Improved k– ε model and wall function formulation for the RANS simulation of ABL flows

The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the dom...

Full description

Saved in:
Bibliographic Details
Published inJournal of wind engineering and industrial aerodynamics Vol. 99; no. 4; pp. 267 - 278
Main Authors Parente, A., Gorlé, C., van Beeck, J., Benocci, C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2011
Subjects
Online AccessGet full text
ISSN0167-6105
1872-8197
DOI10.1016/j.jweia.2010.12.017

Cover

Abstract The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation. The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard k– ε turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain. The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated.
AbstractList The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sandagrain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation. The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard k- epsilon turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain. The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated.
The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation. The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard k– ε turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain. The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated.
Author Gorlé, C.
Benocci, C.
Parente, A.
van Beeck, J.
Author_xml – sequence: 1
  givenname: A.
  surname: Parente
  fullname: Parente, A.
  email: Alessandro.Parente@ulb.ac.be
  organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium
– sequence: 2
  givenname: C.
  surname: Gorlé
  fullname: Gorlé, C.
  organization: Center for Turbulence Research, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: J.
  surname: van Beeck
  fullname: van Beeck, J.
  organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium
– sequence: 4
  givenname: C.
  surname: Benocci
  fullname: Benocci, C.
  organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium
BookMark eNqFkDtOAzEQQC0EEuFzAhp30Gywvc7aW1AExE-KQOJTUFmOdywcvGuwN0R03IGzcA0OwUnYEKCggMqj0Xsj-a2h5SY0gNAWJX1KaLE76U9m4HSfkfmG9QkVS6hHpWCZpKVYRr2OEllByWAVraU0IYQILvIeujmt72N4hArfvT-_4LdXXIcKPNZNhWfae2ynjWldaLANsZ56_T3j9hbwxfDsEif3sw8WD_dH2PowSxtoxWqfYPPrXUfXR4dXByfZ6Pz49GA4ygyTeZtRa8puYIwYqXUuLB9zUjCeD5jmoAflmBSVBUKNoTklnJtqMJaG2dLyCiTL19H24m73j4cppFbVLhnwXjcQpklJSQpRyIJ05M6fJBVCUMYZLzo0X6AmhpQiWHUfXa3jk6JEzZOrifpMrubJFWWqS95Z5S_LuPazTBu18_-4ewsXulaPDqJKxkFjoHIRTKuq4P70PwBhvKCj
CitedBy_id crossref_primary_10_1115_1_4054587
Cites_doi 10.1016/j.jweia.2006.08.002
10.1016/0167-6105(93)90124-7
10.1016/B978-1-4832-8367-8.50027-9
10.1016/j.jweia.2007.01.013
10.1016/S0167-6105(97)00127-X
10.1016/j.atmosenv.2006.08.019
10.1007/s10546-010-9521-0
10.1016/j.jweia.2008.12.001
10.1016/j.atmosenv.2003.10.052
10.1016/j.atmosenv.2008.09.060
10.1023/B:BOUN.0000016599.75196.17
10.1016/S0167-6105(97)00071-8
10.12989/was.2002.5.2_3_4.177
10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
10.1016/j.jhazmat.2009.06.064
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
7ST
7TV
SOI
DOI 10.1016/j.jweia.2010.12.017
DatabaseName CrossRef
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Pollution Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Pollution Abstracts
Environment Abstracts
DatabaseTitleList Aerospace Database

Pollution Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8197
EndPage 278
ExternalDocumentID 10_1016_j_jweia_2010_12_017
S016761051100002X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSR
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SU
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
7ST
7TV
SOI
ID FETCH-LOGICAL-c283t-1fc9283220c8aa37f4b40624352a4ea59b06dfe01cc131044cd5b8c2f9f4de823
IEDL.DBID AIKHN
ISSN 0167-6105
IngestDate Fri Sep 05 06:57:54 EDT 2025
Fri Sep 05 13:19:00 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 04:09:40 EDT 2025
Fri Feb 23 02:23:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Rough wall function
k-Epsilon turbulence model
Turbulent kinetic energy
RANS
ABL
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c283t-1fc9283220c8aa37f4b40624352a4ea59b06dfe01cc131044cd5b8c2f9f4de823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1777124246
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_880676860
proquest_miscellaneous_1777124246
crossref_primary_10_1016_j_jweia_2010_12_017
crossref_citationtrail_10_1016_j_jweia_2010_12_017
elsevier_sciencedirect_doi_10_1016_j_jweia_2010_12_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110401
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 20110401
  day: 01
PublicationDecade 2010
PublicationTitle Journal of wind engineering and industrial aerodynamics
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gorlé, van Beeck, Rambaud, Van Tendeloo (bib13) 2009; 43
Tsuchiya, Murakami, Mochida, Kondo, Ishida (bib28) 1997; 67–68
Blocken, Carmeliet, Stathopoulos (bib4) 2007; 95
Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361.
Brost, Wyngaard (bib7) 1978; 35
Gorlé, van Beeck, Rambaud (bib14) 2010; 137
Yang, Gu, Chen, Jin (bib29) 2009; 97
Blocken, Stathopoulos, Carmeliet (bib5) 2007; 41
CD-Adapco, User's Guide, 2008.
Leitl, B., 1998. Cedval at Hamburg University.
Norris, S.E., Richards P.J., 2010. Appropriate boundary conditions for computational wind engineering models revisited. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27.
Ansys Ltd., 2005. Ansys CFX-Solver, Release 10.0: Theory. Canonsburg.
Riddle, Carruthers, Sharpe, McHugh, Stocker (bib27) 2004; 38
Beranek, W., 1979. General rules for the determination of wind environment. In: Proceedings of the 5th International Conference on Wind Engineering, 225–234.
accessed in January 2010.
Bottema (bib6) 1997; 67–68
Parente, A., Benocci, C., 2010. On the RANS simulation of neutral ABL flows. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27.
Franke, J., Hellsten, A., Schlunzen, H., Carissimo, B. (Eds.), 2007. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Action 732.
Richards, Quinn, Parker (bib26) 2002; 5
Fluent, 2006. Fluent 6.3 User's Guide. Lebanon, New Hampshire.
Hargreaves, Wright (bib15) 2007; 95
Xie, Voke, Hayden, Robins (bib31) 2004; 111
Richards, Hoxey (bib25) 1993; 46–47
Bechmann, A., 2006. Large-eddy simulation of atmospheric flow over complex terrain, Ph.D. Thesis, Technical University of Denmark.
Cebeci, Bradshaw (bib9) 1977
Pontiggia, Derudi, Rota (bib24) 2009; 171
10.1016/j.jweia.2010.12.017_bib1
Gorlé (10.1016/j.jweia.2010.12.017_bib13) 2009; 43
10.1016/j.jweia.2010.12.017_bib2
10.1016/j.jweia.2010.12.017_bib3
Pontiggia (10.1016/j.jweia.2010.12.017_bib24) 2009; 171
10.1016/j.jweia.2010.12.017_bib12
Brost (10.1016/j.jweia.2010.12.017_bib7) 1978; 35
10.1016/j.jweia.2010.12.017_bib18
Yang (10.1016/j.jweia.2010.12.017_bib29) 2009; 97
Xie (10.1016/j.jweia.2010.12.017_bib31) 2004; 111
10.1016/j.jweia.2010.12.017_bib10
Bottema (10.1016/j.jweia.2010.12.017_bib6) 1997; 67–68
Hargreaves (10.1016/j.jweia.2010.12.017_bib15) 2007; 95
Cebeci (10.1016/j.jweia.2010.12.017_bib9) 1977
Richards (10.1016/j.jweia.2010.12.017_bib25) 1993; 46–47
Gorlé (10.1016/j.jweia.2010.12.017_bib14) 2010; 137
Tsuchiya (10.1016/j.jweia.2010.12.017_bib28) 1997; 67–68
10.1016/j.jweia.2010.12.017_bib22
Richards (10.1016/j.jweia.2010.12.017_bib26) 2002; 5
Blocken (10.1016/j.jweia.2010.12.017_bib4) 2007; 95
Riddle (10.1016/j.jweia.2010.12.017_bib27) 2004; 38
10.1016/j.jweia.2010.12.017_bib8
10.1016/j.jweia.2010.12.017_bib21
10.1016/j.jweia.2010.12.017_bib20
Blocken (10.1016/j.jweia.2010.12.017_bib5) 2007; 41
References_xml – volume: 67–68
  start-page: 169
  year: 1997
  end-page: 182
  ident: bib28
  article-title: Development of a new
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 5
  start-page: 177
  year: 2002
  end-page: 192
  ident: bib26
  article-title: A 6
  publication-title: Wind Structures
– reference: Franke, J., Hellsten, A., Schlunzen, H., Carissimo, B. (Eds.), 2007. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Action 732.
– reference: Leitl, B., 1998. Cedval at Hamburg University. 〈
– reference: Bechmann, A., 2006. Large-eddy simulation of atmospheric flow over complex terrain, Ph.D. Thesis, Technical University of Denmark.
– volume: 43
  start-page: 673
  year: 2009
  end-page: 681
  ident: bib13
  article-title: CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer
  publication-title: Atmospheric Environment
– volume: 137
  start-page: 115
  year: 2010
  end-page: 133
  ident: bib14
  article-title: Dispersion in the wake of a rectangular building: validation of two RANS modelling approaches
  publication-title: Boundary Layer Meteorology
– volume: 46–47
  start-page: 145
  year: 1993
  end-page: 153
  ident: bib25
  article-title: Appropriate boundary conditions for computational wind engineering models using the
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– reference: CD-Adapco, User's Guide, 2008.
– reference: Beranek, W., 1979. General rules for the determination of wind environment. In: Proceedings of the 5th International Conference on Wind Engineering, 225–234.
– volume: 67–68
  start-page: 897
  year: 1997
  end-page: 908
  ident: bib6
  article-title: Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 41
  start-page: 238
  year: 2007
  end-page: 252
  ident: bib5
  article-title: CFD simulation of the atmospheric boundary layer: wall function problems
  publication-title: Atmospheric Environment
– reference: Parente, A., Benocci, C., 2010. On the RANS simulation of neutral ABL flows. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27.
– reference: Ansys Ltd., 2005. Ansys CFX-Solver, Release 10.0: Theory. Canonsburg.
– reference: Fluent, 2006. Fluent 6.3 User's Guide. Lebanon, New Hampshire.
– volume: 97
  start-page: 88
  year: 2009
  end-page: 95
  ident: bib29
  article-title: New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layer in computational wind engineering
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 95
  start-page: 355
  year: 2007
  end-page: 369
  ident: bib15
  article-title: On the use of the
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– reference: Norris, S.E., Richards P.J., 2010. Appropriate boundary conditions for computational wind engineering models revisited. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27.
– reference: Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361.
– volume: 171
  start-page: 739
  year: 2009
  end-page: 747
  ident: bib24
  article-title: Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes
  publication-title: Journal of Hazardous Materials
– volume: 38
  start-page: 1029
  year: 2004
  end-page: 1038
  ident: bib27
  article-title: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling
  publication-title: Atmospheric Environment
– volume: 111
  start-page: 417
  year: 2004
  end-page: 440
  ident: bib31
  article-title: Large-eddy simulation of turbulent flow over a rough surface
  publication-title: Boundary Layer Meteorology
– volume: 95
  start-page: 941
  year: 2007
  end-page: 962
  ident: bib4
  article-title: CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– year: 1977
  ident: bib9
  article-title: Momentum Transfer in Boundary Layers
– reference: 〉, accessed in January 2010.
– volume: 35
  start-page: 1427
  year: 1978
  end-page: 1440
  ident: bib7
  article-title: A model study of the stably stratified planetary boundary layer
  publication-title: Journal of Atmospheric Sciences
– ident: 10.1016/j.jweia.2010.12.017_bib3
– ident: 10.1016/j.jweia.2010.12.017_bib21
– ident: 10.1016/j.jweia.2010.12.017_bib1
– volume: 95
  start-page: 355
  year: 2007
  ident: 10.1016/j.jweia.2010.12.017_bib15
  article-title: On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2006.08.002
– volume: 46–47
  start-page: 145
  year: 1993
  ident: 10.1016/j.jweia.2010.12.017_bib25
  article-title: Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/0167-6105(93)90124-7
– ident: 10.1016/j.jweia.2010.12.017_bib2
  doi: 10.1016/B978-1-4832-8367-8.50027-9
– volume: 95
  start-page: 941
  year: 2007
  ident: 10.1016/j.jweia.2010.12.017_bib4
  article-title: CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2007.01.013
– volume: 67–68
  start-page: 897
  year: 1997
  ident: 10.1016/j.jweia.2010.12.017_bib6
  article-title: Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/S0167-6105(97)00127-X
– volume: 41
  start-page: 238
  year: 2007
  ident: 10.1016/j.jweia.2010.12.017_bib5
  article-title: CFD simulation of the atmospheric boundary layer: wall function problems
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2006.08.019
– volume: 137
  start-page: 115
  year: 2010
  ident: 10.1016/j.jweia.2010.12.017_bib14
  article-title: Dispersion in the wake of a rectangular building: validation of two RANS modelling approaches
  publication-title: Boundary Layer Meteorology
  doi: 10.1007/s10546-010-9521-0
– volume: 97
  start-page: 88
  year: 2009
  ident: 10.1016/j.jweia.2010.12.017_bib29
  article-title: New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layer in computational wind engineering
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2008.12.001
– ident: 10.1016/j.jweia.2010.12.017_bib20
– ident: 10.1016/j.jweia.2010.12.017_bib22
– volume: 38
  start-page: 1029
  year: 2004
  ident: 10.1016/j.jweia.2010.12.017_bib27
  article-title: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2003.10.052
– volume: 43
  start-page: 673
  year: 2009
  ident: 10.1016/j.jweia.2010.12.017_bib13
  article-title: CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2008.09.060
– ident: 10.1016/j.jweia.2010.12.017_bib18
– volume: 111
  start-page: 417
  year: 2004
  ident: 10.1016/j.jweia.2010.12.017_bib31
  article-title: Large-eddy simulation of turbulent flow over a rough surface
  publication-title: Boundary Layer Meteorology
  doi: 10.1023/B:BOUN.0000016599.75196.17
– ident: 10.1016/j.jweia.2010.12.017_bib12
– volume: 67–68
  start-page: 169
  year: 1997
  ident: 10.1016/j.jweia.2010.12.017_bib28
  article-title: Development of a new k–ε model for flow and pressure fields around bluff body
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/S0167-6105(97)00071-8
– ident: 10.1016/j.jweia.2010.12.017_bib10
– volume: 5
  start-page: 177
  issue: 2–4
  year: 2002
  ident: 10.1016/j.jweia.2010.12.017_bib26
  article-title: A 6m cube in an atmospheric boundary-layer flow. Part 2. Computational studies
  publication-title: Wind Structures
  doi: 10.12989/was.2002.5.2_3_4.177
– volume: 35
  start-page: 1427
  year: 1978
  ident: 10.1016/j.jweia.2010.12.017_bib7
  article-title: A model study of the stably stratified planetary boundary layer
  publication-title: Journal of Atmospheric Sciences
  doi: 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
– volume: 171
  start-page: 739
  issue: 1–3
  year: 2009
  ident: 10.1016/j.jweia.2010.12.017_bib24
  article-title: Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2009.06.064
– ident: 10.1016/j.jweia.2010.12.017_bib8
– year: 1977
  ident: 10.1016/j.jweia.2010.12.017_bib9
SSID ssj0007473
Score 2.3292556
Snippet The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms ABL
Atmospheric boundary layer
Computational fluid dynamics
Fluid flow
Inlets
k-Epsilon turbulence model
Mathematical analysis
Mathematical models
RANS
Rough wall function
Turbulence
Turbulent flow
Turbulent kinetic energy
Walls
Title Improved k– ε model and wall function formulation for the RANS simulation of ABL flows
URI https://dx.doi.org/10.1016/j.jweia.2010.12.017
https://www.proquest.com/docview/1777124246
https://www.proquest.com/docview/880676860
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BucABsYqyyUgcCU0cZzsWBCpbDyxSOVm2Y0stVYpoUW-If-Bb-A0-gi9hnKUCBBy4RZatRGPnzfP4eQZgl0V-qnxjHIO-22HokhwpksihiWJJbEImc_H4RTts3bDTTtCZgsPqLoyVVZbYX2B6jtZlS6O0ZuO-221cWQE9Ov_Ay0PUtDMNM9RPwqAGM82Ts1Z7AsjImP0qxbcdUCUfymVevbHuikLiZcOCeeGyHx3UN6jO_c_xAsyXxJE0i29bhCmdLcHcp3SCy3BbRAh0Su7en1_I2yvJ69wQkaVkLPp9Yp2YnQhimWpZt8s-E2SB5LLZviLD7qR9YEjz4JyY_mA8XIGb46Prw5ZTlk5wFPKFkeMZldgiRNRVsRB-ZJhEz02RG1HBtAgS6Yap0a6nlIcEjzGVBjJW1CSGpTqm_irUskGm14DEmlIpcSMb-hGTkU6QQaHdFcOdtXBVWgda2YurMq-4LW_R55WArMdzI3NrZO5Rjkauw95k0H2RVuPv7mE1EfzL6uAI_H8P3KmmjeN_Yw9DRKYHj0PuRVHk2bsxYR3IL30Q23CJxaG7_t_3b8BsEYS2Up9NqI0eHvUWspiR3Ibp_Sdvu1yrH2gM8TA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCrKaiSORE0cZzsWBCpQemCRysmyHVsqVCmiRb3yD3wLv8FH8CWMs1SAgAO3yLKVaOzMex4_zwDss8hPlW-MYxC7HYaQ5EiRRA5NFEtiEzKZi8cvOmHrhp11g-4UHFV3YayssvT9hU_PvXXZ0iit2Xjo9RpXVkCP4B94eYiadqdhhgW426vBTPP0vNWZOGRkzH6V4tsOqJIP5TKvu7HuiULiZcOCeeGyHwHqm6vO8edkERZK4kiaxbctwZTOlmH-UzrBFbgtIgQ6Jffvzy_k7ZXkdW6IyFIyFv0-sSBmJ4JYplrW7bLPBFkguWx2rsiwN2kfGNI8bBPTH4yHq3Bzcnx91HLK0gmOQr4wcjyjEluEiLoqFsKPDJOI3BS5ERVMiyCRbpga7XpKeUjwGFNpIGNFTWJYqmPqr0EtG2R6HUisKZUSN7KhHzEZ6QQZFNpdMdxZC1eldaCVvbgq84rb8hZ9XgnI7nhuZG6NzD3K0ch1OJgMeijSavzdPawmgn9ZHRwd_98D96pp4_jf2MMQkenB05B7URR59m5MWAfySx_0bbjE4tDd-O_7d2G2dX3R5u3TzvkmzBUBaSv72YLa6PFJbyOjGcmdcsV-ADDi8x8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+k-+epsilon+model+and+wall+function+formulation+for+the+RANS+simulation+of+ABL+flows&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Parente%2C+A&rft.au=Gorle%2C+C&rft.au=van+Beeck%2C+J&rft.au=Benocci%2C+C&rft.date=2011-04-01&rft.issn=0167-6105&rft.volume=99&rft.issue=4&rft.spage=267&rft.epage=278&rft_id=info:doi/10.1016%2Fj.jweia.2010.12.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon