Estimating inestimable standard errors in population pharmacokinetic studies: The bootstrap with winsorization
A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulate...
Saved in:
Published in | European journal of drug metabolism and pharmacokinetics Vol. 27; no. 3; pp. 213 - 224 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
France
01.07.2002
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-7966 2107-0180 |
DOI | 10.1007/BF03190460 |
Cover
Abstract | A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes. |
---|---|
AbstractList | A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes.A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes. A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the NONMEM software on data from small sample size phase I studies. Plausible sets of concentration-time data for nineteen subjects were simulated using an incomplete longitudinal population pharmacokinetic study design, and parameters of a drug in development that exhibits two compartment linear pharmacokinetics with single dose first order input. They were analyzed with the NONMEM program. Standard errors for model parameters were computed from the simulated parameter values to serve as true standard errors of estimates. The nonparametric bootstrap approach was used to generate replicate data sets from the simulated data and analyzed with NONMEM. Because of the sensitivity of the bootstrap to extreme values, winsorization was applied to parameter estimates. Winsorized mean parameters and their standard errors were computed and compared with their true values as well as the non-winsorized estimates. Percent bias was used to judge the performance of the bootstrap approach (with or without winsorization) in estimating inestimable standard errors of population pharmacokinetic parameters. Winsorized standard error estimates were generally more accurate than non-winsorized estimates because the distribution of most parameter estimates were skewed, sometimes with heavy tails. Using the bootstrap approach combined with winsorization, inestimable robust standard errors can be obtained for NONMEM estimated population pharmacokinetic parameters with > or = 150 bootstrap replicates. This approach was also applied to a real data set and a similar outcome was obtained. This investigation provides a structural framework for estimating inestimable standard errors when NONMEM is used for population pharmacokinetic modeling involving small sample sizes. |
Author | Ette, Ene I. Onyiah, Leonard C. |
Author_xml | – sequence: 1 givenname: Ene I. surname: Ette fullname: Ette, Ene I. – sequence: 2 givenname: Leonard C. surname: Onyiah fullname: Onyiah, Leonard C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12365204$$D View this record in MEDLINE/PubMed |
BookMark | eNplkcFOwzAMhiM0xMbYhQdAPXFAKjhJm7TcYNoACYnLOFdpmrJA25QkFYKnJ2wDJPDBTuTvt_Tbh2jUmU4hdIzhHAPwi-slUJxDwmAPTQgGHgPOYIQmQHkW85yxMZo59wwhaJanKTtAY0woSwkkE9QtnNet8Lp7inSnNp-yUZHzoquErSJlrbEu9KLe9EMTSBOea2FbIc1LkHgtAz1UWrnLaLVWUWmMd96KPnrTfh1S54zVHxvlEdqvRePUbFen6HG5WM1v4_uHm7v51X0sSUZ9nGaUsZrJOoUSq6TiOeEZS4Qsa5aWvEyTWiVYiZzWVKqkTAgmhAOmnIOQUNEpOt3O7a15HYKtotVOqqYRnTKDKzjBKYUsC-DJDhzKVlVFb8MC7HvxvaEAwBaQ1jhnVV1I7TdegkXdFBiKrzsUv3cIkrM_kp-p_-FPIo-I9g |
CitedBy_id | crossref_primary_10_1111_bcp_15310 crossref_primary_10_1111_j_1600_0447_2005_00660_x crossref_primary_10_1097_MJT_0b013e31816b8c85 crossref_primary_10_1177_0091270010363809 crossref_primary_10_1007_s11095_005_2499_5 crossref_primary_10_1128_AAC_02387_18 crossref_primary_10_1002_jcph_66 crossref_primary_10_1002_jcph_1051 crossref_primary_10_1345_aph_1E260 crossref_primary_10_1016_j_psyneuen_2017_12_019 crossref_primary_10_1177_0091270008318218 crossref_primary_10_1292_jvms_17_0250 crossref_primary_10_1007_s40262_015_0245_7 crossref_primary_10_1208_s12248_014_9645_0 crossref_primary_10_1177_0091270009337947 crossref_primary_10_1016_j_jvc_2016_08_001 crossref_primary_10_1007_s00280_014_2621_7 crossref_primary_10_1208_aapsj070124 crossref_primary_10_1002_jcph_1617 crossref_primary_10_1007_s00228_008_0493_7 crossref_primary_10_1007_s10928_016_9496_7 crossref_primary_10_1016_j_bbmt_2019_04_017 crossref_primary_10_1002_cpdd_689 crossref_primary_10_1007_s10928_013_9343_z crossref_primary_10_1007_s11747_023_00937_3 crossref_primary_10_1111_j_1365_2125_2007_02974_x crossref_primary_10_1128_AAC_06446_11 crossref_primary_10_1007_s00228_009_0730_8 crossref_primary_10_3389_fphar_2024_1342947 crossref_primary_10_1111_j_1365_2125_2009_03479_x crossref_primary_10_1016_j_jtherbio_2004_10_003 crossref_primary_10_1177_0091270007310383 crossref_primary_10_1177_0091270010366146 crossref_primary_10_1093_jac_dkae276 crossref_primary_10_1038_s41598_018_34674_3 crossref_primary_10_1038_clpt_2009_282 crossref_primary_10_1177_0091270011420566 crossref_primary_10_3389_fphar_2022_844567 |
Cites_doi | 10.2307/2532734 10.1214/aos/1176345637 10.2307/2532087 10.1007/BF03190400 10.1002/j.1552-4604.1997.tb04326.x 10.1214/aos/1176343240 10.1080/01621459.1986.10478291 10.3109/10601339609035949 10.1214/aos/1176346500 10.1007/978-1-4899-4541-9 10.1023/A:1016215116835 10.1046/j.1365-2125.1996.04231.x 10.1214/ss/1177013815 10.1214/aos/1176344552 10.1016/S0010-4825(96)00031-5 10.1177/00912700122009809 10.1007/BF03192320 10.1007/BF01061728 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/BF03190460 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2107-0180 |
EndPage | 224 |
ExternalDocumentID | 12365204 10_1007_BF03190460 |
Genre | Journal Article |
GroupedDBID | --- .GJ 06D 0R~ 0VY 1N0 2.D 2KG 2VQ 30V 4.4 406 408 40D 53G 5GY 67N 96X AAAUJ AABHQ AACDK AAEWM AAIAL AAIKX AAJKR AANXM AANZL AARHV AARTL AASML AATNV AAWCG AAYIU AAYOK AAYQN AAYTO AAYXX AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABKMS ABPLI ABQBU ABTKH ABTMW ABWHX ABXPI ACAOD ACBXY ACCOQ ACDTI ACGFS ACKNC ACMLO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKPE ADRFC ADURQ ADYPR ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEYRQ AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFWTZ AFZKB AGAYW AGDGC AGJBK AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AIXLP AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AVWKF AWSVR AXYYD AYFIA AZFZN BBWZM BGNMA CITATION CSCUP DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FLLZZ FNLPD FRRFC FSGXE GGRSB GJIRD GNWQR GQ7 H13 HF~ HMJXF HRMNR HVGLF HZ~ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NQJWS NU0 O9- P2P R9I RLLFE ROL RSV S1Z S27 S3A S3B SBL SBY SCLPG SHX SISQX SJYHP SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW T13 TSG U2A U9L UG4 UTJUX UZXMN VC2 VDBLX VFIZW W48 WK8 Z45 ~A9 ~JE -EM 2JN ADFZG ADINQ CGR CUY CVF ECM EIF GQ6 NPM SNE Z7U Z87 7X8 ABRTQ |
ID | FETCH-LOGICAL-c283t-58366f6cf50b1e4d7927864acbf65b7b54fe41ea93f3ce4b421227013770ac0d3 |
ISSN | 0378-7966 |
IngestDate | Fri Sep 05 00:02:54 EDT 2025 Wed Feb 19 02:43:38 EST 2025 Tue Jul 01 04:04:04 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c283t-58366f6cf50b1e4d7927864acbf65b7b54fe41ea93f3ce4b421227013770ac0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12365204 |
PQID | 72153088 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_72153088 pubmed_primary_12365204 crossref_citationtrail_10_1007_BF03190460 crossref_primary_10_1007_BF03190460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-07-01 |
PublicationDateYYYYMMDD | 2002-07-01 |
PublicationDate_xml | – month: 07 year: 2002 text: 2002-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | European journal of drug metabolism and pharmacokinetics |
PublicationTitleAlternate | Eur J Drug Metab Pharmacokinet |
PublicationYear | 2002 |
References | RC Schoemaker (BF03190460_CR6) 1996; 42 EI Ette (BF03190460_CR12) 1996; 26 EI Ette (BF03190460_CR21) 1995; 12 CD Jones (BF03190460_CR13) 1996; 13 P Bickel (BF03190460_CR15) 1981; 9 EI Ette (BF03190460_CR10) 1997; 37 B Efron (BF03190460_CR8) 1986; 1 EI Ette (BF03190460_CR22) 2001; 41 RR Wilcox (BF03190460_CR19) 1997 EF Vonesh (BF03190460_CR5) 1992; 48 B Efron (BF03190460_CR9) 1986; 81 B Efron (BF03190460_CR11) 1993 EO Fadiran (BF03190460_CR17) 2000; 25 MJ Lindstrom (BF03190460_CR4) 1990; 46 M Davidian (BF03190460_CR3) 1995 E Zintzaras (BF03190460_CR14) 2002; 27 LB Sheiner (BF03190460_CR2) 1977; 5 P Bickel (BF03190460_CR16) 1984; 12 AM Mood (BF03190460_CR1) 1974 (BF03190460_CR18) 1992 PJ Bickel (BF03190460_CR20) 1975; 3 B Efron (BF03190460_CR7) 1979; 7 2242409 - Biometrics. 1990 Sep;46(3):673-87 925881 - J Pharmacokinet Biopharm. 1977 Oct;5(5):445-79 9208355 - J Clin Pharmacol. 1997 Jun;37(6):486-95 11144991 - J Clin Pharmacol. 2001 Jan;41(1):25-34 1581479 - Biometrics. 1992 Mar;48(1):1-17 8997544 - Comput Biol Med. 1996 Nov;26(6):505-12 8786955 - Pharm Res. 1995 Dec;12(12):1845-55 11420896 - Eur J Drug Metab Pharmacokinet. 2000 Jul-Dec;25(3-4):231-9 8877017 - Br J Clin Pharmacol. 1996 Sep;42(3):283-90 11996322 - Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):11-6 |
References_xml | – volume: 48 start-page: 1 year: 1992 ident: BF03190460_CR5 publication-title: Biometrics doi: 10.2307/2532734 – volume-title: Introduction to the Theory of Statistics year: 1974 ident: BF03190460_CR1 – volume: 9 start-page: 1196 year: 1981 ident: BF03190460_CR15 publication-title: Ann Stat doi: 10.1214/aos/1176345637 – volume: 46 start-page: 673 year: 1990 ident: BF03190460_CR4 publication-title: Biometrics doi: 10.2307/2532087 – volume: 27 start-page: 11 year: 2002 ident: BF03190460_CR14 publication-title: Eur J Drug Metab Pharmacokinet doi: 10.1007/BF03190400 – volume: 37 start-page: 486 year: 1997 ident: BF03190460_CR10 publication-title: J Clin Pharmacol doi: 10.1002/j.1552-4604.1997.tb04326.x – volume: 3 start-page: 1045 year: 1975 ident: BF03190460_CR20 publication-title: Ann Stat doi: 10.1214/aos/1176343240 – volume: 81 start-page: 461 year: 1986 ident: BF03190460_CR9 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1986.10478291 – volume: 13 start-page: 133 issue: 3&4 year: 1996 ident: BF03190460_CR13 publication-title: Clin Res Regul Affairs doi: 10.3109/10601339609035949 – volume: 12 start-page: 470 year: 1984 ident: BF03190460_CR16 publication-title: Ann Stat doi: 10.1214/aos/1176346500 – volume-title: An Introduction to the Bootstrap year: 1993 ident: BF03190460_CR11 doi: 10.1007/978-1-4899-4541-9 – volume-title: Nonlinear Models for Repeated Measurement Data year: 1995 ident: BF03190460_CR3 – volume: 12 start-page: 1845 issue: 12 year: 1995 ident: BF03190460_CR21 publication-title: Pharm Res doi: 10.1023/A:1016215116835 – volume: 42 start-page: 283 year: 1996 ident: BF03190460_CR6 publication-title: Br J Clin Pharmacol doi: 10.1046/j.1365-2125.1996.04231.x – volume: 1 start-page: 54 year: 1986 ident: BF03190460_CR8 publication-title: Stat Sci doi: 10.1214/ss/1177013815 – volume: 7 start-page: 1 year: 1979 ident: BF03190460_CR7 publication-title: Ann Statist doi: 10.1214/aos/1176344552 – volume: 26 start-page: 505 year: 1996 ident: BF03190460_CR12 publication-title: Computers Biol Med doi: 10.1016/S0010-4825(96)00031-5 – volume-title: Introduction to Robust Estimation and Hypothesis Testing year: 1997 ident: BF03190460_CR19 – volume: 41 start-page: 25 issue: 1 year: 2001 ident: BF03190460_CR22 publication-title: J Clin Pharmacol doi: 10.1177/00912700122009809 – volume-title: NONMEM Users Guides year: 1992 ident: BF03190460_CR18 – volume: 25 start-page: 231 year: 2000 ident: BF03190460_CR17 publication-title: Eur J Drug Metab Pharmacokinet doi: 10.1007/BF03192320 – volume: 5 start-page: 445 year: 1977 ident: BF03190460_CR2 publication-title: J Pharmacokinet Biopharm doi: 10.1007/BF01061728 – reference: 8877017 - Br J Clin Pharmacol. 1996 Sep;42(3):283-90 – reference: 8786955 - Pharm Res. 1995 Dec;12(12):1845-55 – reference: 9208355 - J Clin Pharmacol. 1997 Jun;37(6):486-95 – reference: 11420896 - Eur J Drug Metab Pharmacokinet. 2000 Jul-Dec;25(3-4):231-9 – reference: 1581479 - Biometrics. 1992 Mar;48(1):1-17 – reference: 11996322 - Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):11-6 – reference: 8997544 - Comput Biol Med. 1996 Nov;26(6):505-12 – reference: 925881 - J Pharmacokinet Biopharm. 1977 Oct;5(5):445-79 – reference: 11144991 - J Clin Pharmacol. 2001 Jan;41(1):25-34 – reference: 2242409 - Biometrics. 1990 Sep;46(3):673-87 |
SSID | ssj0000389556 |
Score | 1.7542465 |
Snippet | A simulation study was performed to determine how inestimable standard errors could be obtained when population pharmacokinetic analysis is performed with the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 213 |
SubjectTerms | Clinical Trials, Phase I as Topic - statistics & numerical data Models, Biological Models, Statistical Pharmacokinetics Population Reference Values Sampling Studies Software Statistics as Topic Statistics, Nonparametric |
Title | Estimating inestimable standard errors in population pharmacokinetic studies: The bootstrap with winsorization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/12365204 https://www.proquest.com/docview/72153088 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKduGCGBtQfs0SaBJiQV1ixwm3aeo0TYPt0IrdSuw407SRVWl6KH_93osdu6laCbhEbZImbb6vzueX975HyKeYR1xJJgIFt9eAqTgMYGYrg5QxpVRSyCjDieL3H_HZmJ1f8-te79dS1tK8ll_Vn7V1Jf-DKqwDXLFK9h-QdQeFFfAa8IUlIAzLv8J4CP9PVJxNWYpu3mAhlAsP6KrCXjqYKO76dH2ZWrPqO_gIurXOTCZhm-ABqrvG8MfUhGh_YnVYZYs1N4bxraTNq_kN9qQGYt23zTdWTuclfG0a8w1B5brI7WW5uM2aQM-FhikC_ISTTljCp7C6ciyYnorUtFRph1pjA2ApFXXGzWjteD5wWeogXJjpPLAE7PR3gyw6yPDQtDFecc9uNz0h26EQzYP8cXjsonBoL8i5eaBtv2_Xw9aeF71l7ZG6AmbDrKRRJ6Pn5JmdVtBjw5Ed0tPlC3JwZa794pCOfJnd7JAe0CvvWL7YJaUnEl0iEm2JRA2RYBv1RKIryFJLpG8UaEQdjSjSiHZotEfGp8PRyVlgG3EECtRnjZV5cVzEquADeaRZLtJQJDHLlCxiLoXkrNDsSGdpVERKM4lZBqFozCwHmRrk0UuyVT6U-jWhIlEcTRBzGAMYyMckT3WiclDlBc_CQvTJ5_bqTpR1qcdmKfeT1l_bg9InH92-U-PNsnav_RakCQyd-DwsK_XDfDYRIHcjuMv2ySuDnT-KxfrNxi1vyVPP-ndkq67m-j3I01p-aBj2COW_kz0 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+inestimable+standard+errors+in+population+pharmacokinetic+studies%3A+the+bootstrap+with+Winsorization&rft.jtitle=European+journal+of+drug+metabolism+and+pharmacokinetics&rft.au=Ette%2C+Ene+I&rft.au=Onyiah%2C+Leonard+C&rft.date=2002-07-01&rft.issn=0378-7966&rft.volume=27&rft.issue=3&rft.spage=213&rft_id=info:doi/10.1007%2FBF03190460&rft_id=info%3Apmid%2F12365204&rft.externalDocID=12365204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7966&client=summon |