Mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in the presence of methylglyoxal
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH...
Saved in:
Published in | Archives of biochemistry and biophysics Vol. 733; p. 109485 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH with MGO and to identify the products of the reaction. It was shown that incubation of recombinant human GAPDH with MGO leads to irreversible inactivation of the enzyme, which is accompanied by a decrease in SH-group content by approximately 3.3 per tetramer GAPDH. MALDI-TOF MS analysis showed that the modification of GAPDH with MGO results in the oxidation of the catalytic cysteine residues (Cys152) to form cysteine-sulfinic acid. In addition, 2 arginine residues (R80 and R234) were identified that react with MGO to form hydroimidazolones. Incubation of SH-SY5Y neuroblastoma cells with MGO resulted in the inactivation of GAPDH and inhibition of glycolysis. The mechanism of GAPDH oxidation in the presence of MGO suggests the participation of superoxide anion, which is formed during the reaction of amino groups with methylglyoxal. The role of GAPDH in protection against the damaging effect of ROS in cells in the case of inefficiency of MGO removal by the GSH-dependent glyoxalase system is discussed.
[Display omitted]
•Incubation of GAPDH with methylglyoxal results in irreversible oxidation of Cys152.•The catalytic residue Cys152 is oxidized to form cysteine-sulfinic acid.•Arginine residues R80 and R234 are modified to form hydroimidazolones (MG-H1).•The mechanism of Cys152 oxidation suggests involvement of superoxide anion. |
---|---|
AbstractList | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH with MGO and to identify the products of the reaction. It was shown that incubation of recombinant human GAPDH with MGO leads to irreversible inactivation of the enzyme, which is accompanied by a decrease in SH-group content by approximately 3.3 per tetramer GAPDH. MALDI-TOF MS analysis showed that the modification of GAPDH with MGO results in the oxidation of the catalytic cysteine residues (Cys152) to form cysteine-sulfinic acid. In addition, 2 arginine residues (R80 and R234) were identified that react with MGO to form hydroimidazolones. Incubation of SH-SY5Y neuroblastoma cells with MGO resulted in the inactivation of GAPDH and inhibition of glycolysis. The mechanism of GAPDH oxidation in the presence of MGO suggests the participation of superoxide anion, which is formed during the reaction of amino groups with methylglyoxal. The role of GAPDH in protection against the damaging effect of ROS in cells in the case of inefficiency of MGO removal by the GSH-dependent glyoxalase system is discussed. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH with MGO and to identify the products of the reaction. It was shown that incubation of recombinant human GAPDH with MGO leads to irreversible inactivation of the enzyme, which is accompanied by a decrease in SH-group content by approximately 3.3 per tetramer GAPDH. MALDI-TOF MS analysis showed that the modification of GAPDH with MGO results in the oxidation of the catalytic cysteine residues (Cys152) to form cysteine-sulfinic acid. In addition, 2 arginine residues (R80 and R234) were identified that react with MGO to form hydroimidazolones. Incubation of SH-SY5Y neuroblastoma cells with MGO resulted in the inactivation of GAPDH and inhibition of glycolysis. The mechanism of GAPDH oxidation in the presence of MGO suggests the participation of superoxide anion, which is formed during the reaction of amino groups with methylglyoxal. The role of GAPDH in protection against the damaging effect of ROS in cells in the case of inefficiency of MGO removal by the GSH-dependent glyoxalase system is discussed. [Display omitted] •Incubation of GAPDH with methylglyoxal results in irreversible oxidation of Cys152.•The catalytic residue Cys152 is oxidized to form cysteine-sulfinic acid.•Arginine residues R80 and R234 are modified to form hydroimidazolones (MG-H1).•The mechanism of Cys152 oxidation suggests involvement of superoxide anion. |
ArticleNumber | 109485 |
Author | Barinova, K.V. Muronetz, V.I. Medvedeva, M.V. Schmalhausen, E.V. Melnikova, A.K. Serebryakova, M.V. |
Author_xml | – sequence: 1 givenname: K.V. surname: Barinova fullname: Barinova, K.V. organization: Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 2 givenname: M.V. surname: Serebryakova fullname: Serebryakova, M.V. organization: Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 3 givenname: A.K. surname: Melnikova fullname: Melnikova, A.K. organization: Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 4 givenname: M.V. surname: Medvedeva fullname: Medvedeva, M.V. organization: Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 5 givenname: V.I. surname: Muronetz fullname: Muronetz, V.I. organization: Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 6 givenname: E.V. surname: Schmalhausen fullname: Schmalhausen, E.V. email: shmal@belozersky.msu.ru organization: Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36481268$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEFP3DAQhS0Egl3aH9BLlSOXbD124njVE0K0VKLi0p6tiTPZeJXEwc4i9t_X6UKPPc280XtPmm_Nzkc_EmOfgG-Ag_qy32BdbwQXIultocsztkqLyrnUxTlbcc5lvtUKrtg6xj3nAIUSl-xKqkKDUHrF2p9kOxxdHDLfZm5EO7sXnJ0fF73rj5YC9g11x4ZymU-dj1OHM2V_T8HvaMRIKZjNHWVToEijpSU70Nwd-9TgX7H_wC5a7CN9fJvX7Pe3-193D_nj0_cfd7ePuRVazrmSCJrKWgtZSbQNbiVVoLhQsmihrcC22xZlLVGgKFDXCKrRJMvSctCVldfs5tQ7Bf98oDibwUVLfY8j-UM0oiqlBJACkhVOVht8jIFaMwU3YDga4GbBa_Ym4TULXnPCmzKf3-oP9UDNv8Q7z2T4ejJQevLFUTDRuoVI4wLZ2TTe_af-DzjWjYA |
CitedBy_id | crossref_primary_10_3389_fmolb_2023_1256963 crossref_primary_10_1016_j_redox_2023_102843 crossref_primary_10_1016_j_abb_2024_110065 crossref_primary_10_3103_S0027131424700056 crossref_primary_10_55959_MSU0579_9384_2_2024_65_2_128_135 |
Cites_doi | 10.1177/1479164117715855 10.1042/CS20050026 10.2174/0929867325666180530101057 10.1074/jbc.273.39.25272 10.1016/j.dsx.2020.08.037 10.1016/0306-3623(95)02054-3 10.1016/0304-4165(91)90241-8 10.1016/j.pep.2017.06.009 10.1134/S0006297917080028 10.3233/JAD-2010-1375 10.1021/bi500046t 10.1016/S0003-9861(02)00222-9 10.1016/S0006-291X(05)80875-7 10.1016/j.freeradbiomed.2011.05.004 10.1042/bst0311400 10.1196/annals.1333.017 10.1016/S0006-291X(88)80330-9 10.1016/S0021-9258(18)31635-1 10.1016/0167-4838(89)90181-7 10.1016/S1874-6047(08)60239-5 10.1111/j.1749-6632.2001.tb05634.x 10.1039/C6MT00235H 10.1021/ac402384y 10.1007/s10719-016-9709-8 10.1111/j.1432-1033.1993.tb17638.x 10.1080/152165401317190824 10.1016/S09254439(02)00219-3 10.1152/physrev.00001.2019 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.abb.2022.109485 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1096-0384 |
EndPage | 109485 |
ExternalDocumentID | 10_1016_j_abb_2022_109485 36481268 S000398612200371X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLW IH2 IHE J1W KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 ~02 ~G- AAHBH AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM RIG .55 .GJ .HR 3O- 53G AAQXK AAYXX ABEFU ABFNM ABXDB ADFGL ADMUD AGHFR AGRDE AHHHB AI. ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ K-O MVM NEJ OHT R2- SBG SEW UQL VH1 WUQ X7M XOL XPP YYP ZGI ZMT ZXP ~KM 7X8 |
ID | FETCH-LOGICAL-c283t-63a18e5b82373acda93e71602634f1f71cf9fa3b3a2a24a8ba16d8e355c0187c3 |
IEDL.DBID | AIKHN |
ISSN | 0003-9861 |
IngestDate | Thu Oct 24 23:24:41 EDT 2024 Thu Sep 26 16:07:18 EDT 2024 Sat Sep 28 08:18:34 EDT 2024 Fri Feb 23 02:40:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PBS MG-H1 DTT Superoxide EDTA Methylglyoxal GA-3-P Hydroimidazolone MGO SH-groups ROS Diabetes GAPDH |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-63a18e5b82373acda93e71602634f1f71cf9fa3b3a2a24a8ba16d8e355c0187c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36481268 |
PQID | 2753311321 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2753311321 crossref_primary_10_1016_j_abb_2022_109485 pubmed_primary_36481268 elsevier_sciencedirect_doi_10_1016_j_abb_2022_109485 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Archives of biochemistry and biophysics |
PublicationTitleAlternate | Arch Biochem Biophys |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lee, Howell, Sanford, Beisswenger (bib15) 2005; 1043 Xue, Ray, Singer, Böhme, Burz, Rai, Hoffmann, Shekhtman (bib8) 2014; 53 Muronetz, Melnikova, Saso, Schmalhausen (bib12) 2020; 27 Sugamura, Keaney (bib28) 2011; 51 Rabbani, Ashour, Thornalley (bib7) 2016; 33 Asryants, Kuzminskaya, Tishkov, Douzhenkova, Nagradova (bib13) 1989; 997 Danshina, Schmalhausen, Avetisyan, Muronetz (bib18) 2001; 51 Schalkwijk, Stehouwer (bib5) 2020; 100 Thornalley (bib2) 1996; 27 Berlanga, Cibrian, Guillén, Freyre, Alba, Lopez-Saura, Merino, Aldama, Quintela, Triana, Montequin, Ajamieh, Urquiza, Ahmed, Thornalley (bib4) 2005; 109 Beisswenger, Howell, Smith, Szwergold (bib26) 2003; 1637 Lo, Westwood, McLellan, Selwood, Thornalley (bib6) 1994; 269 Ramirez Segovia, Wrobel, Acevedo Aguilar, Corrales Escobosa, Wrobel (bib10) 2017; 9 Lee, Yim, Chock, Yim, Kang (bib23) 1998; 273 Bora, Adole, Motupalli, Pandit, Vinod (bib27) 2020; 14 Barinova, Eldarov, Khomyakova, Muronetz, Schmalhausen (bib17) 2017; 137 Ishibashi, Matsui, Nakamura, Sotokawauchi, Higashimoto, Yamagishi (bib9) 2017; 14 Mullarkey, Edelstein, Brownlee (bib22) 1990; 173 Kuzminskaya, Asryants, Nagradova (bib14) 1991; 1075 Phillips, Thornalley (bib1) 1993; 212 Yim, Yim, Lee, Kang, Chock (bib24) 2001; 928 Harris, Waters (bib11) 1976 Bourajjaj, Stehouwer, van Hinsbergh, Schalkwijk (bib3) 2003; 31 Butterfield, Hardas, Lange (bib20) 2010; 20 Hicks, Delbridge, Yue, Reeve (bib21) 1988; 151 Chumsae, Gifford, Lian, Liu, Radziejewski, Zhou (bib19) 2013; 85 Muronetz, Melnikova, Seferbekova, Barinova, Schmalhausen (bib25) 2017; 82 Morgan, Dean, Davies (bib16) 2002; 403 Danshina (10.1016/j.abb.2022.109485_bib18) 2001; 51 Muronetz (10.1016/j.abb.2022.109485_bib12) 2020; 27 Sugamura (10.1016/j.abb.2022.109485_bib28) 2011; 51 Hicks (10.1016/j.abb.2022.109485_bib21) 1988; 151 Mullarkey (10.1016/j.abb.2022.109485_bib22) 1990; 173 Muronetz (10.1016/j.abb.2022.109485_bib25) 2017; 82 Lee (10.1016/j.abb.2022.109485_bib15) 2005; 1043 Morgan (10.1016/j.abb.2022.109485_bib16) 2002; 403 Kuzminskaya (10.1016/j.abb.2022.109485_bib14) 1991; 1075 Rabbani (10.1016/j.abb.2022.109485_bib7) 2016; 33 Lee (10.1016/j.abb.2022.109485_bib23) 1998; 273 Yim (10.1016/j.abb.2022.109485_bib24) 2001; 928 Harris (10.1016/j.abb.2022.109485_bib11) 1976 Thornalley (10.1016/j.abb.2022.109485_bib2) 1996; 27 Barinova (10.1016/j.abb.2022.109485_bib17) 2017; 137 Butterfield (10.1016/j.abb.2022.109485_bib20) 2010; 20 Bourajjaj (10.1016/j.abb.2022.109485_bib3) 2003; 31 Phillips (10.1016/j.abb.2022.109485_bib1) 1993; 212 Chumsae (10.1016/j.abb.2022.109485_bib19) 2013; 85 Lo (10.1016/j.abb.2022.109485_bib6) 1994; 269 Ishibashi (10.1016/j.abb.2022.109485_bib9) 2017; 14 Beisswenger (10.1016/j.abb.2022.109485_bib26) 2003; 1637 Berlanga (10.1016/j.abb.2022.109485_bib4) 2005; 109 Schalkwijk (10.1016/j.abb.2022.109485_bib5) 2020; 100 Asryants (10.1016/j.abb.2022.109485_bib13) 1989; 997 Bora (10.1016/j.abb.2022.109485_bib27) 2020; 14 Xue (10.1016/j.abb.2022.109485_bib8) 2014; 53 Ramirez Segovia (10.1016/j.abb.2022.109485_bib10) 2017; 9 |
References_xml | – volume: 31 start-page: 1400 year: 2003 end-page: 1402 ident: bib3 article-title: Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus publication-title: Biochem. Soc. Trans. contributor: fullname: Schalkwijk – volume: 100 start-page: 407 year: 2020 end-page: 461 ident: bib5 article-title: Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases publication-title: Physiol. Rev. contributor: fullname: Stehouwer – volume: 33 start-page: 553 year: 2016 end-page: 568 ident: bib7 article-title: Mass spectrometric determination of early and advanced glycation in biology publication-title: Glycoconj. J. contributor: fullname: Thornalley – volume: 20 start-page: 369 year: 2010 end-page: 393 ident: bib20 article-title: Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration publication-title: J Alzheimers Dis contributor: fullname: Lange – volume: 109 start-page: 83 year: 2005 end-page: 95 ident: bib4 article-title: Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds publication-title: Clin. Sci. contributor: fullname: Thornalley – volume: 403 start-page: 259 year: 2002 end-page: 269 ident: bib16 article-title: Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products publication-title: Arch. Biochem. Biophys. contributor: fullname: Davies – volume: 151 start-page: 649 year: 1988 end-page: 655 ident: bib21 article-title: Catalysis of lipid peroxidation by glucose and glycosylated collagen publication-title: Biochem. Biophys. Res. Commun. contributor: fullname: Reeve – volume: 51 start-page: 978 year: 2011 end-page: 992 ident: bib28 article-title: Reactive oxygen species in cardiovascular disease publication-title: Free Radic. Biol. Med. contributor: fullname: Keaney – volume: 997 start-page: 159 year: 1989 end-page: 166 ident: bib13 article-title: An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase publication-title: Biochim. Biophys. Acta contributor: fullname: Nagradova – volume: 53 start-page: 3327 year: 2014 end-page: 3335 ident: bib8 article-title: The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs publication-title: Biochemistry contributor: fullname: Shekhtman – volume: 82 start-page: 874 year: 2017 end-page: 886 ident: bib25 article-title: Glycation, glycolysis, and neurodegenerative diseases: is there any connection? publication-title: Biochemistry (Mosc.) contributor: fullname: Schmalhausen – volume: 212 start-page: 101 year: 1993 end-page: 105 ident: bib1 article-title: The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal publication-title: Eur. J. Biochem. contributor: fullname: Thornalley – volume: 27 start-page: 2040 year: 2020 end-page: 2058 ident: bib12 article-title: Influence of oxidative stress on catalytic and non-glycolytic functions of glyceraldehyde-3-phosphate dehydrogenase publication-title: Curr. Med. Chem. contributor: fullname: Schmalhausen – volume: 51 start-page: 309 year: 2001 end-page: 314 ident: bib18 article-title: Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis publication-title: IUBMB Life contributor: fullname: Muronetz – volume: 173 start-page: 932 year: 1990 end-page: 939 ident: bib22 article-title: Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes publication-title: Biochem. Biophys. Res. Commun. contributor: fullname: Brownlee – volume: 1075 start-page: 123 year: 1991 end-page: 130 ident: bib14 article-title: Rabbit muscle tetrameric D-glyceraldehyde-3-phosphate dehydrogenase is locked in the asymmetric state by chemical modification of a single arginine per subunit publication-title: Biochim. Biophys. Acta contributor: fullname: Nagradova – volume: 1637 start-page: 98 year: 2003 end-page: 106 ident: bib26 article-title: Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes publication-title: Biochim. Biophys. Acta contributor: fullname: Szwergold – volume: 14 start-page: 1751 year: 2020 end-page: 1755 ident: bib27 article-title: Association between carbonyl stress markers and the risk of acute coronary syndrome in patients with type 2 diabetes mellitus-A pilot study publication-title: Diabetes Metabol. Syndr. contributor: fullname: Vinod – volume: 9 start-page: 132 year: 2017 end-page: 140 ident: bib10 article-title: Effect of Cu(ii) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach publication-title: Metallomics contributor: fullname: Wrobel – volume: 27 start-page: 565 year: 1996 end-page: 573 ident: bib2 article-title: Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy publication-title: Gen. Pharmacol. contributor: fullname: Thornalley – volume: 269 start-page: 32299 year: 1994 end-page: 32305 ident: bib6 article-title: Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin publication-title: J. Biol. Chem. contributor: fullname: Thornalley – volume: 14 start-page: 450 year: 2017 end-page: 453 ident: bib9 article-title: Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products publication-title: Diabetes Vasc. Dis. Res. contributor: fullname: Yamagishi – volume: 137 start-page: 1 year: 2017 end-page: 6 ident: bib17 article-title: Isolation of recombinant human untagged glyceraldehyde-3-phosphate dehydrogenase from E. coli producer strain, Protein Expr publication-title: Purif contributor: fullname: Schmalhausen – volume: 273 start-page: 25272 year: 1998 end-page: 25278 ident: bib23 article-title: Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation publication-title: J. Biol. Chem. contributor: fullname: Kang – volume: 1043 start-page: 135 year: 2005 end-page: 145 ident: bib15 article-title: Methylglyoxal can modify GAPDH activity and structure publication-title: Ann. N. Y. Acad. Sci. contributor: fullname: Beisswenger – volume: 928 start-page: 48 year: 2001 end-page: 53 ident: bib24 article-title: Protein glycation: creation of catalytic sites for free radical generation publication-title: Ann. N. Y. Acad. Sci. contributor: fullname: Chock – start-page: 1 year: 1976 end-page: 50 ident: bib11 article-title: Glyceraldehyde-3-phosphate dehydrogenase publication-title: The Enzymes contributor: fullname: Waters – volume: 85 start-page: 11401 year: 2013 end-page: 11409 ident: bib19 article-title: Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species publication-title: Anal. Chem. contributor: fullname: Zhou – volume: 14 start-page: 450 year: 2017 ident: 10.1016/j.abb.2022.109485_bib9 article-title: Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164117715855 contributor: fullname: Ishibashi – volume: 109 start-page: 83 year: 2005 ident: 10.1016/j.abb.2022.109485_bib4 article-title: Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds publication-title: Clin. Sci. doi: 10.1042/CS20050026 contributor: fullname: Berlanga – volume: 27 start-page: 2040 year: 2020 ident: 10.1016/j.abb.2022.109485_bib12 article-title: Influence of oxidative stress on catalytic and non-glycolytic functions of glyceraldehyde-3-phosphate dehydrogenase publication-title: Curr. Med. Chem. doi: 10.2174/0929867325666180530101057 contributor: fullname: Muronetz – volume: 273 start-page: 25272 year: 1998 ident: 10.1016/j.abb.2022.109485_bib23 article-title: Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.39.25272 contributor: fullname: Lee – volume: 14 start-page: 1751 year: 2020 ident: 10.1016/j.abb.2022.109485_bib27 article-title: Association between carbonyl stress markers and the risk of acute coronary syndrome in patients with type 2 diabetes mellitus-A pilot study publication-title: Diabetes Metabol. Syndr. doi: 10.1016/j.dsx.2020.08.037 contributor: fullname: Bora – volume: 27 start-page: 565 year: 1996 ident: 10.1016/j.abb.2022.109485_bib2 article-title: Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy publication-title: Gen. Pharmacol. doi: 10.1016/0306-3623(95)02054-3 contributor: fullname: Thornalley – volume: 1075 start-page: 123 year: 1991 ident: 10.1016/j.abb.2022.109485_bib14 article-title: Rabbit muscle tetrameric D-glyceraldehyde-3-phosphate dehydrogenase is locked in the asymmetric state by chemical modification of a single arginine per subunit publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(91)90241-8 contributor: fullname: Kuzminskaya – volume: 137 start-page: 1 year: 2017 ident: 10.1016/j.abb.2022.109485_bib17 article-title: Isolation of recombinant human untagged glyceraldehyde-3-phosphate dehydrogenase from E. coli producer strain, Protein Expr publication-title: Purif doi: 10.1016/j.pep.2017.06.009 contributor: fullname: Barinova – volume: 82 start-page: 874 year: 2017 ident: 10.1016/j.abb.2022.109485_bib25 article-title: Glycation, glycolysis, and neurodegenerative diseases: is there any connection? publication-title: Biochemistry (Mosc.) doi: 10.1134/S0006297917080028 contributor: fullname: Muronetz – volume: 20 start-page: 369 year: 2010 ident: 10.1016/j.abb.2022.109485_bib20 article-title: Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration publication-title: J Alzheimers Dis doi: 10.3233/JAD-2010-1375 contributor: fullname: Butterfield – volume: 53 start-page: 3327 year: 2014 ident: 10.1016/j.abb.2022.109485_bib8 article-title: The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs publication-title: Biochemistry doi: 10.1021/bi500046t contributor: fullname: Xue – volume: 403 start-page: 259 year: 2002 ident: 10.1016/j.abb.2022.109485_bib16 article-title: Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products publication-title: Arch. Biochem. Biophys. doi: 10.1016/S0003-9861(02)00222-9 contributor: fullname: Morgan – volume: 173 start-page: 932 year: 1990 ident: 10.1016/j.abb.2022.109485_bib22 article-title: Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(05)80875-7 contributor: fullname: Mullarkey – volume: 51 start-page: 978 year: 2011 ident: 10.1016/j.abb.2022.109485_bib28 article-title: Reactive oxygen species in cardiovascular disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.05.004 contributor: fullname: Sugamura – volume: 31 start-page: 1400 year: 2003 ident: 10.1016/j.abb.2022.109485_bib3 article-title: Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0311400 contributor: fullname: Bourajjaj – volume: 1043 start-page: 135 year: 2005 ident: 10.1016/j.abb.2022.109485_bib15 article-title: Methylglyoxal can modify GAPDH activity and structure publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1333.017 contributor: fullname: Lee – volume: 151 start-page: 649 year: 1988 ident: 10.1016/j.abb.2022.109485_bib21 article-title: Catalysis of lipid peroxidation by glucose and glycosylated collagen publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(88)80330-9 contributor: fullname: Hicks – volume: 269 start-page: 32299 year: 1994 ident: 10.1016/j.abb.2022.109485_bib6 article-title: Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)31635-1 contributor: fullname: Lo – volume: 997 start-page: 159 year: 1989 ident: 10.1016/j.abb.2022.109485_bib13 article-title: An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(89)90181-7 contributor: fullname: Asryants – start-page: 1 year: 1976 ident: 10.1016/j.abb.2022.109485_bib11 article-title: Glyceraldehyde-3-phosphate dehydrogenase doi: 10.1016/S1874-6047(08)60239-5 contributor: fullname: Harris – volume: 928 start-page: 48 year: 2001 ident: 10.1016/j.abb.2022.109485_bib24 article-title: Protein glycation: creation of catalytic sites for free radical generation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2001.tb05634.x contributor: fullname: Yim – volume: 9 start-page: 132 year: 2017 ident: 10.1016/j.abb.2022.109485_bib10 article-title: Effect of Cu(ii) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach publication-title: Metallomics doi: 10.1039/C6MT00235H contributor: fullname: Ramirez Segovia – volume: 85 start-page: 11401 year: 2013 ident: 10.1016/j.abb.2022.109485_bib19 article-title: Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species publication-title: Anal. Chem. doi: 10.1021/ac402384y contributor: fullname: Chumsae – volume: 33 start-page: 553 year: 2016 ident: 10.1016/j.abb.2022.109485_bib7 article-title: Mass spectrometric determination of early and advanced glycation in biology publication-title: Glycoconj. J. doi: 10.1007/s10719-016-9709-8 contributor: fullname: Rabbani – volume: 212 start-page: 101 year: 1993 ident: 10.1016/j.abb.2022.109485_bib1 article-title: The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17638.x contributor: fullname: Phillips – volume: 51 start-page: 309 year: 2001 ident: 10.1016/j.abb.2022.109485_bib18 article-title: Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis publication-title: IUBMB Life doi: 10.1080/152165401317190824 contributor: fullname: Danshina – volume: 1637 start-page: 98 year: 2003 ident: 10.1016/j.abb.2022.109485_bib26 article-title: Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes publication-title: Biochim. Biophys. Acta doi: 10.1016/S09254439(02)00219-3 contributor: fullname: Beisswenger – volume: 100 start-page: 407 year: 2020 ident: 10.1016/j.abb.2022.109485_bib5 article-title: Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases publication-title: Physiol. Rev. doi: 10.1152/physrev.00001.2019 contributor: fullname: Schalkwijk |
SSID | ssj0011462 |
Score | 2.4720523 |
Snippet | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 109485 |
SubjectTerms | Cysteine - metabolism Diabetes GAPDH Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry Humans Hydroimidazolone Magnesium Oxide Methylglyoxal Neuroblastoma Pyruvaldehyde ROS Superoxide |
Title | Mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in the presence of methylglyoxal |
URI | https://dx.doi.org/10.1016/j.abb.2022.109485 https://www.ncbi.nlm.nih.gov/pubmed/36481268 https://search.proquest.com/docview/2753311321 |
Volume | 733 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BEWIv06CwdRvISBMPSAFip6nz2FVDBQRPq9Q3y3ZsWtQmUT-k9YW_nbMTIyGxPewtsXyJ5Tvd_e585wP4gVacq4TnUcapjhIbq0hZlOXcYWfDLee-f8r9QzocJbfj7ngLBqEWxqVVNrq_1uleWzcjl81uXlbTqavxvWIZRwtN_b1z423YQXNEUbR3-jd3w4fXwwRUBjQ0znME4XDTp3lJpdBLpNTdq5S4jsrvm6e_wU9vhq4_wccGP5J-vcR92DLFAbT7BfrO8w05Iz6j04fKD2D3Z3jaG4S-bm2w98ZV-06Xc1JaMi1cZUMdl3Xvj7ON9mEqM9nkJmJRNSmX1QQRKfFDixIlDi0fEhLEjqTy5UvaOFrXjXozwy-Uf-TsEEbXv34PhlHTbSHSCDFWUcpkzE1XudtrmNS5zJhBZwp9NIYstL1Y28xKppikkiaSKxmnOTeIV7Rr7KfZEbSKsjBfgCge6xSHeM_kSYY7jAge52b4IWt7vbwD52GTRVVfqiFCttmTwPnCcUTUHOlAEtgg3kiGQKX_L7LTwDKBG-yOQWRhyvVSUPTQWIxeeNyBzzUvX1fB0gQRT8q__t9Pv8EH146-DtF8h9ZqsTbHCFpW6gS2L57jk0Y0XwBmxOp2 |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xpgleJgbbKB-bJ017mJSVxCZ1HqEa6jbKE0h9s2zHpp1KEtEi0Zf97dw5MdKksQfeEstOrLuT73fn-wD4jFpcGiHLpJCZTYRPTWI8ynJJ2NlJL2XonzK-yEdX4ufkeLIGw5gLQ2GV3dnfnunhtO5G-h01-81sRjm-R7yQqKGzUHdu8gJeCio3jkL97c9jnAdl3WaxbR5Nj1ebIchLG4M2YpZRVSVB_ZT_rZyeAp9BCZ1twesOPbKTdoNvYM1V27BzUqHlfLNiX1iI5wyO8m14dRqfNoaxq9sO-LGjXN_Z4obVns0qymtovbL0fj1f2eCkctNV6RKeNNN60UwRj7IwdFujvKHew4UMkSNrQvKSdbSWelGv5viF-l7P38LV2ffL4Sjpei0kFgHGMsm5TqU7NlS7hmtb6oI7NKXQQuPIQD9IrS-85obrTGdCS6PTvJQO0Yqltn6Wv4P1qq7cLjAjU5vjkBy4UhRIYcTvOLfAD3k_GJQ9-BqJrJq2pIaKsWa_Fc5XxBHVcqQHIrJB_SUXCo_8_y37FFmmkMB0CaIrV98tVIb2GU_RBk978L7l5eMueC4Q7-Ry73k__Qgbo8vxuTr_cfFrHzapMX3rrDmA9eXtnTtE-LI0H4J4PgCE6etP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+inactivation+of+glyceraldehyde-3-phosphate+dehydrogenase+in+the+presence+of+methylglyoxal&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Barinova%2C+K.V.&rft.au=Serebryakova%2C+M.V.&rft.au=Melnikova%2C+A.K.&rft.au=Medvedeva%2C+M.V.&rft.date=2023-01-01&rft.issn=0003-9861&rft.volume=733&rft.spage=109485&rft_id=info:doi/10.1016%2Fj.abb.2022.109485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_abb_2022_109485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon |