Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer’s disease

One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 375; p. 109582
Main Authors Aghili, Maryamossadat, Tabarestani, Solale, Adjouadi, Malek
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2022.109582

Cover

Loading…
Abstract One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness. The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases. Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification. •Optimize the machine learning model by combining ensemble methods with imputation techniques.•Preserve statistical relevance of longitudinal studies by addressing the missing data challenge.•Perform multiclass classification of Alzheimer’s disease.•Segment and estimate volumes of disease-prone areas in the brain like the hippocampus.•Seek correct diagnosis of the early stages of the disease.
AbstractList One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness. The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases. Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification.
One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness. The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases. Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification. •Optimize the machine learning model by combining ensemble methods with imputation techniques.•Preserve statistical relevance of longitudinal studies by addressing the missing data challenge.•Perform multiclass classification of Alzheimer’s disease.•Segment and estimate volumes of disease-prone areas in the brain like the hippocampus.•Seek correct diagnosis of the early stages of the disease.
One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.BACKGROUNDOne of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the scarcity of sufficient data compounded by the missing data challenge. Although there are many participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, many of the observations have a lot of missing features which often leads to the exclusion of potentially valuable data points in many ongoing experiments, especially in longitudinal studies.Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.NEW METHODSMotivated by the necessity of examining all participants, even those with missing tests or imaging modalities, this study draws attention to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. The four groups considered include: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD). Prior to applying state of the art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing (i.e., replacing) data in common datasets with numerical techniques has been investigated and compared with the GB algorithm. Empirical evaluations show that the GB performance is highly resilient to missing values in comparison to SVM and RF algorithms. These latter algorithms can however be improved when coupled with more sophisticated imputation technique such as soft-impute or K-Nearest Neighbors (KNN) algorithm assuming low extent of data incompleteness.The classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.RESULTSThe classification accuracy has been improved by up to 3% in the multiclass classification of all four classes of subjects when all the samples including the incomplete ones are considered during the model generation and testing phases.Unlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification.COMPARISON WITH EXISTING METHODSUnlike other methods, the proposed approach addresses the challenging multiclass classification of the ADNI dataset in the presence of different levels of missing data points. It also provides a comparative study on effects of existing imputation techniques on a block-wise missing data. Results of the proposed method are validated against gold standard methods used for AD classification.
ArticleNumber 109582
Author Aghili, Maryamossadat
Tabarestani, Solale
Adjouadi, Malek
Author_xml – sequence: 1
  givenname: Maryamossadat
  surname: Aghili
  fullname: Aghili, Maryamossadat
  email: maghili001@fiu.edu
– sequence: 2
  givenname: Solale
  surname: Tabarestani
  fullname: Tabarestani, Solale
  email: Staba006@fiu.edu
– sequence: 3
  givenname: Malek
  surname: Adjouadi
  fullname: Adjouadi, Malek
  email: adjouadi@fiu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35346696$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u3CAQh1GVqtmkfYXIx168BYwxlnLIKuo_KVIurdQbYmG8ZoUhAVwpOfU1-np9krJxkkMuOQ2a-b6RmN8JOvLBA0JnBK8JJvzTfr33ME-QxzXFlJZm3wr6Bq2I6GjNO_HrCK0K2NaYdvgYnaS0xxizHvN36LhpG8Z5z1do3BgTISXrd1UeoZrs8jYqq0qPyjnwO6isr6bZZVtPwSj3ME2QUzWE-KAZq3Y-JJuqMFQbdz-CnSD--_M3lVGCAr9HbwflEnx4rKfo55fPPy6_1VfXX79fbq5qTUWT6y3ve9FxzYZOCII7xo0wQHuCG00MU4wz0WGtoaGEYBC82ZpOm8G0AvOBk-YUfVz23sRwO0PKsnxJg3PKQ5iTpJyxnrWM9AU9e0Tn7QRG3kQ7qXgnn65TAL4AOoaUIgzPCMHyEIPcy6cY5CEGucRQxPMXorZZZRt8jsq61_WLRYdyqN8WokzagtdgbASdpQn2tRX_AclAqUQ
CitedBy_id crossref_primary_10_1080_02626667_2023_2249456
crossref_primary_10_1007_s10044_024_01268_x
crossref_primary_10_1016_j_comcom_2023_12_003
crossref_primary_10_1049_htl2_12091
crossref_primary_10_1038_s41380_023_02068_1
crossref_primary_10_1371_journal_pone_0302358
crossref_primary_10_1080_10255842_2023_2263125
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_cosrev_2024_100720
crossref_primary_10_1016_j_crmeth_2023_100534
Cites_doi 10.1212/WNL.0b013e3181e8e8b8
10.1109/TKDE.2019.2897662
10.1016/j.neuroimage.2010.06.013
10.1016/j.neuroimage.2014.06.077
10.1145/2487575.2487594
10.1016/j.neurobiolaging.2016.07.005
10.1007/978-3-030-00320-3_14
10.1109/CVPR.2017.528
10.1023/A:1018628609742
10.1016/j.neuroimage.2014.10.002
10.1016/j.neuroimage.2012.09.065
10.1016/j.jss.2012.05.073
10.1016/S1474-4422(11)70072-2
10.1002/env.3170050203
10.1186/1753-6561-5-S3-S11
10.1007/978-3-319-66179-7_48
10.1109/SPMB.2017.8257059
10.1007/978-3-319-25751-8_1
10.1093/bioinformatics/17.6.520
10.1016/j.jneumeth.2019.05.006
10.1016/j.neurobiolaging.2007.07.022
10.1186/s12874-016-0188-1
10.1038/s41583-018-0067-3
10.1001/archneur.62.7.1160
10.1016/j.neuron.2013.01.002
10.1007/978-3-319-66179-7_9
10.1007/978-3-030-00928-1_60
10.1145/2939672.2939785
10.1038/srep37365
10.1212/WNL.0b013e318253d5b3
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2022.109582
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 35346696
10_1016_j_jneumeth_2022_109582
S0165027022001091
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
X7M
ZGI
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c283t-b699876c4f78810746d8de29103c1d4a464870cce32110e863bd7cdfd5806f613
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 05:10:09 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Tue Jul 01 02:57:16 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Sun Apr 06 06:54:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Alzheimer’s Disease
SVD Impute
Support Vector Machine (SVM)
ADNI data
Soft Impute
Multimodal data
Random Forest (RF)
Gradient Boosting (GB)
Weighted K-nearest neighbors (KNN impute)
Multiclass classification
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-b699876c4f78810746d8de29103c1d4a464870cce32110e863bd7cdfd5806f613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35346696
PQID 2644945419
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2644945419
pubmed_primary_35346696
crossref_primary_10_1016_j_jneumeth_2022_109582
crossref_citationtrail_10_1016_j_jneumeth_2022_109582
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
2022-Jun-01
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Jin, Gao, Thung, Shen, Alzheimer’s Disease Neuroimaging Initiative (bib12) 2016; 46
Suykens, Vandewalle (bib32) 1999; 9
Ritter, Schumacher, Weygandt, Buchert, Allefeld, Haynes, Alzheimer’s Disease Neuroimaging Initiative (bib30) 2015; 1
Gray, Aljabar, Heckemann, Hammers, Rueckert, Alzheimer’s Disease Neuroimaging Initiative (bib11) 2013; 65
Izquierdo, W., Martin, H., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N.,. & Adjouadi, M. (2017, December). Robust prediction of cognitive test scores in Alzheimer's patients. In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–7). IEEE.
Petersen, Morris (bib29) 2005; 62
Suk, Lee, Shen, Alzheimer’s Disease Neuroimaging Initiative (bib31) 2014; 101
Xiang, Li, Lin, Wang, Shen (bib35) 2018
Jagust (bib14) 2013; 77
Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017, September). Medical image synthesis with context-aware generative adversarial networks. In International conference on medical image computing and computer-assisted intervention (pp. 417–425). Springer, Cham.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794).
Belger, Haro, Reed, Happich, Kahle-Wrobleski, Argimon, Wimo (bib3) 2016; 16
Luengo, Luengo, Herrera (bib21) 2012; 32
Payan, Montana (bib27) 2015; 1502
Aghili, M., Tabarestani, S., Adjouadi, M., & Adeli, E. (2018, September). Predictive modeling of longitudinal data for Alzheimer’s Disease Diagnosis Using RNNs. In International Workshop on PRedictive Intelligence In MEdicine (pp. 112–119). Springer, Cham.
Barnes, Yaffe (bib2) 2011; 10
Landau, Harvey, Madison, Reiman, Foster, Aisen, Jagust (bib17) 2010; 75
Li, Liu, Alzheimer’s Disease Neuroimaging Initiative (bib18) 2019; 323
Paatero, Tapper (bib26) 1994; 5
Zhang, Zhou (bib38) 2019; 32
Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., & Ye, J. (2013, August). Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 185–193).
Zhu, X., Thung, K.H., Adeli, E., Zhang, Y., & Shen, D. (2017, September). Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 72–80). Springer, Cham.
Dickerson, Feczko, Augustinack, Pacheco, Morris, Fischl, Buckner (bib8) 2009; 30
Mazumder, Hastie, Tibshirani (bib22) 2010; 11
Friedman (bib9) 2001
Golub, Reinsch (bib10) 1971
Jiang, Ma, Causey, Qiao, Hardin, Bitts, Huang (bib16) 2016; 6
Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Altman (bib34) 2001; 17
Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., & Allende, H. (2015, November). Evaluating imputation techniques for missing data in ADNI: a patient classification study. In Ibero-American Congress on Pattern Recognition (pp. 3–10). Springer, Cham.
Liaw, Wiener (bib19) 2002; 2
Lo, Jagust (bib20) 2012; 78
Tran, L., Liu, X., Zhou, J., & Jin, R. (2017). Missing modalities imputation via cascaded residual autoencoder. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (pp. 1405–1414).
Jagust (bib15) 2018; 19
Moradi (bib23) 2015; 104
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib28) 2011; 12
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Alzheimer's Disease Neuroimaging Initiative (bib7) 2011; 56
Cohen, J.P., Luck, M., & Honari, S. (2018, September). Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp. 529–536). Springer, Cham.
Ogutu, J.O., Piepho, H.P., & Schulz-Streeck, T. (2011, December). A comparison of random forests, boosting and support vector machines for genomic selection. In BMC proceedings (Vol. 5, No. 3, pp. 1–5). BioMed Central.
Zhang (bib37) 2012; 85
10.1016/j.jneumeth.2022.109582_bib6
Suk (10.1016/j.jneumeth.2022.109582_bib31) 2014; 101
10.1016/j.jneumeth.2022.109582_bib5
10.1016/j.jneumeth.2022.109582_bib4
10.1016/j.jneumeth.2022.109582_bib33
10.1016/j.jneumeth.2022.109582_bib13
Cuingnet (10.1016/j.jneumeth.2022.109582_bib7) 2011; 56
Troyanskaya (10.1016/j.jneumeth.2022.109582_bib34) 2001; 17
10.1016/j.jneumeth.2022.109582_bib36
Landau (10.1016/j.jneumeth.2022.109582_bib17) 2010; 75
10.1016/j.jneumeth.2022.109582_bib39
Jagust (10.1016/j.jneumeth.2022.109582_bib15) 2018; 19
Li (10.1016/j.jneumeth.2022.109582_bib18) 2019; 323
Xiang (10.1016/j.jneumeth.2022.109582_bib35) 2018
Jiang (10.1016/j.jneumeth.2022.109582_bib16) 2016; 6
Suykens (10.1016/j.jneumeth.2022.109582_bib32) 1999; 9
Luengo (10.1016/j.jneumeth.2022.109582_bib21) 2012; 32
Moradi (10.1016/j.jneumeth.2022.109582_bib23) 2015; 104
Jagust (10.1016/j.jneumeth.2022.109582_bib14) 2013; 77
Belger (10.1016/j.jneumeth.2022.109582_bib3) 2016; 16
Ritter (10.1016/j.jneumeth.2022.109582_bib30) 2015; 1
Petersen (10.1016/j.jneumeth.2022.109582_bib29) 2005; 62
10.1016/j.jneumeth.2022.109582_bib24
10.1016/j.jneumeth.2022.109582_bib25
Paatero (10.1016/j.jneumeth.2022.109582_bib26) 1994; 5
Friedman (10.1016/j.jneumeth.2022.109582_bib9) 2001
Zhang (10.1016/j.jneumeth.2022.109582_bib38) 2019; 32
Golub (10.1016/j.jneumeth.2022.109582_bib10) 1971
Lo (10.1016/j.jneumeth.2022.109582_bib20) 2012; 78
Gray (10.1016/j.jneumeth.2022.109582_bib11) 2013; 65
Payan (10.1016/j.jneumeth.2022.109582_bib27) 2015; 1502
Huang (10.1016/j.jneumeth.2022.109582_bib12) 2016; 46
Liaw (10.1016/j.jneumeth.2022.109582_bib19) 2002; 2
Barnes (10.1016/j.jneumeth.2022.109582_bib2) 2011; 10
Dickerson (10.1016/j.jneumeth.2022.109582_bib8) 2009; 30
Pedregosa (10.1016/j.jneumeth.2022.109582_bib28) 2011; 12
Mazumder (10.1016/j.jneumeth.2022.109582_bib22) 2010; 11
10.1016/j.jneumeth.2022.109582_bib1
Zhang (10.1016/j.jneumeth.2022.109582_bib37) 2012; 85
References_xml – volume: 1502
  start-page: 02506
  year: 2015
  ident: bib27
  article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
  publication-title: arXiv Prepr. arXiv
– volume: 10
  start-page: 819
  year: 2011
  end-page: 828
  ident: bib2
  article-title: The projected effect of risk factor reduction on Alzheimer’s disease prevalence
  publication-title: Lancet Neurol.
– volume: 78
  start-page: 1376
  year: 2012
  end-page: 1382
  ident: bib20
  article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease
  publication-title: Neurology
– start-page: 134
  year: 1971
  end-page: 151
  ident: bib10
  article-title: Singular value decomposition and least squares solutions
  publication-title: Linear algebra
– start-page: 155
  year: 2018
  end-page: 164
  ident: bib35
  article-title: Unpaired deep cross-modality synthesis with fast training
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 323
  start-page: 108
  year: 2019
  end-page: 118
  ident: bib18
  article-title: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer’s disease
  publication-title: J. Neurosci. Methods
– reference: Cohen, J.P., Luck, M., & Honari, S. (2018, September). Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp. 529–536). Springer, Cham.
– reference: Izquierdo, W., Martin, H., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N.,. & Adjouadi, M. (2017, December). Robust prediction of cognitive test scores in Alzheimer's patients. In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–7). IEEE.
– volume: 77
  start-page: 219
  year: 2013
  end-page: 234
  ident: bib14
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
– reference: Aghili, M., Tabarestani, S., Adjouadi, M., & Adeli, E. (2018, September). Predictive modeling of longitudinal data for Alzheimer’s Disease Diagnosis Using RNNs. In International Workshop on PRedictive Intelligence In MEdicine (pp. 112–119). Springer, Cham.
– reference: Ogutu, J.O., Piepho, H.P., & Schulz-Streeck, T. (2011, December). A comparison of random forests, boosting and support vector machines for genomic selection. In BMC proceedings (Vol. 5, No. 3, pp. 1–5). BioMed Central.
– volume: 32
  start-page: 1143
  year: 2019
  end-page: 1156
  ident: bib38
  article-title: Optimal margin distribution machine
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib31
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: bib11
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: NeuroImage
– reference: Tran, L., Liu, X., Zhou, J., & Jin, R. (2017). Missing modalities imputation via cascaded residual autoencoder. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (pp. 1405–1414).
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bib7
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: neuroimage
– volume: 30
  start-page: 432
  year: 2009
  end-page: 440
  ident: bib8
  article-title: Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area
  publication-title: Neurobiol. Aging
– volume: 19
  start-page: 687
  year: 2018
  end-page: 700
  ident: bib15
  article-title: Imaging the evolution and pathophysiology of Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib16
  article-title: SparRec: An effective matrix completion framework of missing data imputation for GWAS
  publication-title: Sci. Rep.
– volume: 85
  start-page: 2541
  year: 2012
  end-page: 2552
  ident: bib37
  article-title: Nearest neighbor selection for iteratively kNN imputation
  publication-title: J. Syst. Softw.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib19
  article-title: Classification and regression by randomForest
  publication-title: R. N.
– reference: Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794).
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib23
  article-title: “Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.”
  publication-title: Neuroimage
– volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: bib26
  article-title: Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
– volume: 46
  start-page: 180
  year: 2016
  end-page: 191
  ident: bib12
  article-title: Longitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest
  publication-title: Neurobiol. Aging
– volume: 62
  start-page: 1160
  year: 2005
  end-page: 1163
  ident: bib29
  article-title: Mild cognitive impairment as a clinical entity and treatment target
  publication-title: Arch. Neurol.
– volume: 75
  start-page: 230
  year: 2010
  end-page: 238
  ident: bib17
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
– volume: 32
  start-page: 77
  year: 2012
  end-page: 108
  ident: bib21
  article-title: On the choice of the best imputation methods for missing values considering three groups of classification methods
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib32
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– reference: Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017, September). Medical image synthesis with context-aware generative adversarial networks. In International conference on medical image computing and computer-assisted intervention (pp. 417–425). Springer, Cham.
– reference: Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., & Allende, H. (2015, November). Evaluating imputation techniques for missing data in ADNI: a patient classification study. In Ibero-American Congress on Pattern Recognition (pp. 3–10). Springer, Cham.
– reference: Zhu, X., Thung, K.H., Adeli, E., Zhang, Y., & Shen, D. (2017, September). Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 72–80). Springer, Cham.
– volume: 11
  start-page: 2287
  year: 2010
  end-page: 2322
  ident: bib22
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 206
  year: 2015
  end-page: 215
  ident: bib30
  article-title: Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers
  publication-title: Alzheimer’S. Dement.: Diagn., Assess. Dis. Monit.
– volume: 16
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib3
  article-title: How to deal with missing longitudinal data in cost of illness analysis in Alzheimer’s disease—suggestions from the GERAS observational study
  publication-title: BMC Med. Res. Methodol.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib28
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– reference: Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., & Ye, J. (2013, August). Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 185–193).
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib9
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 17
  start-page: 520
  year: 2001
  end-page: 525
  ident: bib34
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
– volume: 75
  start-page: 230
  issue: 3
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109582_bib17
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e8e8b8
– volume: 32
  start-page: 1143
  issue: 6
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109582_bib38
  article-title: Optimal margin distribution machine
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2897662
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109582_bib7
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109582_bib31
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: 10.1016/j.jneumeth.2022.109582_bib36
  doi: 10.1145/2487575.2487594
– volume: 46
  start-page: 180
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109582_bib12
  article-title: Longitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.07.005
– ident: 10.1016/j.jneumeth.2022.109582_bib1
  doi: 10.1007/978-3-030-00320-3_14
– ident: 10.1016/j.jneumeth.2022.109582_bib33
  doi: 10.1109/CVPR.2017.528
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.jneumeth.2022.109582_bib32
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109582_bib23
  article-title: “Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.”
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 65
  start-page: 167
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109582_bib11
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 85
  start-page: 2541
  issue: 11
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109582_bib37
  article-title: Nearest neighbor selection for iteratively kNN imputation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2012.05.073
– volume: 10
  start-page: 819
  issue: 9
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109582_bib2
  article-title: The projected effect of risk factor reduction on Alzheimer’s disease prevalence
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70072-2
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.jneumeth.2022.109582_bib19
  article-title: Classification and regression by randomForest
  publication-title: R. N.
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 10.1016/j.jneumeth.2022.109582_bib26
  article-title: Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– ident: 10.1016/j.jneumeth.2022.109582_bib25
  doi: 10.1186/1753-6561-5-S3-S11
– ident: 10.1016/j.jneumeth.2022.109582_bib24
  doi: 10.1007/978-3-319-66179-7_48
– ident: 10.1016/j.jneumeth.2022.109582_bib13
  doi: 10.1109/SPMB.2017.8257059
– volume: 1
  start-page: 206
  issue: 2
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109582_bib30
  article-title: Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers
  publication-title: Alzheimer’S. Dement.: Diagn., Assess. Dis. Monit.
– ident: 10.1016/j.jneumeth.2022.109582_bib4
  doi: 10.1007/978-3-319-25751-8_1
– start-page: 134
  year: 1971
  ident: 10.1016/j.jneumeth.2022.109582_bib10
  article-title: Singular value decomposition and least squares solutions
– volume: 1502
  start-page: 02506
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109582_bib27
  article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
  publication-title: arXiv Prepr. arXiv
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 10.1016/j.jneumeth.2022.109582_bib34
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 323
  start-page: 108
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109582_bib18
  article-title: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.05.006
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109582_bib28
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 432
  issue: 3
  year: 2009
  ident: 10.1016/j.jneumeth.2022.109582_bib8
  article-title: Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.07.022
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109582_bib3
  article-title: How to deal with missing longitudinal data in cost of illness analysis in Alzheimer’s disease—suggestions from the GERAS observational study
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-016-0188-1
– volume: 11
  start-page: 2287
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109582_bib22
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 687
  issue: 11
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109582_bib15
  article-title: Imaging the evolution and pathophysiology of Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0067-3
– volume: 62
  start-page: 1160
  issue: 7
  year: 2005
  ident: 10.1016/j.jneumeth.2022.109582_bib29
  article-title: Mild cognitive impairment as a clinical entity and treatment target
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.62.7.1160
– start-page: 1189
  year: 2001
  ident: 10.1016/j.jneumeth.2022.109582_bib9
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 32
  start-page: 77
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109582_bib21
  article-title: On the choice of the best imputation methods for missing values considering three groups of classification methods
– volume: 77
  start-page: 219
  issue: 2
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109582_bib14
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– start-page: 155
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109582_bib35
  article-title: Unpaired deep cross-modality synthesis with fast training
– ident: 10.1016/j.jneumeth.2022.109582_bib39
  doi: 10.1007/978-3-319-66179-7_9
– ident: 10.1016/j.jneumeth.2022.109582_bib6
  doi: 10.1007/978-3-030-00928-1_60
– ident: 10.1016/j.jneumeth.2022.109582_bib5
  doi: 10.1145/2939672.2939785
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109582_bib16
  article-title: SparRec: An effective matrix completion framework of missing data imputation for GWAS
  publication-title: Sci. Rep.
  doi: 10.1038/srep37365
– volume: 78
  start-page: 1376
  issue: 18
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109582_bib20
  article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318253d5b3
SSID ssj0004906
Score 2.4288468
Snippet One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s disease, beyond identifying the subtle changes that define its early onset, is the...
One of the challenges facing accurate diagnosis and prognosis of Alzheimer's disease, beyond identifying the subtle changes that define its early onset, is the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109582
SubjectTerms ADNI data
Alzheimer Disease - diagnostic imaging
Alzheimer’s Disease
Brain
Cognitive Dysfunction - diagnostic imaging
Gradient Boosting (GB)
Humans
Magnetic Resonance Imaging - methods
Multiclass classification
Multimodal data
Neuroimaging - methods
Random Forest (RF)
Soft Impute
Support Vector Machine (SVM)
SVD Impute
Weighted K-nearest neighbors (KNN impute)
Title Addressing the missing data challenge in multi-modal datasets for the diagnosis of Alzheimer’s disease
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109582
https://www.ncbi.nlm.nih.gov/pubmed/35346696
https://www.proquest.com/docview/2644945419
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hkKpeqgL9WVqQK1W9hc06jjc-Rgi0bQWXFombldiTkhWbRWT3UA6or9HX65N0xkloe0AcesufZctjzXyT-WYG4D2pRSzjIov8xJtIeT-NCl2pSFaFQSSLqwznO5-e6dm5-nSRXmzA0ZALw7TKXvd3Oj1o6_7JuN_N8XVdj79wIk7M6VQyxHdCBruaMq3v8O4PzUOZ0F-TP-Z4ZfxXlvD8cN7gmjs1k58oJVdWSjP5kIF6CIAGQ3TyHJ71CFLk3SK3YQObHdjNG_KeF9_FBxE4neFn-Q48Oe1D57twmXsfOK_NN0GgT5B8wzVTRIUbWqqIuhGBYxgtlp5m4bctrlpB2DYM8x01r27FshL51e0l1gu8-fXjZyv6WM8LOD85_no0i_o2C5EjbLGKSk0u11Q7VXFpee4_4jOPknBE4iZeFUqTUxM7hwk7i5jppPRT5yufZrGuCA68hM1m2eBrEMaF8jZpoSrk1pQZkgcsvdGykKVEN4J02Fvr-hrk3Arjyg5ks7kdZGJZJraTyQjG9-Ouuyocj44wg-jsP-fJkql4dOy7QdaWhMERlKLB5bq1jB6NStXEjOBVdwju15OkidLa6L3_mPkNPOW7jor2FjZXN2vcJ9CzKg_CqT6Arfzj59nZb3GzAhU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VWwm4IGj5WaDFSIhb2KzjeONjVLXa0u5eaKXerMR2aFbdbNXsHuDEa_B6PAkzjlPooeqBWxRnZMszmvkm8wfwEdWiK-Mii-zYqkhYO4kKWYmIV4VyDi2uUFTvPJvL6bn4cpFebMFBXwtDaZVB93c63Wvr8GYUbnN0Xdejr1SIE1M5FffxHXSBtqk7lRjAdn58Mp3_LY9UfsQmfU8hy_ifQuHF50XjNjSsGV1Fzqm5Uprx-2zUfRjU26KjZ_A0gEiWd-d8Dluu2YHdvEEHevmdfWI-rdP_L9-BR7MQPd-Fy9xan_bafGOI-xiy2D9Tligz_VQVVjfMpxlGy5XFXWi1deuWIbz1ZLbLzqtbtqpYfvXj0tVLd_P756-WhXDPCzg_Ojw7mEZh0kJkEF6so1Ki1zWRRlTUXZ5GkNjMOo5QIjFjKwoh0a-JjXEJ-Ysuk0lpJ8ZWNs1iWSEieAmDZtW418CU8R1u0kJUjqZTZg6dYG6V5AUvuTNDSPu71Sa0IadpGFe6zzdb6J4nmniiO54MYXRLd9014niQQvWs03dESqO1eJD2Q89rjcygIErRuNWm1QQgFcrZWA3hVScEt-dJ0kRIqeSb_9j5PTyens1O9enx_OQtPKGVLjPtHQzWNxu3hxhoXe4HGf8DQhMExg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+the+missing+data+challenge+in+multi-modal+datasets+for+the+diagnosis+of+Alzheimer%27s+disease&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Aghili%2C+Maryamossadat&rft.au=Tabarestani%2C+Solale&rft.au=Adjouadi%2C+Malek&rft.date=2022-06-01&rft.eissn=1872-678X&rft.volume=375&rft.spage=109582&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109582&rft_id=info%3Apmid%2F35346696&rft.externalDocID=35346696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon