Detecting deep axisymmetric toroidal magnetic fields in stars The traditional approximation of rotation for differentially rotating deep spherical shells with a general azimuthal magnetic field
Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 661; p. A133 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered
Maxwell
stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field.
Aims.
The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves.
Methods.
We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings.
Results.
We find that toroidal magnetic fields induce a shift in the period spacings of gravity (
g
) and Rossby (
r
) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 10
5
G leads to signatures that are detectable in period spacings for high-radial-order
g
and
r
modes in
γ
Doradus (
γ
Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt.
Conclusions.
The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in
γ
Dor and SPB stars on
g
and
r
modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from
Kepler
, TESS CVZ, and PLATO. |
---|---|
AbstractList | Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field.Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves.Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings.Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity (g) and Rossby (r) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 105 G leads to signatures that are detectable in period spacings for high-radial-order g and r modes in γ Doradus (γ Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt.Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in γ Dor and SPB stars on g and r modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler, TESS CVZ, and PLATO. Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field. Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves. Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings. Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity ( g ) and Rossby ( r ) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 10 5 G leads to signatures that are detectable in period spacings for high-radial-order g and r modes in γ Doradus ( γ Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt. Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in γ Dor and SPB stars on g and r modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler , TESS CVZ, and PLATO. |
Author | Van Reeth, T. Bugnet, L. Mathis, S. Aerts, C. Dhouib, H. |
Author_xml | – sequence: 1 givenname: H. orcidid: 0000-0002-3545-5123 surname: Dhouib fullname: Dhouib, H. – sequence: 2 givenname: S. orcidid: 0000-0001-9491-8012 surname: Mathis fullname: Mathis, S. – sequence: 3 givenname: L. orcidid: 0000-0003-0142-4000 surname: Bugnet fullname: Bugnet, L. – sequence: 4 givenname: T. orcidid: 0000-0003-2771-1745 surname: Van Reeth fullname: Van Reeth, T. – sequence: 5 givenname: C. orcidid: 0000-0003-1822-7126 surname: Aerts fullname: Aerts, C. |
BackLink | https://cea.hal.science/cea-03673186$$DView record in HAL |
BookMark | eNp9kLtOAzEQRS0UJJLAF9BsS7HEj7V3XVBE4RGklWigtibecTDaR2RbiPw9GwVSUFCN7ujcGenMyKQfeiTkmtFbRiVbUEqLXAnFFpxyVnAt1RmZskLwnJaFmpDpibggsxg_xshZJabk7h4T2uT7bdYg7jL48nHfdZiCt1kawuAbaLMOtj2mceM8tk3MfJ_FBCFeknMHbcSrnzknb48Pr6t1Xr88Pa-WdW55JVLOgYGl0EjGnXIgbWGpolprVKqRqnFCl3ID5aaQsgKnbLlRyGRVVahp6UDMyc3x7ju0Zhd8B2FvBvBmvayNRTBUqFKwSn2ykdVH1oYhxoDOWJ8g-aFPAXxrGDUHZ-ZgxByMmJOzsSv-dH-f_df6Bhbvb4s |
CitedBy_id | crossref_primary_10_1051_0004_6361_202245597 crossref_primary_10_1007_s11214_023_01000_x crossref_primary_10_1051_0004_6361_202244365 crossref_primary_10_1051_0004_6361_202347196 crossref_primary_10_1051_0004_6361_202244247 crossref_primary_10_1051_0004_6361_202348243 crossref_primary_10_1051_0004_6361_202348575 crossref_primary_10_1093_mnras_stad1424 crossref_primary_10_1051_0004_6361_202450508 crossref_primary_10_1051_0004_6361_202245460 crossref_primary_10_3390_galaxies11020040 crossref_primary_10_1093_mnras_stad3461 |
Cites_doi | 10.1051/0004-6361:200500156 10.1086/421454 10.1051/0004-6361:20011465 10.1051/0004-6361/201118322 10.1093/mnras/163.1.77 10.1051/0004-6361/201424585 10.3847/1538-4357/aaa3f7 10.1051/0004-6361:20031491 10.1007/s41116-019-0020-1 10.1088/0067-0049/220/1/15 10.3847/1538-4365/ab2241 10.3847/1538-4357/aaff65 10.1093/mnras/stu2696 10.1007/978-3-540-76949-1 10.1051/0004-6361/201832718 10.1093/mnras/stw2717 10.1051/0004-6361/201936830 10.1086/177012 10.1017/S1743921315004524 10.1051/0004-6361/201937398 10.1093/mnrasl/slw050 10.1046/j.1365-8711.2003.06612.x 10.1051/0004-6361/201527556 10.5194/gmd-9-1477-2016 10.1051/0004-6361/201526125 10.1017/S0022112067000515 10.1111/j.1365-2966.2009.15618.x 10.1051/0004-6361/200911996 10.1093/mnras/stw705 10.1051/0004-6361/202141152 10.1051/0004-6361/201322779 10.1093/mnras/staa2250 10.1103/RevModPhys.93.015001 10.1051/0004-6361/201220796 10.1051/0004-6361/202040174 10.1126/science.aac6933 10.1093/mnras/stu1329 10.1007/978-1-4020-5803-5 10.1117/1.JATIS.1.1.014003 10.3847/2041-8213/aa8a62 10.1051/0004-6361/201116518 10.1093/mnras/stv2368 10.1051/0004-6361/201832642 10.1051/0004-6361/202039180 10.3847/1538-4357/ab8d36 10.1093/mnras/stz412 10.1051/0004-6361/201629814 10.1051/0004-6361:20065903 10.1051/0004-6361/201732317 10.1051/0004-6361/202039464 10.1086/173357 10.1051/0004-6361/201219729 10.1093/mnras/stz3308 10.3847/1538-4357/ab9e70 10.1146/annurev-astro-091918-104359 10.1093/mnras/stw3273 10.1051/0004-6361:20053261 10.1093/mnras/stab482 10.1093/mnras/sty406 10.1126/science.1185402 10.1051/0004-6361/201936653 10.1051/0004-6361/201321210 10.1111/j.1365-2966.2009.15955.x 10.1051/0004-6361/202039543 10.1051/0004-6361/201935754 10.1017/S0022112072000655 10.1051/0004-6361/201832607 10.1051/0004-6361/201628616 10.1093/mnras/stv2568 10.1051/0004-6361/201935462 10.1093/mnras/stab991 10.3847/1538-4357/ab3924 10.1088/0067-0049/208/1/4 10.1086/312533 10.1088/0004-637X/691/1/L41 10.1007/s11207-011-9771-0 10.1051/0004-6361/201117573 10.1051/0004-6361/202039148 10.1051/0004-6361:20041282 10.1093/mnras/stz514 10.1051/0004-6361:20077653 10.1007/s10686-014-9383-4 10.1086/676406 10.1111/j.1365-2966.2008.13218.x 10.1080/03091928708208816 10.1038/s41550-021-01351-x 10.1088/0004-637X/788/1/93 10.1093/mnras/161.4.365 10.1111/j.1365-2966.2011.18583.x 10.1051/0004-6361:20077781 10.1051/0004-6361/201220211 10.1088/0067-0049/192/1/3 10.1051/0004-6361/201937363 10.1093/mnras/stt913 10.1088/0004-637X/810/1/16 10.1086/304980 10.3847/1538-4365/aaa5a8 10.1051/0004-6361:200809411 10.1051/0004-6361/202037828 10.1093/mnras/226.1.123 10.1051/0004-6361/201015571 10.1038/nature10612 10.1111/j.1365-2966.2008.13112.x 10.1093/mnras/staa1823 10.1051/0004-6361:20078189 10.1038/nature02934 10.1051/0004-6361/200913496 10.1051/0004-6361/201935509 10.1046/j.1365-8711.2002.04961.x 10.1086/311328 10.1093/mnrasl/slx023 10.1017/S0022112099006308 10.1093/mnras/101.8.367 10.1051/0004-6361/202140615 10.1093/mnrasl/slv130 10.1093/mnras/staa581 10.1093/mnras/sts517 10.1086/157448 10.1038/nature08864 10.1093/mnras/sts109 10.1086/171653 10.1017/S0022112067002447 10.1038/s41550-021-01448-3 10.1051/0004-6361/201935639 10.1111/j.1365-2966.2008.14034.x 10.1051/0004-6361/201321779 10.1093/mnras/stx2962 10.1038/29472 10.1086/429868 10.1051/0004-6361/200810544 10.1088/0004-637X/703/2/1819 10.1051/0004-6361:20052640 10.1080/03091928908219525 10.1111/j.1365-2966.2012.21933.x 10.1093/mnras/stv538 10.1051/0004-6361/202039159 10.1051/0004-6361/202039515 10.1093/mnras/stz2551 10.3847/1538-4357/aa7b33 10.1088/2041-8205/724/1/L34 10.1002/asna.201612408 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1051/0004-6361/202142956 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_HAL_cea_03673186v1 10_1051_0004_6361_202142956 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 1XC VOOES |
ID | FETCH-LOGICAL-c283t-2a1ac0ad512f6fa5c4c060999e66d56df3975ba7b4558af6c7b6e15888e907fa3 |
ISSN | 0004-6361 |
IngestDate | Wed Aug 20 06:51:28 EDT 2025 Tue Jul 01 03:53:59 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | waves methods: analytical stars: oscillations stars: magnetic field magnetohydrodynamics (MHD) stars: rotation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c283t-2a1ac0ad512f6fa5c4c060999e66d56df3975ba7b4558af6c7b6e15888e907fa3 |
ORCID | 0000-0003-1822-7126 0000-0003-2771-1745 0000-0001-9491-8012 0000-0003-0142-4000 0000-0002-3545-5123 |
OpenAccessLink | https://cea.hal.science/cea-03673186 |
ParticipantIDs | hal_primary_oai_HAL_cea_03673186v1 crossref_citationtrail_10_1051_0004_6361_202142956 crossref_primary_10_1051_0004_6361_202142956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2022 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Suijs (R147) 2008; 481 Ouazzani (R117) 2017; 465 Lignières (R85) 2009; 500 Maeder (R92) 2003; 411 Eggenberger (R53) 2012; 544 Mestel (R105) 1987; 226 Miglio (R108) 2008; 386 Mankovich (R95) 2021; 5 R24 Lee (R83) 2020; 497 Aerts (R5) 2019; 57 Pedersen (R127) 2021; 5 Dhouib (R45) 2021; 656 Duez (R47) 2010; 517 Tayler (R150) 1980; 191 R1 Prat (R131) 2020; 636 R3 Meynet (R106) 2000; 361 Strugarek (R146) 2011; 532 Henneco (R72) 2021; 648 Rudraiah (R136) 1972; 54 Spruit (R145) 2002; 381 Saio (R140) 2021; 502 Shibahashi (R142) 2000; 531 Rauer (R133) 2016; 337 Asai (R11) 2015; 449 Michielsen (R107) 2019; 628 Mathis (R99) 2011; 526 Alecian (R8) 2013; 549 Eggenberger (R52) 2005; 440 Debras (R41) 2019; 872 Bouchaud (R23) 2020; 633 Alvan (R9) 2013; 553 R39 Maeder (R93) 2005; 440 Akgün (R7) 2013; 433 Briquet (R33) 2013; 557 Beck (R16) 2012; 481 Loi (R88) 2021; 504 R103 Deheuvels (R43) 2014; 564 Jouve (R75) 2020; 641 Bildsten (R17) 1996; 460 Braithwaite (R31) 2004; 431 Braithwaite (R29) 2009; 397 Loi (R86) 2020; 496 Neiner (R115) 2017; 468 Braithwaite (R26) 2006; 453 Saio (R139) 2015; 447 Howell (R73) 2014; 126 Bouabid (R22) 2013; 429 Mathis (R98) 2009; 506 Fuller (R60) 2019; 485 Lee (R82) 1997; 491 Pedersen (R126) 2018; 614 Pápics (R120) 2017; 598 García (R62) 2019; 16 Malkus (R94) 1967; 28 Charbonneau (R38) 1993; 417 Neiner (R113) 2015; 454 Dhouib (R44) 2021; 652 Murphy (R112) 2016; 459 Dintrans (R46) 1999; 398 Duez (R48) 2010; 724 R51 Borucki (R21) 2010; 327 Braginskiy (R25) 1967; 7 Degroote (R42) 2010; 464 Mathis (R102) 2005; 440 Wade (R158) 2016; 456 Loi (R89) 2020; 491 R58 Heng (R71) 2009; 703 Paxton (R125) 2019; 243 Dumont (R50) 2021; 646 Fuller (R59) 2015; 350 Rauer (R132) 2014; 38 Gough (R69) 1998; 394 Prat (R130) 2019; 627 Astoul (R13) 2021; 647 Aurière (R14) 2007; 475 Spruit (R144) 1999; 349 R129 Paxton (R121) 2011; 192 Aerts (R4) 2017; 847 Braithwaite (R28) 2008; 386 Loi (R87) 2020; 493 Mombarg (R110) 2022; 895 Ouazzani (R118) 2019; 626 Rogers (R135) 2010; 401 Van Reeth (R156) 2016; 593 Kurtz (R77) 2014; 444 Duez (R49) 2010; 402 R68 Li (R84) 2020; 491 Booker (R20) 1967; 27 Cantiello (R37) 2014; 788 Triana (R151) 2015; 810 Goldreich (R66) 1979; 233 Lee (R80) 2018; 476 Zahn (R161) 2007; 474 Morel (R111) 2014; 157 Mathis (R104) 2021; 647 R114 Garaud (R61) 2002; 329 Schatzman (R141) 1993; 271 Jermyn (R74) 2020; 900 Paxton (R123) 2015; 220 Braithwaite (R27) 2007; 469 Lecoanet (R79) 2017; 466 Mombarg (R109) 2021; 650 Zaqarashvili (R162) 2009; 691 Petit (R128) 2011; 532 Asai (R12) 2016; 455 Aerts (R2) 2021; 93 Eggenberger (R54) 2019; 626 R78 Van Beeck (R154) 2020; 638 Mathis (R100) 2012; 540 Mathis (R101) 2019; 631 Ouazzani (R119) 2020; 640 Marques (R97) 2013; 549 Ogilvie (R116) 2004; 610 Briquet (R32) 2012; 427 Gellert (R64) 2008; 479 Ricker (R134) 2015; 1 Gaurat (R63) 2015; 580 Barnes (R15) 1998; 498 Gellert (R65) 2011; 414 Saio (R138) 2018; 474 Van Reeth (R155) 2015; 574 Cantiello (R36) 2019; 883 Goode (R67) 1992; 395 Tayler (R149) 1973; 161 Shultz (R143) 2019; 490 Wang (R159) 2016; 9 Paxton (R122) 2013; 208 Bugnet (R34) 2021; 650 Blazère (R18) 2016; 459 Friedlander (R57) 1989; 48 Watts (R160) 2003; 342 R152 Cowling (R40) 1941; 101 R153 Lee (R81) 2019; 484 Kiefer (R76) 2018; 854 R137 Van Reeth (R157) 2018; 618 Braithwaite (R30) 2013; 428 R91 R10 Blazère (R19) 2016; 586 Markey (R96) 1973; 163 Emeriau-Viard (R55) 2017; 846 MacGregor (R90) 2011; 270 Friedlander (R56) 1987; 39 Takata (R148) 1994; 46 Paxton (R124) 2018; 234 Ahuir (R6) 2021; 651 Buysschaert (R35) 2018; 616 Heger (R70) 2005; 626 |
References_xml | – volume: 440 start-page: L9 year: 2005 ident: R52 publication-title: A&A doi: 10.1051/0004-6361:200500156 – volume: 610 start-page: 477 year: 2004 ident: R116 publication-title: ApJ doi: 10.1086/421454 – volume: 381 start-page: 923 year: 2002 ident: R145 publication-title: A&A doi: 10.1051/0004-6361:20011465 – volume: 540 start-page: A37 year: 2012 ident: R100 publication-title: A&A doi: 10.1051/0004-6361/201118322 – volume: 163 start-page: 77 year: 1973 ident: R96 publication-title: MNRAS doi: 10.1093/mnras/163.1.77 – volume: 574 start-page: A17 year: 2015 ident: R155 publication-title: A&A doi: 10.1051/0004-6361/201424585 – volume: 854 start-page: 74 year: 2018 ident: R76 publication-title: ApJ doi: 10.3847/1538-4357/aaa3f7 – volume: 411 start-page: 543 year: 2003 ident: R92 publication-title: A&A doi: 10.1051/0004-6361:20031491 – volume: 16 start-page: 4 year: 2019 ident: R62 publication-title: Liv. Rev. Solar Phys. doi: 10.1007/s41116-019-0020-1 – volume: 157 start-page: 27 year: 2014 ident: R111 publication-title: The Messenger – ident: R1 – ident: R10 – volume: 191 start-page: 151 year: 1980 ident: R150 publication-title: MNRAS – volume: 220 start-page: 15 year: 2015 ident: R123 publication-title: ApJS doi: 10.1088/0067-0049/220/1/15 – volume: 243 start-page: 10 year: 2019 ident: R125 publication-title: ApJS doi: 10.3847/1538-4365/ab2241 – volume: 872 start-page: 100 year: 2019 ident: R41 publication-title: ApJ doi: 10.3847/1538-4357/aaff65 – ident: R39 – volume: 491 start-page: 708 year: 2020 ident: R89 publication-title: MNRAS – volume: 447 start-page: 3264 year: 2015 ident: R139 publication-title: MNRAS doi: 10.1093/mnras/stu2696 – ident: R91 doi: 10.1007/978-3-540-76949-1 – volume: 618 start-page: A24 year: 2018 ident: R157 publication-title: A&A doi: 10.1051/0004-6361/201832718 – ident: R68 – ident: R153 – volume: 465 start-page: 2294 year: 2017 ident: R117 publication-title: MNRAS doi: 10.1093/mnras/stw2717 – volume: 633 start-page: A78 year: 2020 ident: R23 publication-title: A&A doi: 10.1051/0004-6361/201936830 – volume: 460 start-page: 827 year: 1996 ident: R17 publication-title: ApJ doi: 10.1086/177012 – ident: R114 doi: 10.1017/S1743921315004524 – volume: 636 start-page: A100 year: 2020 ident: R131 publication-title: A&A doi: 10.1051/0004-6361/201937398 – volume: 459 start-page: L81 year: 2016 ident: R18 publication-title: MNRAS doi: 10.1093/mnrasl/slw050 – volume: 342 start-page: 1156 year: 2003 ident: R160 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06612.x – volume: 586 start-page: A97 year: 2016 ident: R19 publication-title: A&A doi: 10.1051/0004-6361/201527556 – volume: 9 start-page: 1477 year: 2016 ident: R159 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1477-2016 – volume: 580 start-page: A103 year: 2015 ident: R63 publication-title: A&A doi: 10.1051/0004-6361/201526125 – volume: 27 start-page: 513 year: 1967 ident: R20 publication-title: J. Fluid Mech. doi: 10.1017/S0022112067000515 – volume: 401 start-page: 191 year: 2010 ident: R135 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15618.x – volume: 500 start-page: L41 year: 2009 ident: R85 publication-title: A&A doi: 10.1051/0004-6361/200911996 – volume: 459 start-page: 1201 year: 2016 ident: R112 publication-title: MNRAS doi: 10.1093/mnras/stw705 – volume: 656 start-page: A122 year: 2021 ident: R45 publication-title: A&A doi: 10.1051/0004-6361/202141152 – volume: 564 start-page: A27 year: 2014 ident: R43 publication-title: A&A doi: 10.1051/0004-6361/201322779 – volume: 497 start-page: 4117 year: 2020 ident: R83 publication-title: MNRAS doi: 10.1093/mnras/staa2250 – volume: 93 start-page: 015001 year: 2021 ident: R2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.015001 – volume: 549 start-page: L8 year: 2013 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201220796 – volume: 651 start-page: A3 year: 2021 ident: R6 publication-title: A&A doi: 10.1051/0004-6361/202040174 – volume: 350 start-page: 423 year: 2015 ident: R59 publication-title: Science doi: 10.1126/science.aac6933 – volume: 444 start-page: 102 year: 2014 ident: R77 publication-title: MNRAS doi: 10.1093/mnras/stu1329 – ident: R3 doi: 10.1007/978-1-4020-5803-5 – volume: 1 start-page: 014003 year: 2015 ident: R134 publication-title: J. Astron. Telesc. Instr. Syst. doi: 10.1117/1.JATIS.1.1.014003 – volume: 847 start-page: L7 year: 2017 ident: R4 publication-title: ApJ doi: 10.3847/2041-8213/aa8a62 – volume: 532 start-page: A34 year: 2011 ident: R146 publication-title: A&A doi: 10.1051/0004-6361/201116518 – volume: 455 start-page: 2228 year: 2016 ident: R12 publication-title: MNRAS doi: 10.1093/mnras/stv2368 – volume: 616 start-page: A148 year: 2018 ident: R35 publication-title: A&A doi: 10.1051/0004-6361/201832642 – volume: 647 start-page: A122 year: 2021 ident: R104 publication-title: A&A doi: 10.1051/0004-6361/202039180 – volume: 895 start-page: 51 year: 2022 ident: R110 publication-title: ApJ doi: 10.3847/1538-4357/ab8d36 – volume: 484 start-page: 5845 year: 2019 ident: R81 publication-title: MNRAS doi: 10.1093/mnras/stz412 – volume: 361 start-page: 101 year: 2000 ident: R106 publication-title: A&A – volume: 598 start-page: A74 year: 2017 ident: R120 publication-title: A&A doi: 10.1051/0004-6361/201629814 – volume: 469 start-page: 275 year: 2007 ident: R27 publication-title: A&A doi: 10.1051/0004-6361:20065903 – volume: 614 start-page: A128 year: 2018 ident: R126 publication-title: A&A doi: 10.1051/0004-6361/201732317 – volume: 648 start-page: A97 year: 2021 ident: R72 publication-title: A&A doi: 10.1051/0004-6361/202039464 – volume: 417 start-page: 762 year: 1993 ident: R38 publication-title: ApJ doi: 10.1086/173357 – volume: 544 start-page: L4 year: 2012 ident: R53 publication-title: A&A doi: 10.1051/0004-6361/201219729 – volume: 491 start-page: 3586 year: 2020 ident: R84 publication-title: MNRAS doi: 10.1093/mnras/stz3308 – volume: 900 start-page: 113 year: 2020 ident: R74 publication-title: ApJ doi: 10.3847/1538-4357/ab9e70 – volume: 57 start-page: 35 year: 2019 ident: R5 publication-title: ARA&A doi: 10.1146/annurev-astro-091918-104359 – volume: 466 start-page: 2181 year: 2017 ident: R79 publication-title: MNRAS doi: 10.1093/mnras/stw3273 – volume: 440 start-page: 1041 year: 2005 ident: R93 publication-title: A&A doi: 10.1051/0004-6361:20053261 – volume: 502 start-page: 5856 year: 2021 ident: R140 publication-title: MNRAS doi: 10.1093/mnras/stab482 – volume: 476 start-page: 3399 year: 2018 ident: R80 publication-title: MNRAS doi: 10.1093/mnras/sty406 – volume: 327 start-page: 977 year: 2010 ident: R21 publication-title: Science doi: 10.1126/science.1185402 – volume: 640 start-page: A49 year: 2020 ident: R119 publication-title: A&A doi: 10.1051/0004-6361/201936653 – volume: 553 start-page: A86 year: 2013 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201321210 – volume: 402 start-page: 271 year: 2010 ident: R49 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15955.x – volume: 650 start-page: A58 year: 2021 ident: R109 publication-title: A&A doi: 10.1051/0004-6361/202039543 – volume: 628 start-page: A76 year: 2019 ident: R107 publication-title: A&A doi: 10.1051/0004-6361/201935754 – volume: 54 start-page: 217 year: 1972 ident: R136 publication-title: J. Fluid Mech. doi: 10.1017/S0022112072000655 – volume: 626 start-page: A121 year: 2019 ident: R118 publication-title: A&A doi: 10.1051/0004-6361/201832607 – volume: 593 start-page: A120 year: 2016 ident: R156 publication-title: A&A doi: 10.1051/0004-6361/201628616 – volume: 456 start-page: 2 year: 2016 ident: R158 publication-title: MNRAS doi: 10.1093/mnras/stv2568 – volume: 627 start-page: A64 year: 2019 ident: R130 publication-title: A&A doi: 10.1051/0004-6361/201935462 – volume: 504 start-page: 3711 year: 2021 ident: R88 publication-title: MNRAS doi: 10.1093/mnras/stab991 – ident: R103 – volume: 883 start-page: 106 year: 2019 ident: R36 publication-title: ApJ doi: 10.3847/1538-4357/ab3924 – volume: 208 start-page: 4 year: 2013 ident: R122 publication-title: ApJS doi: 10.1088/0067-0049/208/1/4 – volume: 531 start-page: L143 year: 2000 ident: R142 publication-title: ApJ doi: 10.1086/312533 – ident: R51 – volume: 691 start-page: L41 year: 2009 ident: R162 publication-title: ApJ doi: 10.1088/0004-637X/691/1/L41 – volume: 270 start-page: 417 year: 2011 ident: R90 publication-title: Sol. Phys. doi: 10.1007/s11207-011-9771-0 – volume: 532 start-page: L13 year: 2011 ident: R128 publication-title: A&A doi: 10.1051/0004-6361/201117573 – volume: 647 start-page: A144 year: 2021 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/202039148 – ident: R152 – volume: 453 start-page: 687 year: 2006 ident: R26 publication-title: A&A doi: 10.1051/0004-6361:20041282 – volume: 485 start-page: 3661 year: 2019 ident: R60 publication-title: MNRAS doi: 10.1093/mnras/stz514 – volume: 474 start-page: 145 year: 2007 ident: R161 publication-title: A&A doi: 10.1051/0004-6361:20077653 – volume: 38 start-page: 249 year: 2014 ident: R132 publication-title: Exp. Astron. doi: 10.1007/s10686-014-9383-4 – volume: 126 start-page: 398 year: 2014 ident: R73 publication-title: PASP doi: 10.1086/676406 – volume: 386 start-page: 1947 year: 2008 ident: R28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13218.x – volume: 39 start-page: 315 year: 1987 ident: R56 publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091928708208816 – volume: 5 start-page: 715 year: 2021 ident: R127 publication-title: Nat. Astron. doi: 10.1038/s41550-021-01351-x – volume: 788 start-page: 93 year: 2014 ident: R37 publication-title: ApJ doi: 10.1088/0004-637X/788/1/93 – ident: R137 – volume: 161 start-page: 365 year: 1973 ident: R149 publication-title: MNRAS doi: 10.1093/mnras/161.4.365 – volume: 414 start-page: 2696 year: 2011 ident: R65 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18583.x – volume: 479 start-page: L33 year: 2008 ident: R64 publication-title: A&A doi: 10.1051/0004-6361:20077781 – volume: 549 start-page: A74 year: 2013 ident: R97 publication-title: A&A doi: 10.1051/0004-6361/201220211 – volume: 192 start-page: 3 year: 2011 ident: R121 publication-title: ApJS doi: 10.1088/0067-0049/192/1/3 – volume: 638 start-page: A149 year: 2020 ident: R154 publication-title: A&A doi: 10.1051/0004-6361/201937363 – volume: 433 start-page: 2445 year: 2013 ident: R7 publication-title: MNRAS doi: 10.1093/mnras/stt913 – volume: 810 start-page: 16 year: 2015 ident: R151 publication-title: ApJ doi: 10.1088/0004-637X/810/1/16 – volume: 491 start-page: 839 year: 1997 ident: R82 publication-title: ApJ doi: 10.1086/304980 – volume: 234 start-page: 34 year: 2018 ident: R124 publication-title: ApJS doi: 10.3847/1538-4365/aaa5a8 – volume: 481 start-page: L87 year: 2008 ident: R147 publication-title: A&A doi: 10.1051/0004-6361:200809411 – volume: 641 start-page: A13 year: 2020 ident: R75 publication-title: A&A doi: 10.1051/0004-6361/202037828 – ident: R78 – volume: 226 start-page: 123 year: 1987 ident: R105 publication-title: MNRAS doi: 10.1093/mnras/226.1.123 – volume: 526 start-page: A65 year: 2011 ident: R99 publication-title: A&A doi: 10.1051/0004-6361/201015571 – volume: 46 start-page: 301 year: 1994 ident: R148 publication-title: PASJ – volume: 481 start-page: 55 year: 2012 ident: R16 publication-title: Nature doi: 10.1038/nature10612 – volume: 386 start-page: 1487 year: 2008 ident: R108 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13112.x – volume: 496 start-page: 3829 year: 2020 ident: R86 publication-title: MNRAS doi: 10.1093/mnras/staa1823 – volume: 475 start-page: 1053 year: 2007 ident: R14 publication-title: A&A doi: 10.1051/0004-6361:20078189 – volume: 431 start-page: 819 year: 2004 ident: R31 publication-title: Nature doi: 10.1038/nature02934 – volume: 517 start-page: A58 year: 2010 ident: R47 publication-title: A&A doi: 10.1051/0004-6361/200913496 – volume: 626 start-page: L1 year: 2019 ident: R54 publication-title: A&A doi: 10.1051/0004-6361/201935509 – volume: 329 start-page: 1 year: 2002 ident: R61 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.04961.x – volume: 498 start-page: L169 year: 1998 ident: R15 publication-title: ApJ doi: 10.1086/311328 – volume: 468 start-page: L46 year: 2017 ident: R115 publication-title: MNRAS doi: 10.1093/mnrasl/slx023 – volume: 398 start-page: 271 year: 1999 ident: R46 publication-title: J. Fluid Mech. doi: 10.1017/S0022112099006308 – volume: 101 start-page: 367 year: 1941 ident: R40 publication-title: MNRAS doi: 10.1093/mnras/101.8.367 – volume: 652 start-page: A154 year: 2021 ident: R44 publication-title: A&A doi: 10.1051/0004-6361/202140615 – volume: 454 start-page: L86 year: 2015 ident: R113 publication-title: MNRAS doi: 10.1093/mnrasl/slv130 – ident: R129 – volume: 349 start-page: 189 year: 1999 ident: R144 publication-title: A&A – ident: R58 – volume: 493 start-page: 5726 year: 2020 ident: R87 publication-title: MNRAS doi: 10.1093/mnras/staa581 – volume: 429 start-page: 2500 year: 2013 ident: R22 publication-title: MNRAS doi: 10.1093/mnras/sts517 – volume: 233 start-page: 857 year: 1979 ident: R66 publication-title: ApJ doi: 10.1086/157448 – volume: 464 start-page: 259 year: 2010 ident: R42 publication-title: Nature doi: 10.1038/nature08864 – volume: 428 start-page: 2789 year: 2013 ident: R30 publication-title: MNRAS doi: 10.1093/mnras/sts109 – volume: 395 start-page: 307 year: 1992 ident: R67 publication-title: ApJ doi: 10.1086/171653 – volume: 28 start-page: 793 year: 1967 ident: R94 publication-title: J. Fluid Mech. doi: 10.1017/S0022112067002447 – volume: 5 start-page: 1103 year: 2021 ident: R95 publication-title: Nat. Astron. doi: 10.1038/s41550-021-01448-3 – volume: 631 start-page: A26 year: 2019 ident: R101 publication-title: A&A doi: 10.1051/0004-6361/201935639 – volume: 397 start-page: 763 year: 2009 ident: R29 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14034.x – volume: 557 start-page: L16 year: 2013 ident: R33 publication-title: A&A doi: 10.1051/0004-6361/201321779 – volume: 474 start-page: 2774 year: 2018 ident: R138 publication-title: MNRAS doi: 10.1093/mnras/stx2962 – ident: R24 – volume: 394 start-page: 755 year: 1998 ident: R69 publication-title: Nature doi: 10.1038/29472 – volume: 626 start-page: 350 year: 2005 ident: R70 publication-title: ApJ doi: 10.1086/429868 – volume: 506 start-page: 811 year: 2009 ident: R98 publication-title: A&A doi: 10.1051/0004-6361/200810544 – volume: 703 start-page: 1819 year: 2009 ident: R71 publication-title: ApJ doi: 10.1088/0004-637X/703/2/1819 – volume: 440 start-page: 653 year: 2005 ident: R102 publication-title: A&A doi: 10.1051/0004-6361:20052640 – volume: 48 start-page: 53 year: 1989 ident: R57 publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091928908219525 – volume: 7 start-page: 851 year: 1967 ident: R25 publication-title: Geomagn. Aeron. – volume: 427 start-page: 483 year: 2012 ident: R32 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21933.x – volume: 449 start-page: 3620 year: 2015 ident: R11 publication-title: MNRAS doi: 10.1093/mnras/stv538 – volume: 650 start-page: A53 year: 2021 ident: R34 publication-title: A&A doi: 10.1051/0004-6361/202039159 – volume: 271 start-page: L29 year: 1993 ident: R141 publication-title: A&A – volume: 646 start-page: A48 year: 2021 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/202039515 – volume: 490 start-page: 274 year: 2019 ident: R143 publication-title: MNRAS doi: 10.1093/mnras/stz2551 – volume: 846 start-page: 8 year: 2017 ident: R55 publication-title: ApJ doi: 10.3847/1538-4357/aa7b33 – volume: 724 start-page: L34 year: 2010 ident: R48 publication-title: ApJ doi: 10.1088/2041-8205/724/1/L34 – volume: 337 start-page: 961 year: 2016 ident: R133 publication-title: Nachr. doi: 10.1002/asna.201612408 |
SSID | ssj0002183 |
Score | 2.5017478 |
Snippet | Context.
Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of... Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | A133 |
SubjectTerms | Astrophysics Physics |
Subtitle | The traditional approximation of rotation for differentially rotating deep spherical shells with a general azimuthal magnetic field |
Title | Detecting deep axisymmetric toroidal magnetic fields in stars |
URI | https://cea.hal.science/cea-03673186 |
Volume | 661 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYYaNJe0MY2wWCThaa9dClNY7vpY7eOhY2hShSJt8h2bKi0pogWNHjYb9-dnbitViG2lyh13aTync53n---I-Q97JlWxFaABBINAQpTkSosi2JZpIWKE2scE9OPE5GdsW_n_HwO6Lvqkplq6vuVdSX_I1UYA7lilew_SDY8FAbgHuQLV5AwXB8l477BIwAM9gtjrhry12h6Nx5jjyzdQGqCUYG1IfKixErFhktWc-mv4BFWhzg1_-wUEfHJ2JMxSfzkIQ-HyXpKrAXMoH85uRm5g5ysOYe069bGp2HsEzZJ9qF_GLt1ZwbGwznD5iLqAAFryPHzUFh_UBuf6ZJ5ZZFIPLt603iLyhJMb61wxsrkCj_lL_MNFsLnO_rHYLWK44Tr8hV02VnvNB_0D_Pjo5Pvy98G3uysd5xrI3PYpjtgvMQtxMkbbQgosNfF16PfYc9GR9EHSv7NNT8Vjw_C2EH4L0s-zJPLGoJ3LsnwOdmsYgna84rxgqyZcotsB1nSD7S3IMkt8nTg716SueZQ1By6qDm01hxaaw71mkNHJXWa84qcHX4Zfs6iqpFGpMF7nEVtGUvdkgU4d1ZYyTXTLYGhgRGi4KKw4JRyJTuKcZ5KK3RHCRPzNE1Nt9WxMnlN1stJabYJVSJVqTbMGKRF6jIlmVRJW8UCprZStkPa9dLkumKZx2YnP3OX7cBjzHZgOa5nHtZzh3wMP7ryJCsPT9-HNQ8zVwv6zWMm7ZJnc-XeI-uz6xvzFpzMmXrn9OMPZYt1Zw |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+deep+axisymmetric+toroidal+magnetic+fields+in+stars&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Dhouib%2C+H.&rft.au=Mathis%2C+S.&rft.au=Bugnet%2C+L.&rft.au=van+Reeth%2C+T.&rft.date=2022-05-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=661&rft_id=info:doi/10.1051%2F0004-6361%2F202142956&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_03673186v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |