Phase-change properties related to anharmonicity of local structure

Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generat...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 20; no. 6; pp. 807 - 816
Main Authors Ahn, Min, Jeong, Kwang-sik, Park, Sungjin, Jung, Hoon, Han, Jeonghwa, Yang, Wonjun, Kim, Dasol, Park, Jaehun, Cho, Mann-Ho
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
1567-1739
DOI10.1016/j.cap.2020.03.019

Cover

Abstract Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films. •Enhancement of resonant bond in GST124 compared to GST225 was observed around Ge atoms.•Resonant bond and anharmonicity of local structure were verified with calculations.•Electrical properties measured from PCRAM unit-cell were explained with local structure.•Using optical pump-THz probe measurements, the anharmonicity of PCMs were compared with decay time.•The trend of phase-change properties could be derived to a significant degree.
AbstractList Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films. KCI Citation Count: 0
Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films. •Enhancement of resonant bond in GST124 compared to GST225 was observed around Ge atoms.•Resonant bond and anharmonicity of local structure were verified with calculations.•Electrical properties measured from PCRAM unit-cell were explained with local structure.•Using optical pump-THz probe measurements, the anharmonicity of PCMs were compared with decay time.•The trend of phase-change properties could be derived to a significant degree.
Author Yang, Wonjun
Jeong, Kwang-sik
Jung, Hoon
Ahn, Min
Park, Jaehun
Park, Sungjin
Cho, Mann-Ho
Han, Jeonghwa
Kim, Dasol
Author_xml – sequence: 1
  givenname: Min
  surname: Ahn
  fullname: Ahn, Min
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 2
  givenname: Kwang-sik
  surname: Jeong
  fullname: Jeong, Kwang-sik
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 3
  givenname: Sungjin
  surname: Park
  fullname: Park, Sungjin
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 4
  givenname: Hoon
  surname: Jung
  fullname: Jung, Hoon
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 5
  givenname: Jeonghwa
  surname: Han
  fullname: Han, Jeonghwa
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 6
  givenname: Wonjun
  surname: Yang
  fullname: Yang, Wonjun
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 7
  givenname: Dasol
  surname: Kim
  fullname: Kim, Dasol
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
– sequence: 8
  givenname: Jaehun
  surname: Park
  fullname: Park, Jaehun
  organization: Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, Republic of Korea
– sequence: 9
  givenname: Mann-Ho
  surname: Cho
  fullname: Cho, Mann-Ho
  email: mh.cho@yonsei.ac.kr, blackcho007@gmail.com
  organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002595190$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kD1vwjAURa2KSgXaH9Ata4ekz7GT2OqEUD-QkFpVdLYc5xkMIUZ2qMS_byidO9033HOldyZk1PkOCbmnkFGg5eM2M_qQ5ZBDBiwDKq_ImIpKpLSsitFwF2WV0orJGzKJcQsDw4GPyfxjoyOmZqO7NSaH4A8YeocxCdjqHpuk94nuNjrsfeeM60-Jt0nrjW6T2Iej6Y8Bb8m11W3Eu7-ckq-X59X8LV2-vy7ms2VqcsH6tKqgrrEsa8kqKziCFFw0LOdM503JUIMswNYGCjCizqlFJqWgVkhqSs1rNiUPl90uWLUzTnntfnPt1S6o2edqoSQveAVy6NJL1wQfY0CrDsHtdTgpCupsTG3VYEydjSlgajA2ME8XBocnvh0GFY3DzmDjAppeNd79Q_8AIUV1DA
Cites_doi 10.1103/PhysRevB.81.081204
10.1063/1.4865295
10.1103/PhysRevLett.107.015501
10.1107/S0108768104022906
10.1038/nmat1215
10.1063/1.3611030
10.1016/j.tsf.2004.08.142
10.1063/1.373041
10.1038/nmat2330
10.1039/C7NR00761B
10.1103/PhysRevB.87.165206
10.1103/PhysRevB.79.174112
10.1039/C6TC05412A
10.1039/C7TC01135K
10.1103/PhysRevB.84.094124
10.1016/j.commatsci.2005.04.010
10.1039/c3tc31924e
10.1063/1.348620
10.1038/srep25453
10.1023/B:OQEL.0000039617.85129.c2
10.1016/0022-3697(73)90092-9
10.1016/j.matchemphys.2012.08.024
10.1039/C4TC02455A
10.4028/www.scientific.net/AST.95.113
10.1063/1.3603016
10.1039/C4RA08790A
10.1038/ncomms5086
10.1063/1.2801626
10.1364/JOSAB.18.000313
10.1088/0953-8984/21/17/174205
10.1016/j.ssc.2012.02.018
10.1088/0953-8984/21/8/084204
10.1103/PhysRevB.69.104111
10.1038/nchem.1007
10.1038/nmat2226
10.1063/1.3168551
10.1088/1361-6463/ab31cb
10.1038/nmat1807
10.1016/j.ultramic.2008.05.012
ContentType Journal Article
Copyright 2020 Korean Physical Society
Copyright_xml – notice: 2020 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2020.03.019
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
1567-1739
EndPage 816
ExternalDocumentID oai_kci_go_kr_ARTI_9454709
10_1016_j_cap_2020_03_019
S1567173920300791
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ACYCR
ID FETCH-LOGICAL-c283t-770bbe66b937f84e09848d3243a2d63ea0950fbc050c8b21fe39981f891c6a4b3
IEDL.DBID AIKHN
ISSN 1567-1739
IngestDate Sun Mar 09 07:54:31 EDT 2025
Tue Jul 01 01:06:10 EDT 2025
Fri Feb 23 02:49:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-770bbe66b937f84e09848d3243a2d63ea0950fbc050c8b21fe39981f891c6a4b3
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9454709
crossref_primary_10_1016_j_cap_2020_03_019
elsevier_sciencedirect_doi_10_1016_j_cap_2020_03_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-06
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2020
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Li, Liu, Liu, Han, Zhang, Han, Sun, Zhang (bib19) 2011; 107
Kadlec, Kadlec, Kužel (bib33) 2012; 152
Lencer, Salinga, Grabowski, Hickel, Neugebauer, Wuttig (bib1) 2008; 7
Lee, Elliott (bib9) 2011; 84
Slack (bib29) 1973; 34
Srivastava (bib32) 2009; 21
Jang, Park, Ahn, Jeong, Park, Cho, Song, Jeong (bib14) 2015; 3
Bae, Lee, Jung, Ma, Jeong, Oh, Kim, Suh, Song, Kim (bib22) 2017; 9
Kim, Shin, Choi, Lee, Hong, Park (bib37) 2004; 469
Krbal, Kolobov, Fons, Tominaga, Elliott, Hegedus, Giussani, Perumal, Calarco, Matsunaga (bib11) 2012; 86
Hase, Tominaga (bib35) 2011; 99
Park, Ahn, Jeong, Jang, Cho, Song, Ko, Ahn, Nam, Jeong (bib39) 2014; 2
Caravati, Bernasconi, Kühne, Krack, Parrinello (bib6) 2007; 91
Kolobov, Fons, Tominaga, Ovshinsky (bib7) 2013; 87
Ahn, Jeong, Park, Park, Jung, Han, Yang, Kim, Jeong, Cho (bib31) 2017; 5
Yamada, Ohno, Nishiuchi, Akahira, Takao (bib3) 1991; 69
Park, Park, Jeong, Jeong, Song, Cho (bib40) 2016; 6
Tang, Sanville, Henkelman (bib24) 2009; 21
Faure, Van Tilborg, Kaindl, Leemans (bib20) 2004; 36
Planken, Nienhuys, Bakker, Wenckebach (bib21) 2001; 18
Jang, Park, Lim, Cho, Do, Ko, Sohn (bib16) 2009; 95
Henkelman, Arnaldsson, Jónsson (bib23) 2006; 36
Hu, You, Chou, Lai (bib17) 2019; 52
Nguyen, Kusiak, Battaglia, Gaborieau, Anguy, Fallica, Wiemer, Lamperti, Longo (bib13) 2014
Friedrich, Weidenhof, Njoroge, Franz, Wuttig (bib26) 2000; 87
Shportko, Kremers, Woda, Lencer, Robertson, Wuttig (bib4) 2008; 7
Hase, Miyamoto, Tominaga (bib34) 2009; 79
Kolobov, Krbal, Fons, Tominaga, Uruga (bib10) 2011; 3
Xu, Tong, Geng, Yang, Xu, Su, Liu, Ma, Chen (bib25) 2011; 110
Matsunaga, Yamada (bib36) 2004; 69
Lee, Esfarjani, Luo, Zhou, Tian, Chen (bib18) 2014; 5
Němec, Nazabal, Moréac, Gutwirth, Beneš, Frumar (bib27) 2012; 136
Han, Jeong, Ahn, Lim, Yang, Park, Cho (bib15) 2017; 5
Kolobov, Fons, Frenkel, Ankudinov, Tominaga, Uruga (bib5) 2004; 3
Lee, Shelby, Raoux, Retter, Burr, Bogle, Darmawikarta, Bishop, Abelson (bib12) 2014; 115
Huang, Robertson (bib30) 2010; 81
Zhu, Xia, Rao, Li, Wu, Ji, Lv, Song, Feng, Sun (bib42) 2014; 5
Matsunaga, Yamada, Kubota (bib2) 2004; 60
Zhang, Wang, Shen, Li, Wang, Chen, Li, Zhang, Zhang, Zhang (bib41) 2016; 6
Wuttig, Lüsebrink, Wamwangi, Wełnic, Gilleßen, Dronskowski (bib8) 2007; 6
Guo, Hu, Ji, Huang, Zhang, Wu, Song, Chu (bib28) 2014; 4
Song, Zhang, Jeong, Kim, Kim (bib38) 2008; 108
Tang (10.1016/j.cap.2020.03.019_bib24) 2009; 21
Němec (10.1016/j.cap.2020.03.019_bib27) 2012; 136
Park (10.1016/j.cap.2020.03.019_bib39) 2014; 2
Zhang (10.1016/j.cap.2020.03.019_bib41) 2016; 6
Matsunaga (10.1016/j.cap.2020.03.019_bib36) 2004; 69
Jang (10.1016/j.cap.2020.03.019_bib14) 2015; 3
Nguyen (10.1016/j.cap.2020.03.019_bib13) 2014
Hase (10.1016/j.cap.2020.03.019_bib34) 2009; 79
Krbal (10.1016/j.cap.2020.03.019_bib11) 2012; 86
Lencer (10.1016/j.cap.2020.03.019_bib1) 2008; 7
Lee (10.1016/j.cap.2020.03.019_bib18) 2014; 5
Lee (10.1016/j.cap.2020.03.019_bib12) 2014; 115
Kolobov (10.1016/j.cap.2020.03.019_bib5) 2004; 3
Kolobov (10.1016/j.cap.2020.03.019_bib7) 2013; 87
Guo (10.1016/j.cap.2020.03.019_bib28) 2014; 4
Wuttig (10.1016/j.cap.2020.03.019_bib8) 2007; 6
Hu (10.1016/j.cap.2020.03.019_bib17) 2019; 52
Han (10.1016/j.cap.2020.03.019_bib15) 2017; 5
Shportko (10.1016/j.cap.2020.03.019_bib4) 2008; 7
Kolobov (10.1016/j.cap.2020.03.019_bib10) 2011; 3
Planken (10.1016/j.cap.2020.03.019_bib21) 2001; 18
Slack (10.1016/j.cap.2020.03.019_bib29) 1973; 34
Bae (10.1016/j.cap.2020.03.019_bib22) 2017; 9
Srivastava (10.1016/j.cap.2020.03.019_bib32) 2009; 21
Song (10.1016/j.cap.2020.03.019_bib38) 2008; 108
Henkelman (10.1016/j.cap.2020.03.019_bib23) 2006; 36
Hase (10.1016/j.cap.2020.03.019_bib35) 2011; 99
Lee (10.1016/j.cap.2020.03.019_bib9) 2011; 84
Jang (10.1016/j.cap.2020.03.019_bib16) 2009; 95
Ahn (10.1016/j.cap.2020.03.019_bib31) 2017; 5
Kim (10.1016/j.cap.2020.03.019_bib37) 2004; 469
Matsunaga (10.1016/j.cap.2020.03.019_bib2) 2004; 60
Faure (10.1016/j.cap.2020.03.019_bib20) 2004; 36
Li (10.1016/j.cap.2020.03.019_bib19) 2011; 107
Caravati (10.1016/j.cap.2020.03.019_bib6) 2007; 91
Kadlec (10.1016/j.cap.2020.03.019_bib33) 2012; 152
Xu (10.1016/j.cap.2020.03.019_bib25) 2011; 110
Friedrich (10.1016/j.cap.2020.03.019_bib26) 2000; 87
Yamada (10.1016/j.cap.2020.03.019_bib3) 1991; 69
Zhu (10.1016/j.cap.2020.03.019_bib42) 2014; 5
Huang (10.1016/j.cap.2020.03.019_bib30) 2010; 81
Park (10.1016/j.cap.2020.03.019_bib40) 2016; 6
References_xml – volume: 36
  start-page: 681
  year: 2004
  end-page: 697
  ident: bib20
  article-title: Modelling laser-based table-top THz sources: optical rectification, propagation and electro-optic sampling
  publication-title: Opt. Quant. Electron.
– volume: 3
  start-page: 311
  year: 2011
  end-page: 316
  ident: bib10
  article-title: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy
  publication-title: Nat. Chem.
– volume: 60
  start-page: 685
  year: 2004
  end-page: 691
  ident: bib2
  article-title: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems
  publication-title: Acta Crystallogr. Sect. B Struct. Sci.
– volume: 3
  start-page: 703
  year: 2004
  end-page: 708
  ident: bib5
  article-title: Understanding the phase-change mechanism of rewritable optical media
  publication-title: Nat. Mater.
– volume: 115
  year: 2014
  ident: bib12
  article-title: Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe
  publication-title: J. Appl. Phys.
– volume: 6
  year: 2016
  ident: bib40
  article-title: Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process
  publication-title: Sci. Rep.
– volume: 84
  year: 2011
  ident: bib9
  article-title: Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 104111
  year: 2004
  ident: bib36
  article-title: Structural investigation of GeSb 2 Te 4: a high-speed phase-change material
  publication-title: Phys. Rev. B
– volume: 5
  year: 2014
  ident: bib18
  article-title: Resonant bonding leads to low lattice thermal conductivity
  publication-title: Nat. Commun.
– volume: 91
  start-page: 171906
  year: 2007
  ident: bib6
  article-title: Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials
  publication-title: Appl. Phys. Lett.
– volume: 81
  year: 2010
  ident: bib30
  article-title: Bonding origin of optical contrast in phase-change memory materials
  publication-title: Phys. Rev. B
– volume: 86
  year: 2012
  ident: bib11
  article-title: Crystalline GeTe-based phase-change alloys: disorder in order
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 3973
  year: 2017
  end-page: 3982
  ident: bib15
  article-title: Modulation of phase change characteristics in Ag-incorporated Ge 2 Sb 2 Te 5 owing to changes in structural distortion and bond strength
  publication-title: J. Mater. Chem. C
– volume: 52
  start-page: 415104
  year: 2019
  ident: bib17
  article-title: Regulating phase change behavior and surface characteristics of Sn15Sb85 thin film by oxygen doping
  publication-title: J. Phys. Appl. Phys.
– volume: 9
  start-page: 8015
  year: 2017
  end-page: 8023
  ident: bib22
  article-title: Ultrafast photocarrier dynamics related to defect states of Si 1− x Ge x nanowires measured by optical pump–THz probe spectroscopy
  publication-title: Nanoscale
– volume: 6
  start-page: 25453
  year: 2016
  ident: bib41
  article-title: Vacancy structures and melting behavior in rock-salt GeSbTe
  publication-title: Sci. Rep.
– volume: 108
  start-page: 1408
  year: 2008
  end-page: 1419
  ident: bib38
  article-title: In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides
  publication-title: Ultramicroscopy
– start-page: 113
  year: 2014
  end-page: 119
  ident: bib13
  article-title: Thermal properties of in-Sb-Te thin films for phase change memory application
  publication-title: Advances in Science and Technology
– volume: 107
  year: 2011
  ident: bib19
  article-title: Role of electronic excitation in the amorphization of Ge-Sb-Te alloys
  publication-title: Phys. Rev. Lett.
– volume: 136
  start-page: 935
  year: 2012
  end-page: 941
  ident: bib27
  article-title: Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy
  publication-title: Mater. Chem. Phys.
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  ident: bib23
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
– volume: 469
  start-page: 322
  year: 2004
  end-page: 326
  ident: bib37
  article-title: Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory
  publication-title: Thin Solid Films
– volume: 2
  start-page: 2001
  year: 2014
  end-page: 2009
  ident: bib39
  article-title: Structural deformation and void formation driven by phase transformation in the Ge 2 Sb 2 Te 5 film
  publication-title: J. Mater. Chem. C
– volume: 87
  start-page: 165206
  year: 2013
  ident: bib7
  article-title: Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys
  publication-title: Phys. Rev. B
– volume: 110
  year: 2011
  ident: bib25
  article-title: A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 1707
  year: 2015
  end-page: 1715
  ident: bib14
  article-title: Ultrafast phase change and long durability of BN-incorporated GeSbTe
  publication-title: J. Mater. Chem. C
– volume: 34
  start-page: 321
  year: 1973
  end-page: 335
  ident: bib29
  article-title: Nonmetallic crystals with high thermal conductivity
  publication-title: J. Phys. Chem. Solid.
– volume: 5
  start-page: 7820
  year: 2017
  end-page: 7829
  ident: bib31
  article-title: Effects of resonant bonding and structural distortion on the phase change properties of Sn 2 Sb 2 Se 5
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 174205
  year: 2009
  ident: bib32
  article-title: The anharmonic phonon decay rate in group-III nitrides
  publication-title: J. Phys. Condens. Matter
– volume: 87
  start-page: 4130
  year: 2000
  end-page: 4134
  ident: bib26
  article-title: Structural transformations of Ge 2 Sb 2 Te 5 films studied by electrical resistance measurements
  publication-title: J. Appl. Phys.
– volume: 152
  start-page: 852
  year: 2012
  end-page: 855
  ident: bib33
  article-title: Contrast in terahertz conductivity of phase-change materials
  publication-title: Solid State Commun.
– volume: 7
  start-page: 972
  year: 2008
  end-page: 977
  ident: bib1
  article-title: A map for phase-change materials
  publication-title: Nat. Mater.
– volume: 79
  start-page: 174112
  year: 2009
  ident: bib34
  article-title: Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb 2 Te 3 superlattices
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 4086
  year: 2014
  ident: bib42
  article-title: One order of magnitude faster phase change at reduced power in Ti-Sb-Te
  publication-title: Nat. Commun.
– volume: 18
  start-page: 313
  year: 2001
  end-page: 317
  ident: bib21
  article-title: Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe
  publication-title: JOSA B
– volume: 95
  year: 2009
  ident: bib16
  article-title: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films
  publication-title: Appl. Phys. Lett.
– volume: 69
  start-page: 2849
  year: 1991
  end-page: 2856
  ident: bib3
  article-title: Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 653
  year: 2008
  end-page: 658
  ident: bib4
  article-title: Resonant bonding in crystalline phase-change materials
  publication-title: Nat. Mater.
– volume: 4
  start-page: 57218
  year: 2014
  end-page: 57222
  ident: bib28
  article-title: Temperature and concentration dependent crystallization behavior of Ge 2 Sb 2 Te 5 phase change films: tungsten doping effects
  publication-title: RSC Adv.
– volume: 99
  year: 2011
  ident: bib35
  article-title: Thermal conductivity of GeTe/Sb2Te3 superlattices measured by coherent phonon spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 122
  year: 2007
  end-page: 128
  ident: bib8
  article-title: The role of vacancies and local distortions in the design of new phase-change materials
  publication-title: Nat. Mater.
– volume: 21
  year: 2009
  ident: bib24
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Matter
– volume: 81
  year: 2010
  ident: 10.1016/j.cap.2020.03.019_bib30
  article-title: Bonding origin of optical contrast in phase-change memory materials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.081204
– volume: 115
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib12
  article-title: Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4865295
– volume: 107
  year: 2011
  ident: 10.1016/j.cap.2020.03.019_bib19
  article-title: Role of electronic excitation in the amorphization of Ge-Sb-Te alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.015501
– volume: 60
  start-page: 685
  year: 2004
  ident: 10.1016/j.cap.2020.03.019_bib2
  article-title: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems
  publication-title: Acta Crystallogr. Sect. B Struct. Sci.
  doi: 10.1107/S0108768104022906
– volume: 3
  start-page: 703
  year: 2004
  ident: 10.1016/j.cap.2020.03.019_bib5
  article-title: Understanding the phase-change mechanism of rewritable optical media
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1215
– volume: 99
  year: 2011
  ident: 10.1016/j.cap.2020.03.019_bib35
  article-title: Thermal conductivity of GeTe/Sb2Te3 superlattices measured by coherent phonon spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3611030
– volume: 469
  start-page: 322
  year: 2004
  ident: 10.1016/j.cap.2020.03.019_bib37
  article-title: Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.08.142
– volume: 87
  start-page: 4130
  year: 2000
  ident: 10.1016/j.cap.2020.03.019_bib26
  article-title: Structural transformations of Ge 2 Sb 2 Te 5 films studied by electrical resistance measurements
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373041
– volume: 7
  start-page: 972
  year: 2008
  ident: 10.1016/j.cap.2020.03.019_bib1
  article-title: A map for phase-change materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2330
– volume: 9
  start-page: 8015
  year: 2017
  ident: 10.1016/j.cap.2020.03.019_bib22
  article-title: Ultrafast photocarrier dynamics related to defect states of Si 1− x Ge x nanowires measured by optical pump–THz probe spectroscopy
  publication-title: Nanoscale
  doi: 10.1039/C7NR00761B
– volume: 87
  start-page: 165206
  year: 2013
  ident: 10.1016/j.cap.2020.03.019_bib7
  article-title: Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.165206
– volume: 79
  start-page: 174112
  year: 2009
  ident: 10.1016/j.cap.2020.03.019_bib34
  article-title: Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb 2 Te 3 superlattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.174112
– volume: 5
  start-page: 3973
  year: 2017
  ident: 10.1016/j.cap.2020.03.019_bib15
  article-title: Modulation of phase change characteristics in Ag-incorporated Ge 2 Sb 2 Te 5 owing to changes in structural distortion and bond strength
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05412A
– volume: 5
  start-page: 7820
  year: 2017
  ident: 10.1016/j.cap.2020.03.019_bib31
  article-title: Effects of resonant bonding and structural distortion on the phase change properties of Sn 2 Sb 2 Se 5
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01135K
– volume: 84
  year: 2011
  ident: 10.1016/j.cap.2020.03.019_bib9
  article-title: Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.094124
– volume: 36
  start-page: 354
  year: 2006
  ident: 10.1016/j.cap.2020.03.019_bib23
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 2
  start-page: 2001
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib39
  article-title: Structural deformation and void formation driven by phase transformation in the Ge 2 Sb 2 Te 5 film
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc31924e
– volume: 69
  start-page: 2849
  year: 1991
  ident: 10.1016/j.cap.2020.03.019_bib3
  article-title: Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.348620
– volume: 6
  start-page: 25453
  year: 2016
  ident: 10.1016/j.cap.2020.03.019_bib41
  article-title: Vacancy structures and melting behavior in rock-salt GeSbTe
  publication-title: Sci. Rep.
  doi: 10.1038/srep25453
– volume: 86
  year: 2012
  ident: 10.1016/j.cap.2020.03.019_bib11
  article-title: Crystalline GeTe-based phase-change alloys: disorder in order
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 681
  year: 2004
  ident: 10.1016/j.cap.2020.03.019_bib20
  article-title: Modelling laser-based table-top THz sources: optical rectification, propagation and electro-optic sampling
  publication-title: Opt. Quant. Electron.
  doi: 10.1023/B:OQEL.0000039617.85129.c2
– volume: 34
  start-page: 321
  year: 1973
  ident: 10.1016/j.cap.2020.03.019_bib29
  article-title: Nonmetallic crystals with high thermal conductivity
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(73)90092-9
– volume: 136
  start-page: 935
  year: 2012
  ident: 10.1016/j.cap.2020.03.019_bib27
  article-title: Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2012.08.024
– volume: 3
  start-page: 1707
  year: 2015
  ident: 10.1016/j.cap.2020.03.019_bib14
  article-title: Ultrafast phase change and long durability of BN-incorporated GeSbTe
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02455A
– volume: 5
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib18
  article-title: Resonant bonding leads to low lattice thermal conductivity
  publication-title: Nat. Commun.
– start-page: 113
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib13
  article-title: Thermal properties of in-Sb-Te thin films for phase change memory application
  doi: 10.4028/www.scientific.net/AST.95.113
– volume: 110
  year: 2011
  ident: 10.1016/j.cap.2020.03.019_bib25
  article-title: A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3603016
– volume: 4
  start-page: 57218
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib28
  article-title: Temperature and concentration dependent crystallization behavior of Ge 2 Sb 2 Te 5 phase change films: tungsten doping effects
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08790A
– volume: 5
  start-page: 4086
  year: 2014
  ident: 10.1016/j.cap.2020.03.019_bib42
  article-title: One order of magnitude faster phase change at reduced power in Ti-Sb-Te
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5086
– volume: 91
  start-page: 171906
  year: 2007
  ident: 10.1016/j.cap.2020.03.019_bib6
  article-title: Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2801626
– volume: 18
  start-page: 313
  year: 2001
  ident: 10.1016/j.cap.2020.03.019_bib21
  article-title: Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe
  publication-title: JOSA B
  doi: 10.1364/JOSAB.18.000313
– volume: 21
  start-page: 174205
  year: 2009
  ident: 10.1016/j.cap.2020.03.019_bib32
  article-title: The anharmonic phonon decay rate in group-III nitrides
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/17/174205
– volume: 152
  start-page: 852
  year: 2012
  ident: 10.1016/j.cap.2020.03.019_bib33
  article-title: Contrast in terahertz conductivity of phase-change materials
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.02.018
– volume: 21
  year: 2009
  ident: 10.1016/j.cap.2020.03.019_bib24
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 69
  start-page: 104111
  year: 2004
  ident: 10.1016/j.cap.2020.03.019_bib36
  article-title: Structural investigation of GeSb 2 Te 4: a high-speed phase-change material
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.104111
– volume: 3
  start-page: 311
  year: 2011
  ident: 10.1016/j.cap.2020.03.019_bib10
  article-title: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1007
– volume: 7
  start-page: 653
  year: 2008
  ident: 10.1016/j.cap.2020.03.019_bib4
  article-title: Resonant bonding in crystalline phase-change materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2226
– volume: 95
  year: 2009
  ident: 10.1016/j.cap.2020.03.019_bib16
  article-title: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3168551
– volume: 52
  start-page: 415104
  year: 2019
  ident: 10.1016/j.cap.2020.03.019_bib17
  article-title: Regulating phase change behavior and surface characteristics of Sn15Sb85 thin film by oxygen doping
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/1361-6463/ab31cb
– volume: 6
  start-page: 122
  year: 2007
  ident: 10.1016/j.cap.2020.03.019_bib8
  article-title: The role of vacancies and local distortions in the design of new phase-change materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1807
– volume: 6
  year: 2016
  ident: 10.1016/j.cap.2020.03.019_bib40
  article-title: Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process
  publication-title: Sci. Rep.
– volume: 108
  start-page: 1408
  year: 2008
  ident: 10.1016/j.cap.2020.03.019_bib38
  article-title: In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.05.012
SSID ssj0016404
Score 2.246908
Snippet Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change...
SourceID nrf
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 807
SubjectTerms 물리학
Title Phase-change properties related to anharmonicity of local structure
URI https://dx.doi.org/10.1016/j.cap.2020.03.019
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002595190
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2020, 20(6), , pp.807-816
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76QPAiPrE-yiKehNhNNkmTYymWVrEIWuht2afWQlJqvfrbnclDFMSDp5CwG8K3m5lvd2a-JeQydb4zkQTrB2PqhcZo-Oc4ZjhaZ7k0iSlOa7ifxuNZeDuP5g0yrGthMK2ysv2lTS-sdfWkV6HZWy0WvUdYeWAIOQ1gnrI-VrC3A57GUYu0B5O78fQrmBCHxSmC2N7DDnVws0jz0hJVKwNWSJ2i3s7v7qmZrd03xzPaJTsVY6SD8qP2SMNm-2SryNzUbwdk-PACjsgrC3jpCvfW1yiSSosqFWvoJqcyQ4FqFMEFzk1zRwsPRkvt2Pe1PSSz0c3TcOxVJyN4GujABigxU8rGsQJy4ZLQsjQJEwPciMvAxNxKIE7MKc0iphMV-AA7LKt8l6S-jmWo-BFpZXlmjwnVft8oWCRxlcoQWkibKD_wjZG8HzgTdMhVDYhYlQIYos4MexWAnkD0BOMC0OuQsIZM_BhFAQb6r24XAK9Y6oVAtWu8PudiuRbA6SciRc0xlp78792nZBvvyuyuM9ICZO058IiN6pLm9YffrWbLJ5Tnxgo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EX0Rr3g3iE9CXdr0-ijDsakbggp7C7nqFLox56u_3XPSVhTEB58KbVrKl_ScL813vhByVrjQmURC9IM-DWJjNHxzHBWO1lkuTW78bg2DYdp7jK9HyWiBdJpaGJRV1rG_iuk-Wtdn2jWa7el43L6HmQcuIRcRjFOWYQX7UpzwDHV9Fx9fOg-YDvg9BLF1gM2bpU0v8tISPSsj5o1O0W3n9-S0WM7ct7TTXSdrNV-kl9UrbZAFW26SZa_b1G9bpHP3DGkoqMp36RT_rM_QIpX6GhVr6HxCZYn21GiBC4ybThz1-YtWzrHvM7tNHrtXD51eUO-LEGggA3MgxEwpm6YKqIXLY8uKPM4NMCMuI5NyK4E2Mac0S5jOVRQC6DCpCl1ehDqVseI7pFVOSrtLqA4zo2CKxFUhY2ghba7CKDRG8ixyJtoj5w0gYlrZX4hGF_YiAD2B6AnGBaC3R-IGMvGjDwWE579uOwV4xaseC_S6xuPTRLzOBDD6vijQcYwV-_979glZ6T0MbsVtf3hzQFbxSqXzOiQtQNkeAaOYq2M_Yj4BOKDG1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-change+properties+related+to+anharmonicity+of+local+structure&rft.jtitle=Current+applied+physics&rft.au=Ahn%2C+Min&rft.au=Jeong%2C+Kwang-sik&rft.au=Park%2C+Sungjin&rft.au=Jung%2C+Hoon&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=20&rft.issue=6&rft.spage=807&rft.epage=816&rft_id=info:doi/10.1016%2Fj.cap.2020.03.019&rft.externalDocID=S1567173920300791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon