Phase-change properties related to anharmonicity of local structure
Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generat...
Saved in:
Published in | Current applied physics Vol. 20; no. 6; pp. 807 - 816 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 1567-1739 |
DOI | 10.1016/j.cap.2020.03.019 |
Cover
Abstract | Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films.
•Enhancement of resonant bond in GST124 compared to GST225 was observed around Ge atoms.•Resonant bond and anharmonicity of local structure were verified with calculations.•Electrical properties measured from PCRAM unit-cell were explained with local structure.•Using optical pump-THz probe measurements, the anharmonicity of PCMs were compared with decay time.•The trend of phase-change properties could be derived to a significant degree. |
---|---|
AbstractList | Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films. KCI Citation Count: 0 Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change random access memory (PCRAM) applications since they show abrupt change on crystalline-amorphous phase-change process. For the use in next-generation applications, increase of retention properties and decrease of power needed for phase-change process are required. These phase-change properties depend on various material characteristics, and thermal conductivity is one of them. In this study, to introduce an easier method for evaluating the local structural anharmonicity of phase-change materials, optical pump terahertz (THz) probe experiments were performed. By investigating the phonon behaviours in PCM by this method and comparing them with local structural information extracted from extended X-ray absorption fine structure (EXAFS) on Ge1Sb2Te4 and Ge2Sb2Te5 films, the effects of resonant bonding on lattice anharmonicity and thermal conductivity were determined. As resonant bonding in the local structure get enhanced, local distortion of the system decrease which cause the decrease in anharmonicity. The quantitatively-measured anharmonicity obtained from the optical pump THz probe experiments can be closely related to the structural and electrical properties, thus reflecting well the difference of phase-change properties between Ge1Sb2Te4 and Ge2Sb2Te5 films. •Enhancement of resonant bond in GST124 compared to GST225 was observed around Ge atoms.•Resonant bond and anharmonicity of local structure were verified with calculations.•Electrical properties measured from PCRAM unit-cell were explained with local structure.•Using optical pump-THz probe measurements, the anharmonicity of PCMs were compared with decay time.•The trend of phase-change properties could be derived to a significant degree. |
Author | Yang, Wonjun Jeong, Kwang-sik Jung, Hoon Ahn, Min Park, Jaehun Park, Sungjin Cho, Mann-Ho Han, Jeonghwa Kim, Dasol |
Author_xml | – sequence: 1 givenname: Min surname: Ahn fullname: Ahn, Min organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 2 givenname: Kwang-sik surname: Jeong fullname: Jeong, Kwang-sik organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 3 givenname: Sungjin surname: Park fullname: Park, Sungjin organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 4 givenname: Hoon surname: Jung fullname: Jung, Hoon organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 5 givenname: Jeonghwa surname: Han fullname: Han, Jeonghwa organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 6 givenname: Wonjun surname: Yang fullname: Yang, Wonjun organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 7 givenname: Dasol surname: Kim fullname: Kim, Dasol organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea – sequence: 8 givenname: Jaehun surname: Park fullname: Park, Jaehun organization: Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, Republic of Korea – sequence: 9 givenname: Mann-Ho surname: Cho fullname: Cho, Mann-Ho email: mh.cho@yonsei.ac.kr, blackcho007@gmail.com organization: Institute of Physics and Applied Physics, Yonsei University, Seoul, 120-749, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002595190$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kD1vwjAURa2KSgXaH9Ata4ekz7GT2OqEUD-QkFpVdLYc5xkMIUZ2qMS_byidO9033HOldyZk1PkOCbmnkFGg5eM2M_qQ5ZBDBiwDKq_ImIpKpLSsitFwF2WV0orJGzKJcQsDw4GPyfxjoyOmZqO7NSaH4A8YeocxCdjqHpuk94nuNjrsfeeM60-Jt0nrjW6T2Iej6Y8Bb8m11W3Eu7-ckq-X59X8LV2-vy7ms2VqcsH6tKqgrrEsa8kqKziCFFw0LOdM503JUIMswNYGCjCizqlFJqWgVkhqSs1rNiUPl90uWLUzTnntfnPt1S6o2edqoSQveAVy6NJL1wQfY0CrDsHtdTgpCupsTG3VYEydjSlgajA2ME8XBocnvh0GFY3DzmDjAppeNd79Q_8AIUV1DA |
Cites_doi | 10.1103/PhysRevB.81.081204 10.1063/1.4865295 10.1103/PhysRevLett.107.015501 10.1107/S0108768104022906 10.1038/nmat1215 10.1063/1.3611030 10.1016/j.tsf.2004.08.142 10.1063/1.373041 10.1038/nmat2330 10.1039/C7NR00761B 10.1103/PhysRevB.87.165206 10.1103/PhysRevB.79.174112 10.1039/C6TC05412A 10.1039/C7TC01135K 10.1103/PhysRevB.84.094124 10.1016/j.commatsci.2005.04.010 10.1039/c3tc31924e 10.1063/1.348620 10.1038/srep25453 10.1023/B:OQEL.0000039617.85129.c2 10.1016/0022-3697(73)90092-9 10.1016/j.matchemphys.2012.08.024 10.1039/C4TC02455A 10.4028/www.scientific.net/AST.95.113 10.1063/1.3603016 10.1039/C4RA08790A 10.1038/ncomms5086 10.1063/1.2801626 10.1364/JOSAB.18.000313 10.1088/0953-8984/21/17/174205 10.1016/j.ssc.2012.02.018 10.1088/0953-8984/21/8/084204 10.1103/PhysRevB.69.104111 10.1038/nchem.1007 10.1038/nmat2226 10.1063/1.3168551 10.1088/1361-6463/ab31cb 10.1038/nmat1807 10.1016/j.ultramic.2008.05.012 |
ContentType | Journal Article |
Copyright | 2020 Korean Physical Society |
Copyright_xml | – notice: 2020 Korean Physical Society |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2020.03.019 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 1567-1739 |
EndPage | 816 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9454709 10_1016_j_cap_2020_03_019 S1567173920300791 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ACYCR |
ID | FETCH-LOGICAL-c283t-770bbe66b937f84e09848d3243a2d63ea0950fbc050c8b21fe39981f891c6a4b3 |
IEDL.DBID | AIKHN |
ISSN | 1567-1739 |
IngestDate | Sun Mar 09 07:54:31 EDT 2025 Tue Jul 01 01:06:10 EDT 2025 Fri Feb 23 02:49:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-770bbe66b937f84e09848d3243a2d63ea0950fbc050c8b21fe39981f891c6a4b3 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9454709 crossref_primary_10_1016_j_cap_2020_03_019 elsevier_sciencedirect_doi_10_1016_j_cap_2020_03_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 2020-06 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Current applied physics |
PublicationYear | 2020 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Li, Liu, Liu, Han, Zhang, Han, Sun, Zhang (bib19) 2011; 107 Kadlec, Kadlec, Kužel (bib33) 2012; 152 Lencer, Salinga, Grabowski, Hickel, Neugebauer, Wuttig (bib1) 2008; 7 Lee, Elliott (bib9) 2011; 84 Slack (bib29) 1973; 34 Srivastava (bib32) 2009; 21 Jang, Park, Ahn, Jeong, Park, Cho, Song, Jeong (bib14) 2015; 3 Bae, Lee, Jung, Ma, Jeong, Oh, Kim, Suh, Song, Kim (bib22) 2017; 9 Kim, Shin, Choi, Lee, Hong, Park (bib37) 2004; 469 Krbal, Kolobov, Fons, Tominaga, Elliott, Hegedus, Giussani, Perumal, Calarco, Matsunaga (bib11) 2012; 86 Hase, Tominaga (bib35) 2011; 99 Park, Ahn, Jeong, Jang, Cho, Song, Ko, Ahn, Nam, Jeong (bib39) 2014; 2 Caravati, Bernasconi, Kühne, Krack, Parrinello (bib6) 2007; 91 Kolobov, Fons, Tominaga, Ovshinsky (bib7) 2013; 87 Ahn, Jeong, Park, Park, Jung, Han, Yang, Kim, Jeong, Cho (bib31) 2017; 5 Yamada, Ohno, Nishiuchi, Akahira, Takao (bib3) 1991; 69 Park, Park, Jeong, Jeong, Song, Cho (bib40) 2016; 6 Tang, Sanville, Henkelman (bib24) 2009; 21 Faure, Van Tilborg, Kaindl, Leemans (bib20) 2004; 36 Planken, Nienhuys, Bakker, Wenckebach (bib21) 2001; 18 Jang, Park, Lim, Cho, Do, Ko, Sohn (bib16) 2009; 95 Henkelman, Arnaldsson, Jónsson (bib23) 2006; 36 Hu, You, Chou, Lai (bib17) 2019; 52 Nguyen, Kusiak, Battaglia, Gaborieau, Anguy, Fallica, Wiemer, Lamperti, Longo (bib13) 2014 Friedrich, Weidenhof, Njoroge, Franz, Wuttig (bib26) 2000; 87 Shportko, Kremers, Woda, Lencer, Robertson, Wuttig (bib4) 2008; 7 Hase, Miyamoto, Tominaga (bib34) 2009; 79 Kolobov, Krbal, Fons, Tominaga, Uruga (bib10) 2011; 3 Xu, Tong, Geng, Yang, Xu, Su, Liu, Ma, Chen (bib25) 2011; 110 Matsunaga, Yamada (bib36) 2004; 69 Lee, Esfarjani, Luo, Zhou, Tian, Chen (bib18) 2014; 5 Němec, Nazabal, Moréac, Gutwirth, Beneš, Frumar (bib27) 2012; 136 Han, Jeong, Ahn, Lim, Yang, Park, Cho (bib15) 2017; 5 Kolobov, Fons, Frenkel, Ankudinov, Tominaga, Uruga (bib5) 2004; 3 Lee, Shelby, Raoux, Retter, Burr, Bogle, Darmawikarta, Bishop, Abelson (bib12) 2014; 115 Huang, Robertson (bib30) 2010; 81 Zhu, Xia, Rao, Li, Wu, Ji, Lv, Song, Feng, Sun (bib42) 2014; 5 Matsunaga, Yamada, Kubota (bib2) 2004; 60 Zhang, Wang, Shen, Li, Wang, Chen, Li, Zhang, Zhang, Zhang (bib41) 2016; 6 Wuttig, Lüsebrink, Wamwangi, Wełnic, Gilleßen, Dronskowski (bib8) 2007; 6 Guo, Hu, Ji, Huang, Zhang, Wu, Song, Chu (bib28) 2014; 4 Song, Zhang, Jeong, Kim, Kim (bib38) 2008; 108 Tang (10.1016/j.cap.2020.03.019_bib24) 2009; 21 Němec (10.1016/j.cap.2020.03.019_bib27) 2012; 136 Park (10.1016/j.cap.2020.03.019_bib39) 2014; 2 Zhang (10.1016/j.cap.2020.03.019_bib41) 2016; 6 Matsunaga (10.1016/j.cap.2020.03.019_bib36) 2004; 69 Jang (10.1016/j.cap.2020.03.019_bib14) 2015; 3 Nguyen (10.1016/j.cap.2020.03.019_bib13) 2014 Hase (10.1016/j.cap.2020.03.019_bib34) 2009; 79 Krbal (10.1016/j.cap.2020.03.019_bib11) 2012; 86 Lencer (10.1016/j.cap.2020.03.019_bib1) 2008; 7 Lee (10.1016/j.cap.2020.03.019_bib18) 2014; 5 Lee (10.1016/j.cap.2020.03.019_bib12) 2014; 115 Kolobov (10.1016/j.cap.2020.03.019_bib5) 2004; 3 Kolobov (10.1016/j.cap.2020.03.019_bib7) 2013; 87 Guo (10.1016/j.cap.2020.03.019_bib28) 2014; 4 Wuttig (10.1016/j.cap.2020.03.019_bib8) 2007; 6 Hu (10.1016/j.cap.2020.03.019_bib17) 2019; 52 Han (10.1016/j.cap.2020.03.019_bib15) 2017; 5 Shportko (10.1016/j.cap.2020.03.019_bib4) 2008; 7 Kolobov (10.1016/j.cap.2020.03.019_bib10) 2011; 3 Planken (10.1016/j.cap.2020.03.019_bib21) 2001; 18 Slack (10.1016/j.cap.2020.03.019_bib29) 1973; 34 Bae (10.1016/j.cap.2020.03.019_bib22) 2017; 9 Srivastava (10.1016/j.cap.2020.03.019_bib32) 2009; 21 Song (10.1016/j.cap.2020.03.019_bib38) 2008; 108 Henkelman (10.1016/j.cap.2020.03.019_bib23) 2006; 36 Hase (10.1016/j.cap.2020.03.019_bib35) 2011; 99 Lee (10.1016/j.cap.2020.03.019_bib9) 2011; 84 Jang (10.1016/j.cap.2020.03.019_bib16) 2009; 95 Ahn (10.1016/j.cap.2020.03.019_bib31) 2017; 5 Kim (10.1016/j.cap.2020.03.019_bib37) 2004; 469 Matsunaga (10.1016/j.cap.2020.03.019_bib2) 2004; 60 Faure (10.1016/j.cap.2020.03.019_bib20) 2004; 36 Li (10.1016/j.cap.2020.03.019_bib19) 2011; 107 Caravati (10.1016/j.cap.2020.03.019_bib6) 2007; 91 Kadlec (10.1016/j.cap.2020.03.019_bib33) 2012; 152 Xu (10.1016/j.cap.2020.03.019_bib25) 2011; 110 Friedrich (10.1016/j.cap.2020.03.019_bib26) 2000; 87 Yamada (10.1016/j.cap.2020.03.019_bib3) 1991; 69 Zhu (10.1016/j.cap.2020.03.019_bib42) 2014; 5 Huang (10.1016/j.cap.2020.03.019_bib30) 2010; 81 Park (10.1016/j.cap.2020.03.019_bib40) 2016; 6 |
References_xml | – volume: 36 start-page: 681 year: 2004 end-page: 697 ident: bib20 article-title: Modelling laser-based table-top THz sources: optical rectification, propagation and electro-optic sampling publication-title: Opt. Quant. Electron. – volume: 3 start-page: 311 year: 2011 end-page: 316 ident: bib10 article-title: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy publication-title: Nat. Chem. – volume: 60 start-page: 685 year: 2004 end-page: 691 ident: bib2 article-title: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems publication-title: Acta Crystallogr. Sect. B Struct. Sci. – volume: 3 start-page: 703 year: 2004 end-page: 708 ident: bib5 article-title: Understanding the phase-change mechanism of rewritable optical media publication-title: Nat. Mater. – volume: 115 year: 2014 ident: bib12 article-title: Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe publication-title: J. Appl. Phys. – volume: 6 year: 2016 ident: bib40 article-title: Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process publication-title: Sci. Rep. – volume: 84 year: 2011 ident: bib9 article-title: Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials publication-title: Phys. Rev. B – volume: 69 start-page: 104111 year: 2004 ident: bib36 article-title: Structural investigation of GeSb 2 Te 4: a high-speed phase-change material publication-title: Phys. Rev. B – volume: 5 year: 2014 ident: bib18 article-title: Resonant bonding leads to low lattice thermal conductivity publication-title: Nat. Commun. – volume: 91 start-page: 171906 year: 2007 ident: bib6 article-title: Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials publication-title: Appl. Phys. Lett. – volume: 81 year: 2010 ident: bib30 article-title: Bonding origin of optical contrast in phase-change memory materials publication-title: Phys. Rev. B – volume: 86 year: 2012 ident: bib11 article-title: Crystalline GeTe-based phase-change alloys: disorder in order publication-title: Phys. Rev. B – volume: 5 start-page: 3973 year: 2017 end-page: 3982 ident: bib15 article-title: Modulation of phase change characteristics in Ag-incorporated Ge 2 Sb 2 Te 5 owing to changes in structural distortion and bond strength publication-title: J. Mater. Chem. C – volume: 52 start-page: 415104 year: 2019 ident: bib17 article-title: Regulating phase change behavior and surface characteristics of Sn15Sb85 thin film by oxygen doping publication-title: J. Phys. Appl. Phys. – volume: 9 start-page: 8015 year: 2017 end-page: 8023 ident: bib22 article-title: Ultrafast photocarrier dynamics related to defect states of Si 1− x Ge x nanowires measured by optical pump–THz probe spectroscopy publication-title: Nanoscale – volume: 6 start-page: 25453 year: 2016 ident: bib41 article-title: Vacancy structures and melting behavior in rock-salt GeSbTe publication-title: Sci. Rep. – volume: 108 start-page: 1408 year: 2008 end-page: 1419 ident: bib38 article-title: In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides publication-title: Ultramicroscopy – start-page: 113 year: 2014 end-page: 119 ident: bib13 article-title: Thermal properties of in-Sb-Te thin films for phase change memory application publication-title: Advances in Science and Technology – volume: 107 year: 2011 ident: bib19 article-title: Role of electronic excitation in the amorphization of Ge-Sb-Te alloys publication-title: Phys. Rev. Lett. – volume: 136 start-page: 935 year: 2012 end-page: 941 ident: bib27 article-title: Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy publication-title: Mater. Chem. Phys. – volume: 36 start-page: 354 year: 2006 end-page: 360 ident: bib23 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. – volume: 469 start-page: 322 year: 2004 end-page: 326 ident: bib37 article-title: Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory publication-title: Thin Solid Films – volume: 2 start-page: 2001 year: 2014 end-page: 2009 ident: bib39 article-title: Structural deformation and void formation driven by phase transformation in the Ge 2 Sb 2 Te 5 film publication-title: J. Mater. Chem. C – volume: 87 start-page: 165206 year: 2013 ident: bib7 article-title: Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys publication-title: Phys. Rev. B – volume: 110 year: 2011 ident: bib25 article-title: A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials publication-title: J. Appl. Phys. – volume: 3 start-page: 1707 year: 2015 end-page: 1715 ident: bib14 article-title: Ultrafast phase change and long durability of BN-incorporated GeSbTe publication-title: J. Mater. Chem. C – volume: 34 start-page: 321 year: 1973 end-page: 335 ident: bib29 article-title: Nonmetallic crystals with high thermal conductivity publication-title: J. Phys. Chem. Solid. – volume: 5 start-page: 7820 year: 2017 end-page: 7829 ident: bib31 article-title: Effects of resonant bonding and structural distortion on the phase change properties of Sn 2 Sb 2 Se 5 publication-title: J. Mater. Chem. C – volume: 21 start-page: 174205 year: 2009 ident: bib32 article-title: The anharmonic phonon decay rate in group-III nitrides publication-title: J. Phys. Condens. Matter – volume: 87 start-page: 4130 year: 2000 end-page: 4134 ident: bib26 article-title: Structural transformations of Ge 2 Sb 2 Te 5 films studied by electrical resistance measurements publication-title: J. Appl. Phys. – volume: 152 start-page: 852 year: 2012 end-page: 855 ident: bib33 article-title: Contrast in terahertz conductivity of phase-change materials publication-title: Solid State Commun. – volume: 7 start-page: 972 year: 2008 end-page: 977 ident: bib1 article-title: A map for phase-change materials publication-title: Nat. Mater. – volume: 79 start-page: 174112 year: 2009 ident: bib34 article-title: Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb 2 Te 3 superlattices publication-title: Phys. Rev. B – volume: 5 start-page: 4086 year: 2014 ident: bib42 article-title: One order of magnitude faster phase change at reduced power in Ti-Sb-Te publication-title: Nat. Commun. – volume: 18 start-page: 313 year: 2001 end-page: 317 ident: bib21 article-title: Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe publication-title: JOSA B – volume: 95 year: 2009 ident: bib16 article-title: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films publication-title: Appl. Phys. Lett. – volume: 69 start-page: 2849 year: 1991 end-page: 2856 ident: bib3 article-title: Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory publication-title: J. Appl. Phys. – volume: 7 start-page: 653 year: 2008 end-page: 658 ident: bib4 article-title: Resonant bonding in crystalline phase-change materials publication-title: Nat. Mater. – volume: 4 start-page: 57218 year: 2014 end-page: 57222 ident: bib28 article-title: Temperature and concentration dependent crystallization behavior of Ge 2 Sb 2 Te 5 phase change films: tungsten doping effects publication-title: RSC Adv. – volume: 99 year: 2011 ident: bib35 article-title: Thermal conductivity of GeTe/Sb2Te3 superlattices measured by coherent phonon spectroscopy publication-title: Appl. Phys. Lett. – volume: 6 start-page: 122 year: 2007 end-page: 128 ident: bib8 article-title: The role of vacancies and local distortions in the design of new phase-change materials publication-title: Nat. Mater. – volume: 21 year: 2009 ident: bib24 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Matter – volume: 81 year: 2010 ident: 10.1016/j.cap.2020.03.019_bib30 article-title: Bonding origin of optical contrast in phase-change memory materials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.081204 – volume: 115 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib12 article-title: Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe publication-title: J. Appl. Phys. doi: 10.1063/1.4865295 – volume: 107 year: 2011 ident: 10.1016/j.cap.2020.03.019_bib19 article-title: Role of electronic excitation in the amorphization of Ge-Sb-Te alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.015501 – volume: 60 start-page: 685 year: 2004 ident: 10.1016/j.cap.2020.03.019_bib2 article-title: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems publication-title: Acta Crystallogr. Sect. B Struct. Sci. doi: 10.1107/S0108768104022906 – volume: 3 start-page: 703 year: 2004 ident: 10.1016/j.cap.2020.03.019_bib5 article-title: Understanding the phase-change mechanism of rewritable optical media publication-title: Nat. Mater. doi: 10.1038/nmat1215 – volume: 99 year: 2011 ident: 10.1016/j.cap.2020.03.019_bib35 article-title: Thermal conductivity of GeTe/Sb2Te3 superlattices measured by coherent phonon spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.3611030 – volume: 469 start-page: 322 year: 2004 ident: 10.1016/j.cap.2020.03.019_bib37 article-title: Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.08.142 – volume: 87 start-page: 4130 year: 2000 ident: 10.1016/j.cap.2020.03.019_bib26 article-title: Structural transformations of Ge 2 Sb 2 Te 5 films studied by electrical resistance measurements publication-title: J. Appl. Phys. doi: 10.1063/1.373041 – volume: 7 start-page: 972 year: 2008 ident: 10.1016/j.cap.2020.03.019_bib1 article-title: A map for phase-change materials publication-title: Nat. Mater. doi: 10.1038/nmat2330 – volume: 9 start-page: 8015 year: 2017 ident: 10.1016/j.cap.2020.03.019_bib22 article-title: Ultrafast photocarrier dynamics related to defect states of Si 1− x Ge x nanowires measured by optical pump–THz probe spectroscopy publication-title: Nanoscale doi: 10.1039/C7NR00761B – volume: 87 start-page: 165206 year: 2013 ident: 10.1016/j.cap.2020.03.019_bib7 article-title: Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.165206 – volume: 79 start-page: 174112 year: 2009 ident: 10.1016/j.cap.2020.03.019_bib34 article-title: Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb 2 Te 3 superlattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.174112 – volume: 5 start-page: 3973 year: 2017 ident: 10.1016/j.cap.2020.03.019_bib15 article-title: Modulation of phase change characteristics in Ag-incorporated Ge 2 Sb 2 Te 5 owing to changes in structural distortion and bond strength publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05412A – volume: 5 start-page: 7820 year: 2017 ident: 10.1016/j.cap.2020.03.019_bib31 article-title: Effects of resonant bonding and structural distortion on the phase change properties of Sn 2 Sb 2 Se 5 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01135K – volume: 84 year: 2011 ident: 10.1016/j.cap.2020.03.019_bib9 article-title: Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.094124 – volume: 36 start-page: 354 year: 2006 ident: 10.1016/j.cap.2020.03.019_bib23 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 2 start-page: 2001 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib39 article-title: Structural deformation and void formation driven by phase transformation in the Ge 2 Sb 2 Te 5 film publication-title: J. Mater. Chem. C doi: 10.1039/c3tc31924e – volume: 69 start-page: 2849 year: 1991 ident: 10.1016/j.cap.2020.03.019_bib3 article-title: Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory publication-title: J. Appl. Phys. doi: 10.1063/1.348620 – volume: 6 start-page: 25453 year: 2016 ident: 10.1016/j.cap.2020.03.019_bib41 article-title: Vacancy structures and melting behavior in rock-salt GeSbTe publication-title: Sci. Rep. doi: 10.1038/srep25453 – volume: 86 year: 2012 ident: 10.1016/j.cap.2020.03.019_bib11 article-title: Crystalline GeTe-based phase-change alloys: disorder in order publication-title: Phys. Rev. B – volume: 36 start-page: 681 year: 2004 ident: 10.1016/j.cap.2020.03.019_bib20 article-title: Modelling laser-based table-top THz sources: optical rectification, propagation and electro-optic sampling publication-title: Opt. Quant. Electron. doi: 10.1023/B:OQEL.0000039617.85129.c2 – volume: 34 start-page: 321 year: 1973 ident: 10.1016/j.cap.2020.03.019_bib29 article-title: Nonmetallic crystals with high thermal conductivity publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(73)90092-9 – volume: 136 start-page: 935 year: 2012 ident: 10.1016/j.cap.2020.03.019_bib27 article-title: Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2012.08.024 – volume: 3 start-page: 1707 year: 2015 ident: 10.1016/j.cap.2020.03.019_bib14 article-title: Ultrafast phase change and long durability of BN-incorporated GeSbTe publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02455A – volume: 5 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib18 article-title: Resonant bonding leads to low lattice thermal conductivity publication-title: Nat. Commun. – start-page: 113 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib13 article-title: Thermal properties of in-Sb-Te thin films for phase change memory application doi: 10.4028/www.scientific.net/AST.95.113 – volume: 110 year: 2011 ident: 10.1016/j.cap.2020.03.019_bib25 article-title: A comparative study on electrical transport properties of thin films of Ge1Sb2Te4 and Ge2Sb2Te5 phase-change materials publication-title: J. Appl. Phys. doi: 10.1063/1.3603016 – volume: 4 start-page: 57218 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib28 article-title: Temperature and concentration dependent crystallization behavior of Ge 2 Sb 2 Te 5 phase change films: tungsten doping effects publication-title: RSC Adv. doi: 10.1039/C4RA08790A – volume: 5 start-page: 4086 year: 2014 ident: 10.1016/j.cap.2020.03.019_bib42 article-title: One order of magnitude faster phase change at reduced power in Ti-Sb-Te publication-title: Nat. Commun. doi: 10.1038/ncomms5086 – volume: 91 start-page: 171906 year: 2007 ident: 10.1016/j.cap.2020.03.019_bib6 article-title: Coexistence of tetrahedral-and octahedral-like sites in amorphous phase change materials publication-title: Appl. Phys. Lett. doi: 10.1063/1.2801626 – volume: 18 start-page: 313 year: 2001 ident: 10.1016/j.cap.2020.03.019_bib21 article-title: Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe publication-title: JOSA B doi: 10.1364/JOSAB.18.000313 – volume: 21 start-page: 174205 year: 2009 ident: 10.1016/j.cap.2020.03.019_bib32 article-title: The anharmonic phonon decay rate in group-III nitrides publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/17/174205 – volume: 152 start-page: 852 year: 2012 ident: 10.1016/j.cap.2020.03.019_bib33 article-title: Contrast in terahertz conductivity of phase-change materials publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.02.018 – volume: 21 year: 2009 ident: 10.1016/j.cap.2020.03.019_bib24 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 69 start-page: 104111 year: 2004 ident: 10.1016/j.cap.2020.03.019_bib36 article-title: Structural investigation of GeSb 2 Te 4: a high-speed phase-change material publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.104111 – volume: 3 start-page: 311 year: 2011 ident: 10.1016/j.cap.2020.03.019_bib10 article-title: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy publication-title: Nat. Chem. doi: 10.1038/nchem.1007 – volume: 7 start-page: 653 year: 2008 ident: 10.1016/j.cap.2020.03.019_bib4 article-title: Resonant bonding in crystalline phase-change materials publication-title: Nat. Mater. doi: 10.1038/nmat2226 – volume: 95 year: 2009 ident: 10.1016/j.cap.2020.03.019_bib16 article-title: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3168551 – volume: 52 start-page: 415104 year: 2019 ident: 10.1016/j.cap.2020.03.019_bib17 article-title: Regulating phase change behavior and surface characteristics of Sn15Sb85 thin film by oxygen doping publication-title: J. Phys. Appl. Phys. doi: 10.1088/1361-6463/ab31cb – volume: 6 start-page: 122 year: 2007 ident: 10.1016/j.cap.2020.03.019_bib8 article-title: The role of vacancies and local distortions in the design of new phase-change materials publication-title: Nat. Mater. doi: 10.1038/nmat1807 – volume: 6 year: 2016 ident: 10.1016/j.cap.2020.03.019_bib40 article-title: Thermal and Electrical Conduction of Single-crystal Bi2Te3 Nanostructures grown using a one step process publication-title: Sci. Rep. – volume: 108 start-page: 1408 year: 2008 ident: 10.1016/j.cap.2020.03.019_bib38 article-title: In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2008.05.012 |
SSID | ssj0016404 |
Score | 2.246908 |
Snippet | Ge-Sb-Te pseudo-binary compounds are known to be phase-change materials (PCM). Most of these chalcogenide compounds are candidate for future phase-change... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 807 |
SubjectTerms | 물리학 |
Title | Phase-change properties related to anharmonicity of local structure |
URI | https://dx.doi.org/10.1016/j.cap.2020.03.019 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002595190 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2020, 20(6), , pp.807-816 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76QPAiPrE-yiKehNhNNkmTYymWVrEIWuht2afWQlJqvfrbnclDFMSDp5CwG8K3m5lvd2a-JeQydb4zkQTrB2PqhcZo-Oc4ZjhaZ7k0iSlOa7ifxuNZeDuP5g0yrGthMK2ysv2lTS-sdfWkV6HZWy0WvUdYeWAIOQ1gnrI-VrC3A57GUYu0B5O78fQrmBCHxSmC2N7DDnVws0jz0hJVKwNWSJ2i3s7v7qmZrd03xzPaJTsVY6SD8qP2SMNm-2SryNzUbwdk-PACjsgrC3jpCvfW1yiSSosqFWvoJqcyQ4FqFMEFzk1zRwsPRkvt2Pe1PSSz0c3TcOxVJyN4GujABigxU8rGsQJy4ZLQsjQJEwPciMvAxNxKIE7MKc0iphMV-AA7LKt8l6S-jmWo-BFpZXlmjwnVft8oWCRxlcoQWkibKD_wjZG8HzgTdMhVDYhYlQIYos4MexWAnkD0BOMC0OuQsIZM_BhFAQb6r24XAK9Y6oVAtWu8PudiuRbA6SciRc0xlp78792nZBvvyuyuM9ICZO058IiN6pLm9YffrWbLJ5Tnxgo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EX0Rr3g3iE9CXdr0-ijDsakbggp7C7nqFLox56u_3XPSVhTEB58KbVrKl_ScL813vhByVrjQmURC9IM-DWJjNHxzHBWO1lkuTW78bg2DYdp7jK9HyWiBdJpaGJRV1rG_iuk-Wtdn2jWa7el43L6HmQcuIRcRjFOWYQX7UpzwDHV9Fx9fOg-YDvg9BLF1gM2bpU0v8tISPSsj5o1O0W3n9-S0WM7ct7TTXSdrNV-kl9UrbZAFW26SZa_b1G9bpHP3DGkoqMp36RT_rM_QIpX6GhVr6HxCZYn21GiBC4ybThz1-YtWzrHvM7tNHrtXD51eUO-LEGggA3MgxEwpm6YKqIXLY8uKPM4NMCMuI5NyK4E2Mac0S5jOVRQC6DCpCl1ehDqVseI7pFVOSrtLqA4zo2CKxFUhY2ghba7CKDRG8ixyJtoj5w0gYlrZX4hGF_YiAD2B6AnGBaC3R-IGMvGjDwWE579uOwV4xaseC_S6xuPTRLzOBDD6vijQcYwV-_979glZ6T0MbsVtf3hzQFbxSqXzOiQtQNkeAaOYq2M_Yj4BOKDG1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-change+properties+related+to+anharmonicity+of+local+structure&rft.jtitle=Current+applied+physics&rft.au=Ahn%2C+Min&rft.au=Jeong%2C+Kwang-sik&rft.au=Park%2C+Sungjin&rft.au=Jung%2C+Hoon&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=20&rft.issue=6&rft.spage=807&rft.epage=816&rft_id=info:doi/10.1016%2Fj.cap.2020.03.019&rft.externalDocID=S1567173920300791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |