Detecting deep axisymmetric toroidal magnetic fields in stars The traditional approximation of rotation for differentially rotating deep spherical shells with a general azimuthal magnetic field

Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 661; p. A133
Main Authors Dhouib, H., Mathis, S., Bugnet, L., Van Reeth, T., Aerts, C.
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field. Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves. Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings. Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity ( g ) and Rossby ( r ) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 10 5  G leads to signatures that are detectable in period spacings for high-radial-order g and r modes in γ Doradus ( γ  Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt. Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in γ Dor and SPB stars on g and r modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler , TESS CVZ, and PLATO.
AbstractList Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field.Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves.Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings.Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity (g) and Rossby (r) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 105 G leads to signatures that are detectable in period spacings for high-radial-order g and r modes in γ Doradus (γ Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt.Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in γ Dor and SPB stars on g and r modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler, TESS CVZ, and PLATO.
Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctuations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong axisymmetric azimuthal magnetic field. Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI) waves. Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings. Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity ( g ) and Rossby ( r ) modes. An equatorial azimuthal magnetic field with an amplitude of the order of 10 5  G leads to signatures that are detectable in period spacings for high-radial-order g and r modes in γ Doradus ( γ  Dor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in an equatorial belt. Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new formalism allows us to assess the effects of the magnetic field in γ Dor and SPB stars on g and r modes. We find that these effects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler , TESS CVZ, and PLATO.
Author Van Reeth, T.
Bugnet, L.
Mathis, S.
Aerts, C.
Dhouib, H.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0002-3545-5123
  surname: Dhouib
  fullname: Dhouib, H.
– sequence: 2
  givenname: S.
  orcidid: 0000-0001-9491-8012
  surname: Mathis
  fullname: Mathis, S.
– sequence: 3
  givenname: L.
  orcidid: 0000-0003-0142-4000
  surname: Bugnet
  fullname: Bugnet, L.
– sequence: 4
  givenname: T.
  orcidid: 0000-0003-2771-1745
  surname: Van Reeth
  fullname: Van Reeth, T.
– sequence: 5
  givenname: C.
  orcidid: 0000-0003-1822-7126
  surname: Aerts
  fullname: Aerts, C.
BackLink https://cea.hal.science/cea-03673186$$DView record in HAL
BookMark eNp9kLtOAzEQRS0UJJLAF9BsS7HEj7V3XVBE4RGklWigtibecTDaR2RbiPw9GwVSUFCN7ujcGenMyKQfeiTkmtFbRiVbUEqLXAnFFpxyVnAt1RmZskLwnJaFmpDpibggsxg_xshZJabk7h4T2uT7bdYg7jL48nHfdZiCt1kawuAbaLMOtj2mceM8tk3MfJ_FBCFeknMHbcSrnzknb48Pr6t1Xr88Pa-WdW55JVLOgYGl0EjGnXIgbWGpolprVKqRqnFCl3ID5aaQsgKnbLlRyGRVVahp6UDMyc3x7ju0Zhd8B2FvBvBmvayNRTBUqFKwSn2ykdVH1oYhxoDOWJ8g-aFPAXxrGDUHZ-ZgxByMmJOzsSv-dH-f_df6Bhbvb4s
CitedBy_id crossref_primary_10_1051_0004_6361_202245597
crossref_primary_10_1007_s11214_023_01000_x
crossref_primary_10_1051_0004_6361_202244365
crossref_primary_10_1051_0004_6361_202347196
crossref_primary_10_1051_0004_6361_202244247
crossref_primary_10_1051_0004_6361_202348243
crossref_primary_10_1051_0004_6361_202348575
crossref_primary_10_1093_mnras_stad1424
crossref_primary_10_1051_0004_6361_202450508
crossref_primary_10_1051_0004_6361_202245460
crossref_primary_10_3390_galaxies11020040
crossref_primary_10_1093_mnras_stad3461
Cites_doi 10.1051/0004-6361:200500156
10.1086/421454
10.1051/0004-6361:20011465
10.1051/0004-6361/201118322
10.1093/mnras/163.1.77
10.1051/0004-6361/201424585
10.3847/1538-4357/aaa3f7
10.1051/0004-6361:20031491
10.1007/s41116-019-0020-1
10.1088/0067-0049/220/1/15
10.3847/1538-4365/ab2241
10.3847/1538-4357/aaff65
10.1093/mnras/stu2696
10.1007/978-3-540-76949-1
10.1051/0004-6361/201832718
10.1093/mnras/stw2717
10.1051/0004-6361/201936830
10.1086/177012
10.1017/S1743921315004524
10.1051/0004-6361/201937398
10.1093/mnrasl/slw050
10.1046/j.1365-8711.2003.06612.x
10.1051/0004-6361/201527556
10.5194/gmd-9-1477-2016
10.1051/0004-6361/201526125
10.1017/S0022112067000515
10.1111/j.1365-2966.2009.15618.x
10.1051/0004-6361/200911996
10.1093/mnras/stw705
10.1051/0004-6361/202141152
10.1051/0004-6361/201322779
10.1093/mnras/staa2250
10.1103/RevModPhys.93.015001
10.1051/0004-6361/201220796
10.1051/0004-6361/202040174
10.1126/science.aac6933
10.1093/mnras/stu1329
10.1007/978-1-4020-5803-5
10.1117/1.JATIS.1.1.014003
10.3847/2041-8213/aa8a62
10.1051/0004-6361/201116518
10.1093/mnras/stv2368
10.1051/0004-6361/201832642
10.1051/0004-6361/202039180
10.3847/1538-4357/ab8d36
10.1093/mnras/stz412
10.1051/0004-6361/201629814
10.1051/0004-6361:20065903
10.1051/0004-6361/201732317
10.1051/0004-6361/202039464
10.1086/173357
10.1051/0004-6361/201219729
10.1093/mnras/stz3308
10.3847/1538-4357/ab9e70
10.1146/annurev-astro-091918-104359
10.1093/mnras/stw3273
10.1051/0004-6361:20053261
10.1093/mnras/stab482
10.1093/mnras/sty406
10.1126/science.1185402
10.1051/0004-6361/201936653
10.1051/0004-6361/201321210
10.1111/j.1365-2966.2009.15955.x
10.1051/0004-6361/202039543
10.1051/0004-6361/201935754
10.1017/S0022112072000655
10.1051/0004-6361/201832607
10.1051/0004-6361/201628616
10.1093/mnras/stv2568
10.1051/0004-6361/201935462
10.1093/mnras/stab991
10.3847/1538-4357/ab3924
10.1088/0067-0049/208/1/4
10.1086/312533
10.1088/0004-637X/691/1/L41
10.1007/s11207-011-9771-0
10.1051/0004-6361/201117573
10.1051/0004-6361/202039148
10.1051/0004-6361:20041282
10.1093/mnras/stz514
10.1051/0004-6361:20077653
10.1007/s10686-014-9383-4
10.1086/676406
10.1111/j.1365-2966.2008.13218.x
10.1080/03091928708208816
10.1038/s41550-021-01351-x
10.1088/0004-637X/788/1/93
10.1093/mnras/161.4.365
10.1111/j.1365-2966.2011.18583.x
10.1051/0004-6361:20077781
10.1051/0004-6361/201220211
10.1088/0067-0049/192/1/3
10.1051/0004-6361/201937363
10.1093/mnras/stt913
10.1088/0004-637X/810/1/16
10.1086/304980
10.3847/1538-4365/aaa5a8
10.1051/0004-6361:200809411
10.1051/0004-6361/202037828
10.1093/mnras/226.1.123
10.1051/0004-6361/201015571
10.1038/nature10612
10.1111/j.1365-2966.2008.13112.x
10.1093/mnras/staa1823
10.1051/0004-6361:20078189
10.1038/nature02934
10.1051/0004-6361/200913496
10.1051/0004-6361/201935509
10.1046/j.1365-8711.2002.04961.x
10.1086/311328
10.1093/mnrasl/slx023
10.1017/S0022112099006308
10.1093/mnras/101.8.367
10.1051/0004-6361/202140615
10.1093/mnrasl/slv130
10.1093/mnras/staa581
10.1093/mnras/sts517
10.1086/157448
10.1038/nature08864
10.1093/mnras/sts109
10.1086/171653
10.1017/S0022112067002447
10.1038/s41550-021-01448-3
10.1051/0004-6361/201935639
10.1111/j.1365-2966.2008.14034.x
10.1051/0004-6361/201321779
10.1093/mnras/stx2962
10.1038/29472
10.1086/429868
10.1051/0004-6361/200810544
10.1088/0004-637X/703/2/1819
10.1051/0004-6361:20052640
10.1080/03091928908219525
10.1111/j.1365-2966.2012.21933.x
10.1093/mnras/stv538
10.1051/0004-6361/202039159
10.1051/0004-6361/202039515
10.1093/mnras/stz2551
10.3847/1538-4357/aa7b33
10.1088/2041-8205/724/1/L34
10.1002/asna.201612408
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1051/0004-6361/202142956
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_HAL_cea_03673186v1
10_1051_0004_6361_202142956
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
1XC
VOOES
ID FETCH-LOGICAL-c283t-2a1ac0ad512f6fa5c4c060999e66d56df3975ba7b4558af6c7b6e15888e907fa3
ISSN 0004-6361
IngestDate Wed Aug 20 06:51:28 EDT 2025
Tue Jul 01 03:53:59 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords waves
methods: analytical
stars: oscillations
stars: magnetic field
magnetohydrodynamics (MHD)
stars: rotation
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c283t-2a1ac0ad512f6fa5c4c060999e66d56df3975ba7b4558af6c7b6e15888e907fa3
ORCID 0000-0003-1822-7126
0000-0003-2771-1745
0000-0001-9491-8012
0000-0003-0142-4000
0000-0002-3545-5123
OpenAccessLink https://cea.hal.science/cea-03673186
ParticipantIDs hal_primary_oai_HAL_cea_03673186v1
crossref_citationtrail_10_1051_0004_6361_202142956
crossref_primary_10_1051_0004_6361_202142956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2022
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Suijs (R147) 2008; 481
Ouazzani (R117) 2017; 465
Lignières (R85) 2009; 500
Maeder (R92) 2003; 411
Eggenberger (R53) 2012; 544
Mestel (R105) 1987; 226
Miglio (R108) 2008; 386
Mankovich (R95) 2021; 5
R24
Lee (R83) 2020; 497
Aerts (R5) 2019; 57
Pedersen (R127) 2021; 5
Dhouib (R45) 2021; 656
Duez (R47) 2010; 517
Tayler (R150) 1980; 191
R1
Prat (R131) 2020; 636
R3
Meynet (R106) 2000; 361
Strugarek (R146) 2011; 532
Henneco (R72) 2021; 648
Rudraiah (R136) 1972; 54
Spruit (R145) 2002; 381
Saio (R140) 2021; 502
Shibahashi (R142) 2000; 531
Rauer (R133) 2016; 337
Asai (R11) 2015; 449
Michielsen (R107) 2019; 628
Mathis (R99) 2011; 526
Alecian (R8) 2013; 549
Eggenberger (R52) 2005; 440
Debras (R41) 2019; 872
Bouchaud (R23) 2020; 633
Alvan (R9) 2013; 553
R39
Maeder (R93) 2005; 440
Akgün (R7) 2013; 433
Briquet (R33) 2013; 557
Beck (R16) 2012; 481
Loi (R88) 2021; 504
R103
Deheuvels (R43) 2014; 564
Jouve (R75) 2020; 641
Bildsten (R17) 1996; 460
Braithwaite (R31) 2004; 431
Braithwaite (R29) 2009; 397
Loi (R86) 2020; 496
Neiner (R115) 2017; 468
Braithwaite (R26) 2006; 453
Saio (R139) 2015; 447
Howell (R73) 2014; 126
Bouabid (R22) 2013; 429
Mathis (R98) 2009; 506
Fuller (R60) 2019; 485
Lee (R82) 1997; 491
Pedersen (R126) 2018; 614
Pápics (R120) 2017; 598
García (R62) 2019; 16
Malkus (R94) 1967; 28
Charbonneau (R38) 1993; 417
Neiner (R113) 2015; 454
Dhouib (R44) 2021; 652
Murphy (R112) 2016; 459
Dintrans (R46) 1999; 398
Duez (R48) 2010; 724
R51
Borucki (R21) 2010; 327
Braginskiy (R25) 1967; 7
Degroote (R42) 2010; 464
Mathis (R102) 2005; 440
Wade (R158) 2016; 456
Loi (R89) 2020; 491
R58
Heng (R71) 2009; 703
Paxton (R125) 2019; 243
Dumont (R50) 2021; 646
Fuller (R59) 2015; 350
Rauer (R132) 2014; 38
Gough (R69) 1998; 394
Prat (R130) 2019; 627
Astoul (R13) 2021; 647
Aurière (R14) 2007; 475
Spruit (R144) 1999; 349
R129
Paxton (R121) 2011; 192
Aerts (R4) 2017; 847
Braithwaite (R28) 2008; 386
Loi (R87) 2020; 493
Mombarg (R110) 2022; 895
Ouazzani (R118) 2019; 626
Rogers (R135) 2010; 401
Van Reeth (R156) 2016; 593
Kurtz (R77) 2014; 444
Duez (R49) 2010; 402
R68
Li (R84) 2020; 491
Booker (R20) 1967; 27
Cantiello (R37) 2014; 788
Triana (R151) 2015; 810
Goldreich (R66) 1979; 233
Lee (R80) 2018; 476
Zahn (R161) 2007; 474
Morel (R111) 2014; 157
Mathis (R104) 2021; 647
R114
Garaud (R61) 2002; 329
Schatzman (R141) 1993; 271
Jermyn (R74) 2020; 900
Paxton (R123) 2015; 220
Braithwaite (R27) 2007; 469
Lecoanet (R79) 2017; 466
Mombarg (R109) 2021; 650
Zaqarashvili (R162) 2009; 691
Petit (R128) 2011; 532
Asai (R12) 2016; 455
Aerts (R2) 2021; 93
Eggenberger (R54) 2019; 626
R78
Van Beeck (R154) 2020; 638
Mathis (R100) 2012; 540
Mathis (R101) 2019; 631
Ouazzani (R119) 2020; 640
Marques (R97) 2013; 549
Ogilvie (R116) 2004; 610
Briquet (R32) 2012; 427
Gellert (R64) 2008; 479
Ricker (R134) 2015; 1
Gaurat (R63) 2015; 580
Barnes (R15) 1998; 498
Gellert (R65) 2011; 414
Saio (R138) 2018; 474
Van Reeth (R155) 2015; 574
Cantiello (R36) 2019; 883
Goode (R67) 1992; 395
Tayler (R149) 1973; 161
Shultz (R143) 2019; 490
Wang (R159) 2016; 9
Paxton (R122) 2013; 208
Bugnet (R34) 2021; 650
Blazère (R18) 2016; 459
Friedlander (R57) 1989; 48
Watts (R160) 2003; 342
R152
Cowling (R40) 1941; 101
R153
Lee (R81) 2019; 484
Kiefer (R76) 2018; 854
R137
Van Reeth (R157) 2018; 618
Braithwaite (R30) 2013; 428
R91
R10
Blazère (R19) 2016; 586
Markey (R96) 1973; 163
Emeriau-Viard (R55) 2017; 846
MacGregor (R90) 2011; 270
Friedlander (R56) 1987; 39
Takata (R148) 1994; 46
Paxton (R124) 2018; 234
Ahuir (R6) 2021; 651
Buysschaert (R35) 2018; 616
Heger (R70) 2005; 626
References_xml – volume: 440
  start-page: L9
  year: 2005
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361:200500156
– volume: 610
  start-page: 477
  year: 2004
  ident: R116
  publication-title: ApJ
  doi: 10.1086/421454
– volume: 381
  start-page: 923
  year: 2002
  ident: R145
  publication-title: A&A
  doi: 10.1051/0004-6361:20011465
– volume: 540
  start-page: A37
  year: 2012
  ident: R100
  publication-title: A&A
  doi: 10.1051/0004-6361/201118322
– volume: 163
  start-page: 77
  year: 1973
  ident: R96
  publication-title: MNRAS
  doi: 10.1093/mnras/163.1.77
– volume: 574
  start-page: A17
  year: 2015
  ident: R155
  publication-title: A&A
  doi: 10.1051/0004-6361/201424585
– volume: 854
  start-page: 74
  year: 2018
  ident: R76
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa3f7
– volume: 411
  start-page: 543
  year: 2003
  ident: R92
  publication-title: A&A
  doi: 10.1051/0004-6361:20031491
– volume: 16
  start-page: 4
  year: 2019
  ident: R62
  publication-title: Liv. Rev. Solar Phys.
  doi: 10.1007/s41116-019-0020-1
– volume: 157
  start-page: 27
  year: 2014
  ident: R111
  publication-title: The Messenger
– ident: R1
– ident: R10
– volume: 191
  start-page: 151
  year: 1980
  ident: R150
  publication-title: MNRAS
– volume: 220
  start-page: 15
  year: 2015
  ident: R123
  publication-title: ApJS
  doi: 10.1088/0067-0049/220/1/15
– volume: 243
  start-page: 10
  year: 2019
  ident: R125
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab2241
– volume: 872
  start-page: 100
  year: 2019
  ident: R41
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaff65
– ident: R39
– volume: 491
  start-page: 708
  year: 2020
  ident: R89
  publication-title: MNRAS
– volume: 447
  start-page: 3264
  year: 2015
  ident: R139
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2696
– ident: R91
  doi: 10.1007/978-3-540-76949-1
– volume: 618
  start-page: A24
  year: 2018
  ident: R157
  publication-title: A&A
  doi: 10.1051/0004-6361/201832718
– ident: R68
– ident: R153
– volume: 465
  start-page: 2294
  year: 2017
  ident: R117
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2717
– volume: 633
  start-page: A78
  year: 2020
  ident: R23
  publication-title: A&A
  doi: 10.1051/0004-6361/201936830
– volume: 460
  start-page: 827
  year: 1996
  ident: R17
  publication-title: ApJ
  doi: 10.1086/177012
– ident: R114
  doi: 10.1017/S1743921315004524
– volume: 636
  start-page: A100
  year: 2020
  ident: R131
  publication-title: A&A
  doi: 10.1051/0004-6361/201937398
– volume: 459
  start-page: L81
  year: 2016
  ident: R18
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw050
– volume: 342
  start-page: 1156
  year: 2003
  ident: R160
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06612.x
– volume: 586
  start-page: A97
  year: 2016
  ident: R19
  publication-title: A&A
  doi: 10.1051/0004-6361/201527556
– volume: 9
  start-page: 1477
  year: 2016
  ident: R159
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1477-2016
– volume: 580
  start-page: A103
  year: 2015
  ident: R63
  publication-title: A&A
  doi: 10.1051/0004-6361/201526125
– volume: 27
  start-page: 513
  year: 1967
  ident: R20
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112067000515
– volume: 401
  start-page: 191
  year: 2010
  ident: R135
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15618.x
– volume: 500
  start-page: L41
  year: 2009
  ident: R85
  publication-title: A&A
  doi: 10.1051/0004-6361/200911996
– volume: 459
  start-page: 1201
  year: 2016
  ident: R112
  publication-title: MNRAS
  doi: 10.1093/mnras/stw705
– volume: 656
  start-page: A122
  year: 2021
  ident: R45
  publication-title: A&A
  doi: 10.1051/0004-6361/202141152
– volume: 564
  start-page: A27
  year: 2014
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361/201322779
– volume: 497
  start-page: 4117
  year: 2020
  ident: R83
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2250
– volume: 93
  start-page: 015001
  year: 2021
  ident: R2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.015001
– volume: 549
  start-page: L8
  year: 2013
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201220796
– volume: 651
  start-page: A3
  year: 2021
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361/202040174
– volume: 350
  start-page: 423
  year: 2015
  ident: R59
  publication-title: Science
  doi: 10.1126/science.aac6933
– volume: 444
  start-page: 102
  year: 2014
  ident: R77
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1329
– ident: R3
  doi: 10.1007/978-1-4020-5803-5
– volume: 1
  start-page: 014003
  year: 2015
  ident: R134
  publication-title: J. Astron. Telesc. Instr. Syst.
  doi: 10.1117/1.JATIS.1.1.014003
– volume: 847
  start-page: L7
  year: 2017
  ident: R4
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa8a62
– volume: 532
  start-page: A34
  year: 2011
  ident: R146
  publication-title: A&A
  doi: 10.1051/0004-6361/201116518
– volume: 455
  start-page: 2228
  year: 2016
  ident: R12
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2368
– volume: 616
  start-page: A148
  year: 2018
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361/201832642
– volume: 647
  start-page: A122
  year: 2021
  ident: R104
  publication-title: A&A
  doi: 10.1051/0004-6361/202039180
– volume: 895
  start-page: 51
  year: 2022
  ident: R110
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8d36
– volume: 484
  start-page: 5845
  year: 2019
  ident: R81
  publication-title: MNRAS
  doi: 10.1093/mnras/stz412
– volume: 361
  start-page: 101
  year: 2000
  ident: R106
  publication-title: A&A
– volume: 598
  start-page: A74
  year: 2017
  ident: R120
  publication-title: A&A
  doi: 10.1051/0004-6361/201629814
– volume: 469
  start-page: 275
  year: 2007
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361:20065903
– volume: 614
  start-page: A128
  year: 2018
  ident: R126
  publication-title: A&A
  doi: 10.1051/0004-6361/201732317
– volume: 648
  start-page: A97
  year: 2021
  ident: R72
  publication-title: A&A
  doi: 10.1051/0004-6361/202039464
– volume: 417
  start-page: 762
  year: 1993
  ident: R38
  publication-title: ApJ
  doi: 10.1086/173357
– volume: 544
  start-page: L4
  year: 2012
  ident: R53
  publication-title: A&A
  doi: 10.1051/0004-6361/201219729
– volume: 491
  start-page: 3586
  year: 2020
  ident: R84
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3308
– volume: 900
  start-page: 113
  year: 2020
  ident: R74
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9e70
– volume: 57
  start-page: 35
  year: 2019
  ident: R5
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-091918-104359
– volume: 466
  start-page: 2181
  year: 2017
  ident: R79
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3273
– volume: 440
  start-page: 1041
  year: 2005
  ident: R93
  publication-title: A&A
  doi: 10.1051/0004-6361:20053261
– volume: 502
  start-page: 5856
  year: 2021
  ident: R140
  publication-title: MNRAS
  doi: 10.1093/mnras/stab482
– volume: 476
  start-page: 3399
  year: 2018
  ident: R80
  publication-title: MNRAS
  doi: 10.1093/mnras/sty406
– volume: 327
  start-page: 977
  year: 2010
  ident: R21
  publication-title: Science
  doi: 10.1126/science.1185402
– volume: 640
  start-page: A49
  year: 2020
  ident: R119
  publication-title: A&A
  doi: 10.1051/0004-6361/201936653
– volume: 553
  start-page: A86
  year: 2013
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201321210
– volume: 402
  start-page: 271
  year: 2010
  ident: R49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15955.x
– volume: 650
  start-page: A58
  year: 2021
  ident: R109
  publication-title: A&A
  doi: 10.1051/0004-6361/202039543
– volume: 628
  start-page: A76
  year: 2019
  ident: R107
  publication-title: A&A
  doi: 10.1051/0004-6361/201935754
– volume: 54
  start-page: 217
  year: 1972
  ident: R136
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072000655
– volume: 626
  start-page: A121
  year: 2019
  ident: R118
  publication-title: A&A
  doi: 10.1051/0004-6361/201832607
– volume: 593
  start-page: A120
  year: 2016
  ident: R156
  publication-title: A&A
  doi: 10.1051/0004-6361/201628616
– volume: 456
  start-page: 2
  year: 2016
  ident: R158
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2568
– volume: 627
  start-page: A64
  year: 2019
  ident: R130
  publication-title: A&A
  doi: 10.1051/0004-6361/201935462
– volume: 504
  start-page: 3711
  year: 2021
  ident: R88
  publication-title: MNRAS
  doi: 10.1093/mnras/stab991
– ident: R103
– volume: 883
  start-page: 106
  year: 2019
  ident: R36
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab3924
– volume: 208
  start-page: 4
  year: 2013
  ident: R122
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/4
– volume: 531
  start-page: L143
  year: 2000
  ident: R142
  publication-title: ApJ
  doi: 10.1086/312533
– ident: R51
– volume: 691
  start-page: L41
  year: 2009
  ident: R162
  publication-title: ApJ
  doi: 10.1088/0004-637X/691/1/L41
– volume: 270
  start-page: 417
  year: 2011
  ident: R90
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9771-0
– volume: 532
  start-page: L13
  year: 2011
  ident: R128
  publication-title: A&A
  doi: 10.1051/0004-6361/201117573
– volume: 647
  start-page: A144
  year: 2021
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/202039148
– ident: R152
– volume: 453
  start-page: 687
  year: 2006
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361:20041282
– volume: 485
  start-page: 3661
  year: 2019
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/stz514
– volume: 474
  start-page: 145
  year: 2007
  ident: R161
  publication-title: A&A
  doi: 10.1051/0004-6361:20077653
– volume: 38
  start-page: 249
  year: 2014
  ident: R132
  publication-title: Exp. Astron.
  doi: 10.1007/s10686-014-9383-4
– volume: 126
  start-page: 398
  year: 2014
  ident: R73
  publication-title: PASP
  doi: 10.1086/676406
– volume: 386
  start-page: 1947
  year: 2008
  ident: R28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13218.x
– volume: 39
  start-page: 315
  year: 1987
  ident: R56
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091928708208816
– volume: 5
  start-page: 715
  year: 2021
  ident: R127
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-021-01351-x
– volume: 788
  start-page: 93
  year: 2014
  ident: R37
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/1/93
– ident: R137
– volume: 161
  start-page: 365
  year: 1973
  ident: R149
  publication-title: MNRAS
  doi: 10.1093/mnras/161.4.365
– volume: 414
  start-page: 2696
  year: 2011
  ident: R65
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18583.x
– volume: 479
  start-page: L33
  year: 2008
  ident: R64
  publication-title: A&A
  doi: 10.1051/0004-6361:20077781
– volume: 549
  start-page: A74
  year: 2013
  ident: R97
  publication-title: A&A
  doi: 10.1051/0004-6361/201220211
– volume: 192
  start-page: 3
  year: 2011
  ident: R121
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/3
– volume: 638
  start-page: A149
  year: 2020
  ident: R154
  publication-title: A&A
  doi: 10.1051/0004-6361/201937363
– volume: 433
  start-page: 2445
  year: 2013
  ident: R7
  publication-title: MNRAS
  doi: 10.1093/mnras/stt913
– volume: 810
  start-page: 16
  year: 2015
  ident: R151
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/16
– volume: 491
  start-page: 839
  year: 1997
  ident: R82
  publication-title: ApJ
  doi: 10.1086/304980
– volume: 234
  start-page: 34
  year: 2018
  ident: R124
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa5a8
– volume: 481
  start-page: L87
  year: 2008
  ident: R147
  publication-title: A&A
  doi: 10.1051/0004-6361:200809411
– volume: 641
  start-page: A13
  year: 2020
  ident: R75
  publication-title: A&A
  doi: 10.1051/0004-6361/202037828
– ident: R78
– volume: 226
  start-page: 123
  year: 1987
  ident: R105
  publication-title: MNRAS
  doi: 10.1093/mnras/226.1.123
– volume: 526
  start-page: A65
  year: 2011
  ident: R99
  publication-title: A&A
  doi: 10.1051/0004-6361/201015571
– volume: 46
  start-page: 301
  year: 1994
  ident: R148
  publication-title: PASJ
– volume: 481
  start-page: 55
  year: 2012
  ident: R16
  publication-title: Nature
  doi: 10.1038/nature10612
– volume: 386
  start-page: 1487
  year: 2008
  ident: R108
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13112.x
– volume: 496
  start-page: 3829
  year: 2020
  ident: R86
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1823
– volume: 475
  start-page: 1053
  year: 2007
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361:20078189
– volume: 431
  start-page: 819
  year: 2004
  ident: R31
  publication-title: Nature
  doi: 10.1038/nature02934
– volume: 517
  start-page: A58
  year: 2010
  ident: R47
  publication-title: A&A
  doi: 10.1051/0004-6361/200913496
– volume: 626
  start-page: L1
  year: 2019
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361/201935509
– volume: 329
  start-page: 1
  year: 2002
  ident: R61
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.04961.x
– volume: 498
  start-page: L169
  year: 1998
  ident: R15
  publication-title: ApJ
  doi: 10.1086/311328
– volume: 468
  start-page: L46
  year: 2017
  ident: R115
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx023
– volume: 398
  start-page: 271
  year: 1999
  ident: R46
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099006308
– volume: 101
  start-page: 367
  year: 1941
  ident: R40
  publication-title: MNRAS
  doi: 10.1093/mnras/101.8.367
– volume: 652
  start-page: A154
  year: 2021
  ident: R44
  publication-title: A&A
  doi: 10.1051/0004-6361/202140615
– volume: 454
  start-page: L86
  year: 2015
  ident: R113
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slv130
– ident: R129
– volume: 349
  start-page: 189
  year: 1999
  ident: R144
  publication-title: A&A
– ident: R58
– volume: 493
  start-page: 5726
  year: 2020
  ident: R87
  publication-title: MNRAS
  doi: 10.1093/mnras/staa581
– volume: 429
  start-page: 2500
  year: 2013
  ident: R22
  publication-title: MNRAS
  doi: 10.1093/mnras/sts517
– volume: 233
  start-page: 857
  year: 1979
  ident: R66
  publication-title: ApJ
  doi: 10.1086/157448
– volume: 464
  start-page: 259
  year: 2010
  ident: R42
  publication-title: Nature
  doi: 10.1038/nature08864
– volume: 428
  start-page: 2789
  year: 2013
  ident: R30
  publication-title: MNRAS
  doi: 10.1093/mnras/sts109
– volume: 395
  start-page: 307
  year: 1992
  ident: R67
  publication-title: ApJ
  doi: 10.1086/171653
– volume: 28
  start-page: 793
  year: 1967
  ident: R94
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112067002447
– volume: 5
  start-page: 1103
  year: 2021
  ident: R95
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-021-01448-3
– volume: 631
  start-page: A26
  year: 2019
  ident: R101
  publication-title: A&A
  doi: 10.1051/0004-6361/201935639
– volume: 397
  start-page: 763
  year: 2009
  ident: R29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14034.x
– volume: 557
  start-page: L16
  year: 2013
  ident: R33
  publication-title: A&A
  doi: 10.1051/0004-6361/201321779
– volume: 474
  start-page: 2774
  year: 2018
  ident: R138
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2962
– ident: R24
– volume: 394
  start-page: 755
  year: 1998
  ident: R69
  publication-title: Nature
  doi: 10.1038/29472
– volume: 626
  start-page: 350
  year: 2005
  ident: R70
  publication-title: ApJ
  doi: 10.1086/429868
– volume: 506
  start-page: 811
  year: 2009
  ident: R98
  publication-title: A&A
  doi: 10.1051/0004-6361/200810544
– volume: 703
  start-page: 1819
  year: 2009
  ident: R71
  publication-title: ApJ
  doi: 10.1088/0004-637X/703/2/1819
– volume: 440
  start-page: 653
  year: 2005
  ident: R102
  publication-title: A&A
  doi: 10.1051/0004-6361:20052640
– volume: 48
  start-page: 53
  year: 1989
  ident: R57
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091928908219525
– volume: 7
  start-page: 851
  year: 1967
  ident: R25
  publication-title: Geomagn. Aeron.
– volume: 427
  start-page: 483
  year: 2012
  ident: R32
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21933.x
– volume: 449
  start-page: 3620
  year: 2015
  ident: R11
  publication-title: MNRAS
  doi: 10.1093/mnras/stv538
– volume: 650
  start-page: A53
  year: 2021
  ident: R34
  publication-title: A&A
  doi: 10.1051/0004-6361/202039159
– volume: 271
  start-page: L29
  year: 1993
  ident: R141
  publication-title: A&A
– volume: 646
  start-page: A48
  year: 2021
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/202039515
– volume: 490
  start-page: 274
  year: 2019
  ident: R143
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2551
– volume: 846
  start-page: 8
  year: 2017
  ident: R55
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7b33
– volume: 724
  start-page: L34
  year: 2010
  ident: R48
  publication-title: ApJ
  doi: 10.1088/2041-8205/724/1/L34
– volume: 337
  start-page: 961
  year: 2016
  ident: R133
  publication-title: Nachr.
  doi: 10.1002/asna.201612408
SSID ssj0002183
Score 2.5017478
Snippet Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of...
Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram. This is the signature of...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage A133
SubjectTerms Astrophysics
Physics
Subtitle The traditional approximation of rotation for differentially rotating deep spherical shells with a general azimuthal magnetic field
Title Detecting deep axisymmetric toroidal magnetic fields in stars
URI https://cea.hal.science/cea-03673186
Volume 661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYYaNJe0MY2wWCThaa9dClNY7vpY7eOhY2hShSJt8h2bKi0pogWNHjYb9-dnbitViG2lyh13aTync53n---I-Q97JlWxFaABBINAQpTkSosi2JZpIWKE2scE9OPE5GdsW_n_HwO6Lvqkplq6vuVdSX_I1UYA7lilew_SDY8FAbgHuQLV5AwXB8l477BIwAM9gtjrhry12h6Nx5jjyzdQGqCUYG1IfKixErFhktWc-mv4BFWhzg1_-wUEfHJ2JMxSfzkIQ-HyXpKrAXMoH85uRm5g5ysOYe069bGp2HsEzZJ9qF_GLt1ZwbGwznD5iLqAAFryPHzUFh_UBuf6ZJ5ZZFIPLt603iLyhJMb61wxsrkCj_lL_MNFsLnO_rHYLWK44Tr8hV02VnvNB_0D_Pjo5Pvy98G3uysd5xrI3PYpjtgvMQtxMkbbQgosNfF16PfYc9GR9EHSv7NNT8Vjw_C2EH4L0s-zJPLGoJ3LsnwOdmsYgna84rxgqyZcotsB1nSD7S3IMkt8nTg716SueZQ1By6qDm01hxaaw71mkNHJXWa84qcHX4Zfs6iqpFGpMF7nEVtGUvdkgU4d1ZYyTXTLYGhgRGi4KKw4JRyJTuKcZ5KK3RHCRPzNE1Nt9WxMnlN1stJabYJVSJVqTbMGKRF6jIlmVRJW8UCprZStkPa9dLkumKZx2YnP3OX7cBjzHZgOa5nHtZzh3wMP7ryJCsPT9-HNQ8zVwv6zWMm7ZJnc-XeI-uz6xvzFpzMmXrn9OMPZYt1Zw
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+deep+axisymmetric+toroidal+magnetic+fields+in+stars&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Dhouib%2C+H.&rft.au=Mathis%2C+S.&rft.au=Bugnet%2C+L.&rft.au=van+Reeth%2C+T.&rft.date=2022-05-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=661&rft_id=info:doi/10.1051%2F0004-6361%2F202142956&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_03673186v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon