Estimating inestimable standard errors in population pharmacokinetic studies: The bootstrap with winsorization

A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulate...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of drug metabolism and pharmacokinetics Vol. 27; no. 3; pp. 213 - 224
Main Authors Ette, Ene I., Onyiah, Leonard C.
Format Journal Article
LanguageEnglish
Published France 01.07.2002
Subjects
Online AccessGet full text
ISSN0378-7966
2107-0180
DOI10.1007/BF03190460

Cover

Abstract A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes.
AbstractList A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes.A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes.
A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes.
Author Ette, Ene I.
Onyiah, Leonard C.
Author_xml – sequence: 1
  givenname: Ene I.
  surname: Ette
  fullname: Ette, Ene I.
– sequence: 2
  givenname: Leonard C.
  surname: Onyiah
  fullname: Onyiah, Leonard C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12365204$$D View this record in MEDLINE/PubMed
BookMark eNplkcFOwzAMhiM0xMbYhQdAPXFAKjhJm7TcYNoACYnLOFdpmrJA25QkFYKnJ2wDJPDBTuTvt_Tbh2jUmU4hdIzhHAPwi-slUJxDwmAPTQgGHgPOYIQmQHkW85yxMZo59wwhaJanKTtAY0woSwkkE9QtnNet8Lp7inSnNp-yUZHzoquErSJlrbEu9KLe9EMTSBOea2FbIc1LkHgtAz1UWrnLaLVWUWmMd96KPnrTfh1S54zVHxvlEdqvRePUbFen6HG5WM1v4_uHm7v51X0sSUZ9nGaUsZrJOoUSq6TiOeEZS4Qsa5aWvEyTWiVYiZzWVKqkTAgmhAOmnIOQUNEpOt3O7a15HYKtotVOqqYRnTKDKzjBKYUsC-DJDhzKVlVFb8MC7HvxvaEAwBaQ1jhnVV1I7TdegkXdFBiKrzsUv3cIkrM_kp-p_-FPIo-I9g
CitedBy_id crossref_primary_10_1111_bcp_15310
crossref_primary_10_1111_j_1600_0447_2005_00660_x
crossref_primary_10_1097_MJT_0b013e31816b8c85
crossref_primary_10_1177_0091270010363809
crossref_primary_10_1007_s11095_005_2499_5
crossref_primary_10_1128_AAC_02387_18
crossref_primary_10_1002_jcph_66
crossref_primary_10_1002_jcph_1051
crossref_primary_10_1345_aph_1E260
crossref_primary_10_1016_j_psyneuen_2017_12_019
crossref_primary_10_1177_0091270008318218
crossref_primary_10_1292_jvms_17_0250
crossref_primary_10_1007_s40262_015_0245_7
crossref_primary_10_1208_s12248_014_9645_0
crossref_primary_10_1177_0091270009337947
crossref_primary_10_1016_j_jvc_2016_08_001
crossref_primary_10_1007_s00280_014_2621_7
crossref_primary_10_1208_aapsj070124
crossref_primary_10_1002_jcph_1617
crossref_primary_10_1007_s00228_008_0493_7
crossref_primary_10_1007_s10928_016_9496_7
crossref_primary_10_1016_j_bbmt_2019_04_017
crossref_primary_10_1002_cpdd_689
crossref_primary_10_1007_s10928_013_9343_z
crossref_primary_10_1007_s11747_023_00937_3
crossref_primary_10_1111_j_1365_2125_2007_02974_x
crossref_primary_10_1128_AAC_06446_11
crossref_primary_10_1007_s00228_009_0730_8
crossref_primary_10_3389_fphar_2024_1342947
crossref_primary_10_1111_j_1365_2125_2009_03479_x
crossref_primary_10_1016_j_jtherbio_2004_10_003
crossref_primary_10_1177_0091270007310383
crossref_primary_10_1177_0091270010366146
crossref_primary_10_1093_jac_dkae276
crossref_primary_10_1038_s41598_018_34674_3
crossref_primary_10_1038_clpt_2009_282
crossref_primary_10_1177_0091270011420566
crossref_primary_10_3389_fphar_2022_844567
Cites_doi 10.2307/2532734
10.1214/aos/1176345637
10.2307/2532087
10.1007/BF03190400
10.1002/j.1552-4604.1997.tb04326.x
10.1214/aos/1176343240
10.1080/01621459.1986.10478291
10.3109/10601339609035949
10.1214/aos/1176346500
10.1007/978-1-4899-4541-9
10.1023/A:1016215116835
10.1046/j.1365-2125.1996.04231.x
10.1214/ss/1177013815
10.1214/aos/1176344552
10.1016/S0010-4825(96)00031-5
10.1177/00912700122009809
10.1007/BF03192320
10.1007/BF01061728
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/BF03190460
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2107-0180
EndPage 224
ExternalDocumentID 12365204
10_1007_BF03190460
Genre Journal Article
GroupedDBID ---
.GJ
06D
0R~
0VY
1N0
2.D
2KG
2VQ
30V
4.4
406
408
40D
53G
5GY
67N
96X
AAAUJ
AABHQ
AACDK
AAEWM
AAIAL
AAIKX
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYXX
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABKMS
ABPLI
ABQBU
ABTKH
ABTMW
ABWHX
ABXPI
ACAOD
ACBXY
ACCOQ
ACDTI
ACGFS
ACKNC
ACMLO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADYPR
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEYRQ
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIXLP
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AVWKF
AWSVR
AXYYD
AYFIA
AZFZN
BBWZM
BGNMA
CITATION
CSCUP
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FLLZZ
FNLPD
FRRFC
FSGXE
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NQJWS
NU0
O9-
P2P
R9I
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SBY
SCLPG
SHX
SISQX
SJYHP
SNPRN
SNX
SOHCF
SOJ
SPKJE
SRMVM
SSLCW
T13
TSG
U2A
U9L
UG4
UTJUX
UZXMN
VC2
VDBLX
VFIZW
W48
WK8
Z45
~A9
~JE
-EM
2JN
ADFZG
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
NPM
SNE
Z7U
Z87
7X8
ABRTQ
ID FETCH-LOGICAL-c283t-58366f6cf50b1e4d7927864acbf65b7b54fe41ea93f3ce4b421227013770ac0d3
ISSN 0378-7966
IngestDate Fri Sep 05 00:02:54 EDT 2025
Wed Feb 19 02:43:38 EST 2025
Tue Jul 01 04:04:04 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c283t-58366f6cf50b1e4d7927864acbf65b7b54fe41ea93f3ce4b421227013770ac0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12365204
PQID 72153088
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_72153088
pubmed_primary_12365204
crossref_citationtrail_10_1007_BF03190460
crossref_primary_10_1007_BF03190460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-07-01
PublicationDateYYYYMMDD 2002-07-01
PublicationDate_xml – month: 07
  year: 2002
  text: 2002-07-01
  day: 01
PublicationDecade 2000
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle European journal of drug metabolism and pharmacokinetics
PublicationTitleAlternate Eur J Drug Metab Pharmacokinet
PublicationYear 2002
References RC Schoemaker (BF03190460_CR6) 1996; 42
EI Ette (BF03190460_CR12) 1996; 26
EI Ette (BF03190460_CR21) 1995; 12
CD Jones (BF03190460_CR13) 1996; 13
P Bickel (BF03190460_CR15) 1981; 9
EI Ette (BF03190460_CR10) 1997; 37
B Efron (BF03190460_CR8) 1986; 1
EI Ette (BF03190460_CR22) 2001; 41
RR Wilcox (BF03190460_CR19) 1997
EF Vonesh (BF03190460_CR5) 1992; 48
B Efron (BF03190460_CR9) 1986; 81
B Efron (BF03190460_CR11) 1993
EO Fadiran (BF03190460_CR17) 2000; 25
MJ Lindstrom (BF03190460_CR4) 1990; 46
M Davidian (BF03190460_CR3) 1995
E Zintzaras (BF03190460_CR14) 2002; 27
LB Sheiner (BF03190460_CR2) 1977; 5
P Bickel (BF03190460_CR16) 1984; 12
AM Mood (BF03190460_CR1) 1974
(BF03190460_CR18) 1992
PJ Bickel (BF03190460_CR20) 1975; 3
B Efron (BF03190460_CR7) 1979; 7
2242409 - Biometrics. 1990 Sep;46(3):673-87
925881 - J Pharmacokinet Biopharm. 1977 Oct;5(5):445-79
9208355 - J Clin Pharmacol. 1997 Jun;37(6):486-95
11144991 - J Clin Pharmacol. 2001 Jan;41(1):25-34
1581479 - Biometrics. 1992 Mar;48(1):1-17
8997544 - Comput Biol Med. 1996 Nov;26(6):505-12
8786955 - Pharm Res. 1995 Dec;12(12):1845-55
11420896 - Eur J Drug Metab Pharmacokinet. 2000 Jul-Dec;25(3-4):231-9
8877017 - Br J Clin Pharmacol. 1996 Sep;42(3):283-90
11996322 - Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):11-6
References_xml – volume: 48
  start-page: 1
  year: 1992
  ident: BF03190460_CR5
  publication-title: Biometrics
  doi: 10.2307/2532734
– volume-title: Introduction to the Theory of Statistics
  year: 1974
  ident: BF03190460_CR1
– volume: 9
  start-page: 1196
  year: 1981
  ident: BF03190460_CR15
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345637
– volume: 46
  start-page: 673
  year: 1990
  ident: BF03190460_CR4
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume: 27
  start-page: 11
  year: 2002
  ident: BF03190460_CR14
  publication-title: Eur J Drug Metab Pharmacokinet
  doi: 10.1007/BF03190400
– volume: 37
  start-page: 486
  year: 1997
  ident: BF03190460_CR10
  publication-title: J Clin Pharmacol
  doi: 10.1002/j.1552-4604.1997.tb04326.x
– volume: 3
  start-page: 1045
  year: 1975
  ident: BF03190460_CR20
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343240
– volume: 81
  start-page: 461
  year: 1986
  ident: BF03190460_CR9
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478291
– volume: 13
  start-page: 133
  issue: 3&4
  year: 1996
  ident: BF03190460_CR13
  publication-title: Clin Res Regul Affairs
  doi: 10.3109/10601339609035949
– volume: 12
  start-page: 470
  year: 1984
  ident: BF03190460_CR16
  publication-title: Ann Stat
  doi: 10.1214/aos/1176346500
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: BF03190460_CR11
  doi: 10.1007/978-1-4899-4541-9
– volume-title: Nonlinear Models for Repeated Measurement Data
  year: 1995
  ident: BF03190460_CR3
– volume: 12
  start-page: 1845
  issue: 12
  year: 1995
  ident: BF03190460_CR21
  publication-title: Pharm Res
  doi: 10.1023/A:1016215116835
– volume: 42
  start-page: 283
  year: 1996
  ident: BF03190460_CR6
  publication-title: Br J Clin Pharmacol
  doi: 10.1046/j.1365-2125.1996.04231.x
– volume: 1
  start-page: 54
  year: 1986
  ident: BF03190460_CR8
  publication-title: Stat Sci
  doi: 10.1214/ss/1177013815
– volume: 7
  start-page: 1
  year: 1979
  ident: BF03190460_CR7
  publication-title: Ann Statist
  doi: 10.1214/aos/1176344552
– volume: 26
  start-page: 505
  year: 1996
  ident: BF03190460_CR12
  publication-title: Computers Biol Med
  doi: 10.1016/S0010-4825(96)00031-5
– volume-title: Introduction to Robust Estimation and Hypothesis Testing
  year: 1997
  ident: BF03190460_CR19
– volume: 41
  start-page: 25
  issue: 1
  year: 2001
  ident: BF03190460_CR22
  publication-title: J Clin Pharmacol
  doi: 10.1177/00912700122009809
– volume-title: NONMEM Users Guides
  year: 1992
  ident: BF03190460_CR18
– volume: 25
  start-page: 231
  year: 2000
  ident: BF03190460_CR17
  publication-title: Eur J Drug Metab Pharmacokinet
  doi: 10.1007/BF03192320
– volume: 5
  start-page: 445
  year: 1977
  ident: BF03190460_CR2
  publication-title: J Pharmacokinet Biopharm
  doi: 10.1007/BF01061728
– reference: 8877017 - Br J Clin Pharmacol. 1996 Sep;42(3):283-90
– reference: 8786955 - Pharm Res. 1995 Dec;12(12):1845-55
– reference: 9208355 - J Clin Pharmacol. 1997 Jun;37(6):486-95
– reference: 11420896 - Eur J Drug Metab Pharmacokinet. 2000 Jul-Dec;25(3-4):231-9
– reference: 1581479 - Biometrics. 1992 Mar;48(1):1-17
– reference: 11996322 - Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):11-6
– reference: 8997544 - Comput Biol Med. 1996 Nov;26(6):505-12
– reference: 925881 - J Pharmacokinet Biopharm. 1977 Oct;5(5):445-79
– reference: 11144991 - J Clin Pharmacol. 2001 Jan;41(1):25-34
– reference: 2242409 - Biometrics. 1990 Sep;46(3):673-87
SSID ssj0000389556
Score 1.7542465
Snippet A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 213
SubjectTerms Clinical Trials, Phase I as Topic - statistics & numerical data
Models, Biological
Models, Statistical
Pharmacokinetics
Population
Reference Values
Sampling Studies
Software
Statistics as Topic
Statistics, Nonparametric
Title Estimating inestimable standard errors in population pharmacokinetic studies: The bootstrap with winsorization
URI https://www.ncbi.nlm.nih.gov/pubmed/12365204
https://www.proquest.com/docview/72153088
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKduGCGBtQfs0SaBJiQV1ixwm3aeo0TYPt0IrdSuw407SRVWl6KH_93osdu6laCbhEbZImbb6vzueX975HyKeYR1xJJgIFt9eAqTgMYGYrg5QxpVRSyCjDieL3H_HZmJ1f8-te79dS1tK8ll_Vn7V1Jf-DKqwDXLFK9h-QdQeFFfAa8IUlIAzLv8J4CP9PVJxNWYpu3mAhlAsP6KrCXjqYKO76dH2ZWrPqO_gIurXOTCZhm-ABqrvG8MfUhGh_YnVYZYs1N4bxraTNq_kN9qQGYt23zTdWTuclfG0a8w1B5brI7WW5uM2aQM-FhikC_ISTTljCp7C6ciyYnorUtFRph1pjA2ApFXXGzWjteD5wWeogXJjpPLAE7PR3gyw6yPDQtDFecc9uNz0h26EQzYP8cXjsonBoL8i5eaBtv2_Xw9aeF71l7ZG6AmbDrKRRJ6Pn5JmdVtBjw5Ed0tPlC3JwZa794pCOfJnd7JAe0CvvWL7YJaUnEl0iEm2JRA2RYBv1RKIryFJLpG8UaEQdjSjSiHZotEfGp8PRyVlgG3EECtRnjZV5cVzEquADeaRZLtJQJDHLlCxiLoXkrNDsSGdpVERKM4lZBqFozCwHmRrk0UuyVT6U-jWhIlEcTRBzGAMYyMckT3WiclDlBc_CQvTJ5_bqTpR1qcdmKfeT1l_bg9InH92-U-PNsnav_RakCQyd-DwsK_XDfDYRIHcjuMv2ySuDnT-KxfrNxi1vyVPP-ndkq67m-j3I01p-aBj2COW_kz0
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+inestimable+standard+errors+in+population+pharmacokinetic+studies%3A+the+bootstrap+with+Winsorization&rft.jtitle=European+journal+of+drug+metabolism+and+pharmacokinetics&rft.au=Ette%2C+Ene+I&rft.au=Onyiah%2C+Leonard+C&rft.date=2002-07-01&rft.issn=0378-7966&rft.volume=27&rft.issue=3&rft.spage=213&rft_id=info:doi/10.1007%2FBF03190460&rft_id=info%3Apmid%2F12365204&rft.externalDocID=12365204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7966&client=summon