover
Loading…
Abstract | One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.
Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.
The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.
Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification.
•Optimize the machine learning model by combining ensemble methods with imputation techniques.•Preserve statistical relevance of longitudinal studies by addressing the missing data challenge.•Perform multiclass classification of Alzheimer’s disease.•Segment and estimate volumes of disease-prone areas in the brain like the hippocampus.•Seek correct diagnosis of the early stages of the disease. |
---|---|
AbstractList | One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.
Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.
The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.
Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification. One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness. The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases. Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification. •Optimize the machine learning model by combining ensemble methods with imputation techniques.•Preserve statistical relevance of longitudinal studies by addressing the missing data challenge.•Perform multiclass classification of Alzheimer’s disease.•Segment and estimate volumes of disease-prone areas in the brain like the hippocampus.•Seek correct diagnosis of the early stages of the disease. One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.BACKGROUNDOne of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.NEW METHODSMotivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.RESULTSThe classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification.COMPARISON WITH EXISTING METHODSUnlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification. |
ArticleNumber | 109582 |
Author | Aghili, Maryamossadat Tabarestani, Solale Adjouadi, Malek |
Author_xml | – sequence: 1 givenname: Maryamossadat surname: Aghili fullname: Aghili, Maryamossadat email: maghili001@fiu.edu – sequence: 2 givenname: Solale surname: Tabarestani fullname: Tabarestani, Solale email: Staba006@fiu.edu – sequence: 3 givenname: Malek surname: Adjouadi fullname: Adjouadi, Malek email: adjouadi@fiu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35346696$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u3CAQh1GVqtmkfYXIx168BYwxlnLIKuo_KVIurdQbYmG8ZoUhAVwpOfU1-np9krJxkkMuOQ2a-b6RmN8JOvLBA0JnBK8JJvzTfr33ME-QxzXFlJZm3wr6Bq2I6GjNO_HrCK0K2NaYdvgYnaS0xxizHvN36LhpG8Z5z1do3BgTISXrd1UeoZrs8jYqq0qPyjnwO6isr6bZZVtPwSj3ME2QUzWE-KAZq3Y-JJuqMFQbdz-CnSD--_M3lVGCAr9HbwflEnx4rKfo55fPPy6_1VfXX79fbq5qTUWT6y3ve9FxzYZOCII7xo0wQHuCG00MU4wz0WGtoaGEYBC82ZpOm8G0AvOBk-YUfVz23sRwO0PKsnxJg3PKQ5iTpJyxnrWM9AU9e0Tn7QRG3kQ7qXgnn65TAL4AOoaUIgzPCMHyEIPcy6cY5CEGucRQxPMXorZZZRt8jsq61_WLRYdyqN8WokzagtdgbASdpQn2tRX_AclAqUQ |
CitedBy_id | crossref_primary_10_1080_02626667_2023_2249456 crossref_primary_10_1007_s10044_024_01268_x crossref_primary_10_1016_j_comcom_2023_12_003 crossref_primary_10_1049_htl2_12091 crossref_primary_10_1038_s41380_023_02068_1 crossref_primary_10_1371_journal_pone_0302358 crossref_primary_10_1080_10255842_2023_2263125 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1016_j_cosrev_2024_100720 crossref_primary_10_1016_j_crmeth_2023_100534 |
Cites_doi | 10.1212/WNL.0b013e3181e8e8b8 10.1109/TKDE.2019.2897662 10.1016/j.neuroimage.2010.06.013 10.1016/j.neuroimage.2014.06.077 10.1145/2487575.2487594 10.1016/j.neurobiolaging.2016.07.005 10.1007/978-3-030-00320-3_14 10.1109/CVPR.2017.528 10.1023/A:1018628609742 10.1016/j.neuroimage.2014.10.002 10.1016/j.neuroimage.2012.09.065 10.1016/j.jss.2012.05.073 10.1016/S1474-4422(11)70072-2 10.1002/env.3170050203 10.1186/1753-6561-5-S3-S11 10.1007/978-3-319-66179-7_48 10.1109/SPMB.2017.8257059 10.1007/978-3-319-25751-8_1 10.1093/bioinformatics/17.6.520 10.1016/j.jneumeth.2019.05.006 10.1016/j.neurobiolaging.2007.07.022 10.1186/s12874-016-0188-1 10.1038/s41583-018-0067-3 10.1001/archneur.62.7.1160 10.1016/j.neuron.2013.01.002 10.1007/978-3-319-66179-7_9 10.1007/978-3-030-00928-1_60 10.1145/2939672.2939785 10.1038/srep37365 10.1212/WNL.0b013e318253d5b3 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2022.109582 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 35346696 10_1016_j_jneumeth_2022_109582 S0165027022001091 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS WUQ X7M ZGI AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c283t-b699876c4f78810746d8de29103c1d4a464870cce32110e863bd7cdfd5806f613 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Jul 11 05:10:09 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Tue Jul 01 02:57:16 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Sun Apr 06 06:54:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alzheimer’s Disease SVD Impute Support Vector Machine (SVM) ADNI data Soft Impute Multimodal data Random Forest (RF) Gradient Boosting (GB) Weighted K-nearest neighbors (KNN impute) Multiclass classification |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-b699876c4f78810746d8de29103c1d4a464870cce32110e863bd7cdfd5806f613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35346696 |
PQID | 2644945419 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2644945419 pubmed_primary_35346696 crossref_primary_10_1016_j_jneumeth_2022_109582 crossref_citationtrail_10_1016_j_jneumeth_2022_109582 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109582 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 2022-Jun-01 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huang, Jin, Gao, Thung, Shen, Alzheimer’s Disease Neuroimaging Initiative (bib12) 2016; 46 Suykens, Vandewalle (bib32) 1999; 9 Ritter, Schumacher, Weygandt, Buchert, Allefeld, Haynes, Alzheimer’s Disease Neuroimaging Initiative (bib30) 2015; 1 Gray, Aljabar, Heckemann, Hammers, Rueckert, Alzheimer’s Disease Neuroimaging Initiative (bib11) 2013; 65 Izquierdo, W., Martin, H., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N.,. & Adjouadi, M. (2017, December). Robust prediction of cognitive test scores in Alzheimer's patients. In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–7). IEEE. Petersen, Morris (bib29) 2005; 62 Suk, Lee, Shen, Alzheimer’s Disease Neuroimaging Initiative (bib31) 2014; 101 Xiang, Li, Lin, Wang, Shen (bib35) 2018 Jagust (bib14) 2013; 77 Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017, September). Medical image synthesis with context-aware generative adversarial networks. In International conference on medical image computing and computer-assisted intervention (pp. 417–425). Springer, Cham. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794). Belger, Haro, Reed, Happich, Kahle-Wrobleski, Argimon, Wimo (bib3) 2016; 16 Luengo, Luengo, Herrera (bib21) 2012; 32 Payan, Montana (bib27) 2015; 1502 Aghili, M., Tabarestani, S., Adjouadi, M., & Adeli, E. (2018, September). Predictive modeling of longitudinal data for Alzheimer’s Disease Diagnosis Using RNNs. In International Workshop on PRedictive Intelligence In MEdicine (pp. 112–119). Springer, Cham. Barnes, Yaffe (bib2) 2011; 10 Landau, Harvey, Madison, Reiman, Foster, Aisen, Jagust (bib17) 2010; 75 Li, Liu, Alzheimer’s Disease Neuroimaging Initiative (bib18) 2019; 323 Paatero, Tapper (bib26) 1994; 5 Zhang, Zhou (bib38) 2019; 32 Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., & Ye, J. (2013, August). Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 185–193). Zhu, X., Thung, K.H., Adeli, E., Zhang, Y., & Shen, D. (2017, September). Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 72–80). Springer, Cham. Dickerson, Feczko, Augustinack, Pacheco, Morris, Fischl, Buckner (bib8) 2009; 30 Mazumder, Hastie, Tibshirani (bib22) 2010; 11 Friedman (bib9) 2001 Golub, Reinsch (bib10) 1971 Jiang, Ma, Causey, Qiao, Hardin, Bitts, Huang (bib16) 2016; 6 Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Altman (bib34) 2001; 17 Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., & Allende, H. (2015, November). Evaluating imputation techniques for missing data in ADNI: a patient classification study. In Ibero-American Congress on Pattern Recognition (pp. 3–10). Springer, Cham. Liaw, Wiener (bib19) 2002; 2 Lo, Jagust (bib20) 2012; 78 Tran, L., Liu, X., Zhou, J., & Jin, R. (2017). Missing modalities imputation via cascaded residual autoencoder. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (pp. 1405–1414). Jagust (bib15) 2018; 19 Moradi (bib23) 2015; 104 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib28) 2011; 12 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Alzheimer's Disease Neuroimaging Initiative (bib7) 2011; 56 Cohen, J.P., Luck, M., & Honari, S. (2018, September). Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp. 529–536). Springer, Cham. Ogutu, J.O., Piepho, H.P., & Schulz-Streeck, T. (2011, December). A comparison of random forests, boosting and support vector machines for genomic selection. In BMC proceedings (Vol. 5, No. 3, pp. 1–5). BioMed Central. Zhang (bib37) 2012; 85 10.1016/j.jneumeth.2022.109582_bib6 Suk (10.1016/j.jneumeth.2022.109582_bib31) 2014; 101 10.1016/j.jneumeth.2022.109582_bib5 10.1016/j.jneumeth.2022.109582_bib4 10.1016/j.jneumeth.2022.109582_bib33 10.1016/j.jneumeth.2022.109582_bib13 Cuingnet (10.1016/j.jneumeth.2022.109582_bib7) 2011; 56 Troyanskaya (10.1016/j.jneumeth.2022.109582_bib34) 2001; 17 10.1016/j.jneumeth.2022.109582_bib36 Landau (10.1016/j.jneumeth.2022.109582_bib17) 2010; 75 10.1016/j.jneumeth.2022.109582_bib39 Jagust (10.1016/j.jneumeth.2022.109582_bib15) 2018; 19 Li (10.1016/j.jneumeth.2022.109582_bib18) 2019; 323 Xiang (10.1016/j.jneumeth.2022.109582_bib35) 2018 Jiang (10.1016/j.jneumeth.2022.109582_bib16) 2016; 6 Suykens (10.1016/j.jneumeth.2022.109582_bib32) 1999; 9 Luengo (10.1016/j.jneumeth.2022.109582_bib21) 2012; 32 Moradi (10.1016/j.jneumeth.2022.109582_bib23) 2015; 104 Jagust (10.1016/j.jneumeth.2022.109582_bib14) 2013; 77 Belger (10.1016/j.jneumeth.2022.109582_bib3) 2016; 16 Ritter (10.1016/j.jneumeth.2022.109582_bib30) 2015; 1 Petersen (10.1016/j.jneumeth.2022.109582_bib29) 2005; 62 10.1016/j.jneumeth.2022.109582_bib24 10.1016/j.jneumeth.2022.109582_bib25 Paatero (10.1016/j.jneumeth.2022.109582_bib26) 1994; 5 Friedman (10.1016/j.jneumeth.2022.109582_bib9) 2001 Zhang (10.1016/j.jneumeth.2022.109582_bib38) 2019; 32 Golub (10.1016/j.jneumeth.2022.109582_bib10) 1971 Lo (10.1016/j.jneumeth.2022.109582_bib20) 2012; 78 Gray (10.1016/j.jneumeth.2022.109582_bib11) 2013; 65 Payan (10.1016/j.jneumeth.2022.109582_bib27) 2015; 1502 Huang (10.1016/j.jneumeth.2022.109582_bib12) 2016; 46 Liaw (10.1016/j.jneumeth.2022.109582_bib19) 2002; 2 Barnes (10.1016/j.jneumeth.2022.109582_bib2) 2011; 10 Dickerson (10.1016/j.jneumeth.2022.109582_bib8) 2009; 30 Pedregosa (10.1016/j.jneumeth.2022.109582_bib28) 2011; 12 Mazumder (10.1016/j.jneumeth.2022.109582_bib22) 2010; 11 10.1016/j.jneumeth.2022.109582_bib1 Zhang (10.1016/j.jneumeth.2022.109582_bib37) 2012; 85 |
References_xml | – volume: 1502 start-page: 02506 year: 2015 ident: bib27 article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks publication-title: arXiv Prepr. arXiv – volume: 10 start-page: 819 year: 2011 end-page: 828 ident: bib2 article-title: The projected effect of risk factor reduction on Alzheimer’s disease prevalence publication-title: Lancet Neurol. – volume: 78 start-page: 1376 year: 2012 end-page: 1382 ident: bib20 article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease publication-title: Neurology – start-page: 134 year: 1971 end-page: 151 ident: bib10 article-title: Singular value decomposition and least squares solutions publication-title: Linear algebra – start-page: 155 year: 2018 end-page: 164 ident: bib35 article-title: Unpaired deep cross-modality synthesis with fast training publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 323 start-page: 108 year: 2019 end-page: 118 ident: bib18 article-title: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer’s disease publication-title: J. Neurosci. Methods – reference: Cohen, J.P., Luck, M., & Honari, S. (2018, September). Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp. 529–536). Springer, Cham. – reference: Izquierdo, W., Martin, H., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N.,. & Adjouadi, M. (2017, December). Robust prediction of cognitive test scores in Alzheimer's patients. In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–7). IEEE. – volume: 77 start-page: 219 year: 2013 end-page: 234 ident: bib14 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron – reference: Aghili, M., Tabarestani, S., Adjouadi, M., & Adeli, E. (2018, September). Predictive modeling of longitudinal data for Alzheimer’s Disease Diagnosis Using RNNs. In International Workshop on PRedictive Intelligence In MEdicine (pp. 112–119). Springer, Cham. – reference: Ogutu, J.O., Piepho, H.P., & Schulz-Streeck, T. (2011, December). A comparison of random forests, boosting and support vector machines for genomic selection. In BMC proceedings (Vol. 5, No. 3, pp. 1–5). BioMed Central. – volume: 32 start-page: 1143 year: 2019 end-page: 1156 ident: bib38 article-title: Optimal margin distribution machine publication-title: IEEE Trans. Knowl. Data Eng. – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib31 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage – volume: 65 start-page: 167 year: 2013 end-page: 175 ident: bib11 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease publication-title: NeuroImage – reference: Tran, L., Liu, X., Zhou, J., & Jin, R. (2017). Missing modalities imputation via cascaded residual autoencoder. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (pp. 1405–1414). – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bib7 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: neuroimage – volume: 30 start-page: 432 year: 2009 end-page: 440 ident: bib8 article-title: Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area publication-title: Neurobiol. Aging – volume: 19 start-page: 687 year: 2018 end-page: 700 ident: bib15 article-title: Imaging the evolution and pathophysiology of Alzheimer disease publication-title: Nat. Rev. Neurosci. – volume: 6 start-page: 1 year: 2016 end-page: 15 ident: bib16 article-title: SparRec: An effective matrix completion framework of missing data imputation for GWAS publication-title: Sci. Rep. – volume: 85 start-page: 2541 year: 2012 end-page: 2552 ident: bib37 article-title: Nearest neighbor selection for iteratively kNN imputation publication-title: J. Syst. Softw. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib19 article-title: Classification and regression by randomForest publication-title: R. N. – reference: Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794). – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib23 article-title: “Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.” publication-title: Neuroimage – volume: 5 start-page: 111 year: 1994 end-page: 126 ident: bib26 article-title: Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics – volume: 46 start-page: 180 year: 2016 end-page: 191 ident: bib12 article-title: Longitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest publication-title: Neurobiol. Aging – volume: 62 start-page: 1160 year: 2005 end-page: 1163 ident: bib29 article-title: Mild cognitive impairment as a clinical entity and treatment target publication-title: Arch. Neurol. – volume: 75 start-page: 230 year: 2010 end-page: 238 ident: bib17 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology – volume: 32 start-page: 77 year: 2012 end-page: 108 ident: bib21 article-title: On the choice of the best imputation methods for missing values considering three groups of classification methods – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib32 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – reference: Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017, September). Medical image synthesis with context-aware generative adversarial networks. In International conference on medical image computing and computer-assisted intervention (pp. 417–425). Springer, Cham. – reference: Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., & Allende, H. (2015, November). Evaluating imputation techniques for missing data in ADNI: a patient classification study. In Ibero-American Congress on Pattern Recognition (pp. 3–10). Springer, Cham. – reference: Zhu, X., Thung, K.H., Adeli, E., Zhang, Y., & Shen, D. (2017, September). Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 72–80). Springer, Cham. – volume: 11 start-page: 2287 year: 2010 end-page: 2322 ident: bib22 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 206 year: 2015 end-page: 215 ident: bib30 article-title: Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers publication-title: Alzheimer’S. Dement.: Diagn., Assess. Dis. Monit. – volume: 16 start-page: 1 year: 2016 end-page: 11 ident: bib3 article-title: How to deal with missing longitudinal data in cost of illness analysis in Alzheimer’s disease—suggestions from the GERAS observational study publication-title: BMC Med. Res. Methodol. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib28 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – reference: Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., & Ye, J. (2013, August). Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 185–193). – start-page: 1189 year: 2001 end-page: 1232 ident: bib9 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 17 start-page: 520 year: 2001 end-page: 525 ident: bib34 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics – volume: 75 start-page: 230 issue: 3 year: 2010 ident: 10.1016/j.jneumeth.2022.109582_bib17 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology doi: 10.1212/WNL.0b013e3181e8e8b8 – volume: 32 start-page: 1143 issue: 6 year: 2019 ident: 10.1016/j.jneumeth.2022.109582_bib38 article-title: Optimal margin distribution machine publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2897662 – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2022.109582_bib7 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.jneumeth.2022.109582_bib31 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – ident: 10.1016/j.jneumeth.2022.109582_bib36 doi: 10.1145/2487575.2487594 – volume: 46 start-page: 180 year: 2016 ident: 10.1016/j.jneumeth.2022.109582_bib12 article-title: Longitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.07.005 – ident: 10.1016/j.jneumeth.2022.109582_bib1 doi: 10.1007/978-3-030-00320-3_14 – ident: 10.1016/j.jneumeth.2022.109582_bib33 doi: 10.1109/CVPR.2017.528 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.jneumeth.2022.109582_bib32 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.jneumeth.2022.109582_bib23 article-title: “Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.” publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 65 start-page: 167 year: 2013 ident: 10.1016/j.jneumeth.2022.109582_bib11 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 85 start-page: 2541 issue: 11 year: 2012 ident: 10.1016/j.jneumeth.2022.109582_bib37 article-title: Nearest neighbor selection for iteratively kNN imputation publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2012.05.073 – volume: 10 start-page: 819 issue: 9 year: 2011 ident: 10.1016/j.jneumeth.2022.109582_bib2 article-title: The projected effect of risk factor reduction on Alzheimer’s disease prevalence publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70072-2 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.jneumeth.2022.109582_bib19 article-title: Classification and regression by randomForest publication-title: R. N. – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 10.1016/j.jneumeth.2022.109582_bib26 article-title: Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics doi: 10.1002/env.3170050203 – ident: 10.1016/j.jneumeth.2022.109582_bib25 doi: 10.1186/1753-6561-5-S3-S11 – ident: 10.1016/j.jneumeth.2022.109582_bib24 doi: 10.1007/978-3-319-66179-7_48 – ident: 10.1016/j.jneumeth.2022.109582_bib13 doi: 10.1109/SPMB.2017.8257059 – volume: 1 start-page: 206 issue: 2 year: 2015 ident: 10.1016/j.jneumeth.2022.109582_bib30 article-title: Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers publication-title: Alzheimer’S. Dement.: Diagn., Assess. Dis. Monit. – ident: 10.1016/j.jneumeth.2022.109582_bib4 doi: 10.1007/978-3-319-25751-8_1 – start-page: 134 year: 1971 ident: 10.1016/j.jneumeth.2022.109582_bib10 article-title: Singular value decomposition and least squares solutions – volume: 1502 start-page: 02506 year: 2015 ident: 10.1016/j.jneumeth.2022.109582_bib27 article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks publication-title: arXiv Prepr. arXiv – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 10.1016/j.jneumeth.2022.109582_bib34 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume: 323 start-page: 108 year: 2019 ident: 10.1016/j.jneumeth.2022.109582_bib18 article-title: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.05.006 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jneumeth.2022.109582_bib28 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 432 issue: 3 year: 2009 ident: 10.1016/j.jneumeth.2022.109582_bib8 article-title: Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.07.022 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2022.109582_bib3 article-title: How to deal with missing longitudinal data in cost of illness analysis in Alzheimer’s disease—suggestions from the GERAS observational study publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-016-0188-1 – volume: 11 start-page: 2287 year: 2010 ident: 10.1016/j.jneumeth.2022.109582_bib22 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 687 issue: 11 year: 2018 ident: 10.1016/j.jneumeth.2022.109582_bib15 article-title: Imaging the evolution and pathophysiology of Alzheimer disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0067-3 – volume: 62 start-page: 1160 issue: 7 year: 2005 ident: 10.1016/j.jneumeth.2022.109582_bib29 article-title: Mild cognitive impairment as a clinical entity and treatment target publication-title: Arch. Neurol. doi: 10.1001/archneur.62.7.1160 – start-page: 1189 year: 2001 ident: 10.1016/j.jneumeth.2022.109582_bib9 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 32 start-page: 77 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2022.109582_bib21 article-title: On the choice of the best imputation methods for missing values considering three groups of classification methods – volume: 77 start-page: 219 issue: 2 year: 2013 ident: 10.1016/j.jneumeth.2022.109582_bib14 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2013.01.002 – start-page: 155 year: 2018 ident: 10.1016/j.jneumeth.2022.109582_bib35 article-title: Unpaired deep cross-modality synthesis with fast training – ident: 10.1016/j.jneumeth.2022.109582_bib39 doi: 10.1007/978-3-319-66179-7_9 – ident: 10.1016/j.jneumeth.2022.109582_bib6 doi: 10.1007/978-3-030-00928-1_60 – ident: 10.1016/j.jneumeth.2022.109582_bib5 doi: 10.1145/2939672.2939785 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2022.109582_bib16 article-title: SparRec: An effective matrix completion framework of missing data imputation for GWAS publication-title: Sci. Rep. doi: 10.1038/srep37365 – volume: 78 start-page: 1376 issue: 18 year: 2012 ident: 10.1016/j.jneumeth.2022.109582_bib20 article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0b013e318253d5b3 |
SSID | ssj0004906 |
Score | 2.4288468 |
Snippet | One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the... One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109582 |
SubjectTerms | ADNI data Alzheimer Disease - diagnostic imaging Alzheimer’s Disease Brain Cognitive Dysfunction - diagnostic imaging Gradient Boosting (GB) Humans Magnetic Resonance Imaging - methods Multiclass classification Multimodal data Neuroimaging - methods Random Forest (RF) Soft Impute Support Vector Machine (SVM) SVD Impute Weighted K-nearest neighbors (KNN impute) |
Title | Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer’s disease |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109582 https://www.ncbi.nlm.nih.gov/pubmed/35346696 https://www.proquest.com/docview/2644945419 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hkKpeqgL9WVqQK1W9hc06jjc-Rgi0bQWXFombldiTkhWbRWT3UA6or9HX65N0xkloe0AcesufZctjzXyT-WYG4D2pRSzjIov8xJtIeT-NCl2pSFaFQSSLqwznO5-e6dm5-nSRXmzA0ZALw7TKXvd3Oj1o6_7JuN_N8XVdj79wIk7M6VQyxHdCBruaMq3v8O4PzUOZ0F-TP-Z4ZfxXlvD8cN7gmjs1k58oJVdWSjP5kIF6CIAGQ3TyHJ71CFLk3SK3YQObHdjNG_KeF9_FBxE4neFn-Q48Oe1D57twmXsfOK_NN0GgT5B8wzVTRIUbWqqIuhGBYxgtlp5m4bctrlpB2DYM8x01r27FshL51e0l1gu8-fXjZyv6WM8LOD85_no0i_o2C5EjbLGKSk0u11Q7VXFpee4_4jOPknBE4iZeFUqTUxM7hwk7i5jppPRT5yufZrGuCA68hM1m2eBrEMaF8jZpoSrk1pQZkgcsvdGykKVEN4J02Fvr-hrk3Arjyg5ks7kdZGJZJraTyQjG9-Ouuyocj44wg-jsP-fJkql4dOy7QdaWhMERlKLB5bq1jB6NStXEjOBVdwju15OkidLa6L3_mPkNPOW7jor2FjZXN2vcJ9CzKg_CqT6Arfzj59nZb3GzAhU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VWwm4IGj5WaDFSIhb2KzjeONjVLXa0u5eaKXerMR2aFbdbNXsHuDEa_B6PAkzjlPooeqBWxRnZMszmvkm8wfwEdWiK-Mii-zYqkhYO4kKWYmIV4VyDi2uUFTvPJvL6bn4cpFebMFBXwtDaZVB93c63Wvr8GYUbnN0Xdejr1SIE1M5FffxHXSBtqk7lRjAdn58Mp3_LY9UfsQmfU8hy_ifQuHF50XjNjSsGV1Fzqm5Uprx-2zUfRjU26KjZ_A0gEiWd-d8Dluu2YHdvEEHevmdfWI-rdP_L9-BR7MQPd-Fy9xan_bafGOI-xiy2D9Tligz_VQVVjfMpxlGy5XFXWi1deuWIbz1ZLbLzqtbtqpYfvXj0tVLd_P756-WhXDPCzg_Ojw7mEZh0kJkEF6so1Ki1zWRRlTUXZ5GkNjMOo5QIjFjKwoh0a-JjXEJ-Ysuk0lpJ8ZWNs1iWSEieAmDZtW418CU8R1u0kJUjqZTZg6dYG6V5AUvuTNDSPu71Sa0IadpGFe6zzdb6J4nmniiO54MYXRLd9014niQQvWs03dESqO1eJD2Q89rjcygIErRuNWm1QQgFcrZWA3hVScEt-dJ0kRIqeSb_9j5PTyens1O9enx_OQtPKGVLjPtHQzWNxu3hxhoXe4HGf8DQhMExg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+the+missing+data+challenge+in+multi-modal+datasets+for+the+diagnosis+of+Alzheimer%27s+disease&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Aghili%2C+Maryamossadat&rft.au=Tabarestani%2C+Solale&rft.au=Adjouadi%2C+Malek&rft.date=2022-06-01&rft.eissn=1872-678X&rft.volume=375&rft.spage=109582&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109582&rft_id=info%3Apmid%2F35346696&rft.externalDocID=35346696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |