Improved k– ε model and wall function formulation for the RANS simulation of ABL flows
The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the dom...
Saved in:
Published in | Journal of wind engineering and industrial aerodynamics Vol. 99; no. 4; pp. 267 - 278 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6105 1872-8197 |
DOI | 10.1016/j.jweia.2010.12.017 |
Cover
Abstract | The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation.
The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard
k–
ε turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain.
The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated. |
---|---|
AbstractList | The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sandagrain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation. The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard k- epsilon turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain. The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated. The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard sand–grain rough wall functions. Such approach generally results in the undesired decay of the velocity and turbulent profiles specified at the domain inlet, before they reach the section of interest within the computational domain. This behaviour is a direct consequence of the inconsistency between the fully developed ABL inlet profiles and the wall function formulation. The present paper addresses the aforementioned issue and proposes a solution to it. A modified formulation of the Richards and Hoxey wall function for turbulence production is presented to avoid the well-documented over-prediction of the turbulent kinetic energy at the wall. Moreover, a modification of the standard k– ε turbulence model is proposed to allow specific arbitrary sets of fully developed profiles at the inlet section of the computational domain. The methodology is implemented and tested in the commercial code FLUENT v6.3 by means of the User Defined Functions (UDF). Results are presented for two neutral boundary layers over flat terrain, at wind tunnel and full scale, and for the flow around a bluff-body immersed into a wind-tunnel ABL. The potential of the proposed methodology in ensuring the homogeneity of velocity and turbulence quantities throughout the computational domain is demonstrated. |
Author | Gorlé, C. Benocci, C. Parente, A. van Beeck, J. |
Author_xml | – sequence: 1 givenname: A. surname: Parente fullname: Parente, A. email: Alessandro.Parente@ulb.ac.be organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium – sequence: 2 givenname: C. surname: Gorlé fullname: Gorlé, C. organization: Center for Turbulence Research, Stanford University, Stanford, CA, USA – sequence: 3 givenname: J. surname: van Beeck fullname: van Beeck, J. organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium – sequence: 4 givenname: C. surname: Benocci fullname: Benocci, C. organization: Environmental and Applied Fluid Dynamic Department, Von Karman Institute for Fluid Dynamics, Bruxelles, Belgium |
BookMark | eNqFkDtOAzEQQC0EEuFzAhp30Gywvc7aW1AExE-KQOJTUFmOdywcvGuwN0R03IGzcA0OwUnYEKCggMqj0Xsj-a2h5SY0gNAWJX1KaLE76U9m4HSfkfmG9QkVS6hHpWCZpKVYRr2OEllByWAVraU0IYQILvIeujmt72N4hArfvT-_4LdXXIcKPNZNhWfae2ynjWldaLANsZ56_T3j9hbwxfDsEif3sw8WD_dH2PowSxtoxWqfYPPrXUfXR4dXByfZ6Pz49GA4ygyTeZtRa8puYIwYqXUuLB9zUjCeD5jmoAflmBSVBUKNoTklnJtqMJaG2dLyCiTL19H24m73j4cppFbVLhnwXjcQpklJSQpRyIJ05M6fJBVCUMYZLzo0X6AmhpQiWHUfXa3jk6JEzZOrifpMrubJFWWqS95Z5S_LuPazTBu18_-4ewsXulaPDqJKxkFjoHIRTKuq4P70PwBhvKCj |
CitedBy_id | crossref_primary_10_1115_1_4054587 |
Cites_doi | 10.1016/j.jweia.2006.08.002 10.1016/0167-6105(93)90124-7 10.1016/B978-1-4832-8367-8.50027-9 10.1016/j.jweia.2007.01.013 10.1016/S0167-6105(97)00127-X 10.1016/j.atmosenv.2006.08.019 10.1007/s10546-010-9521-0 10.1016/j.jweia.2008.12.001 10.1016/j.atmosenv.2003.10.052 10.1016/j.atmosenv.2008.09.060 10.1023/B:BOUN.0000016599.75196.17 10.1016/S0167-6105(97)00071-8 10.12989/was.2002.5.2_3_4.177 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2 10.1016/j.jhazmat.2009.06.064 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd |
Copyright_xml | – notice: 2011 Elsevier Ltd |
DBID | AAYXX CITATION 7SU 7TB 8FD C1K FR3 H8D KR7 L7M 7ST 7TV SOI |
DOI | 10.1016/j.jweia.2010.12.017 |
DatabaseName | CrossRef Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Pollution Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Pollution Abstracts Environment Abstracts |
DatabaseTitleList | Aerospace Database Pollution Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-8197 |
EndPage | 278 |
ExternalDocumentID | 10_1016_j_jweia_2010_12_017 S016761051100002X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSR SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SU 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M 7ST 7TV SOI |
ID | FETCH-LOGICAL-c283t-1fc9283220c8aa37f4b40624352a4ea59b06dfe01cc131044cd5b8c2f9f4de823 |
IEDL.DBID | AIKHN |
ISSN | 0167-6105 |
IngestDate | Fri Sep 05 06:57:54 EDT 2025 Fri Sep 05 13:19:00 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 04:09:40 EDT 2025 Fri Feb 23 02:23:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Rough wall function k-Epsilon turbulence model Turbulent kinetic energy RANS ABL |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c283t-1fc9283220c8aa37f4b40624352a4ea59b06dfe01cc131044cd5b8c2f9f4de823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1777124246 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_880676860 proquest_miscellaneous_1777124246 crossref_primary_10_1016_j_jweia_2010_12_017 crossref_citationtrail_10_1016_j_jweia_2010_12_017 elsevier_sciencedirect_doi_10_1016_j_jweia_2010_12_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110401 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 20110401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of wind engineering and industrial aerodynamics |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gorlé, van Beeck, Rambaud, Van Tendeloo (bib13) 2009; 43 Tsuchiya, Murakami, Mochida, Kondo, Ishida (bib28) 1997; 67–68 Blocken, Carmeliet, Stathopoulos (bib4) 2007; 95 Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361. Brost, Wyngaard (bib7) 1978; 35 Gorlé, van Beeck, Rambaud (bib14) 2010; 137 Yang, Gu, Chen, Jin (bib29) 2009; 97 Blocken, Stathopoulos, Carmeliet (bib5) 2007; 41 CD-Adapco, User's Guide, 2008. Leitl, B., 1998. Cedval at Hamburg University. Norris, S.E., Richards P.J., 2010. Appropriate boundary conditions for computational wind engineering models revisited. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27. Ansys Ltd., 2005. Ansys CFX-Solver, Release 10.0: Theory. Canonsburg. Riddle, Carruthers, Sharpe, McHugh, Stocker (bib27) 2004; 38 Beranek, W., 1979. General rules for the determination of wind environment. In: Proceedings of the 5th International Conference on Wind Engineering, 225–234. accessed in January 2010. Bottema (bib6) 1997; 67–68 Parente, A., Benocci, C., 2010. On the RANS simulation of neutral ABL flows. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27. Franke, J., Hellsten, A., Schlunzen, H., Carissimo, B. (Eds.), 2007. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Action 732. Richards, Quinn, Parker (bib26) 2002; 5 Fluent, 2006. Fluent 6.3 User's Guide. Lebanon, New Hampshire. Hargreaves, Wright (bib15) 2007; 95 Xie, Voke, Hayden, Robins (bib31) 2004; 111 Richards, Hoxey (bib25) 1993; 46–47 Bechmann, A., 2006. Large-eddy simulation of atmospheric flow over complex terrain, Ph.D. Thesis, Technical University of Denmark. Cebeci, Bradshaw (bib9) 1977 Pontiggia, Derudi, Rota (bib24) 2009; 171 10.1016/j.jweia.2010.12.017_bib1 Gorlé (10.1016/j.jweia.2010.12.017_bib13) 2009; 43 10.1016/j.jweia.2010.12.017_bib2 10.1016/j.jweia.2010.12.017_bib3 Pontiggia (10.1016/j.jweia.2010.12.017_bib24) 2009; 171 10.1016/j.jweia.2010.12.017_bib12 Brost (10.1016/j.jweia.2010.12.017_bib7) 1978; 35 10.1016/j.jweia.2010.12.017_bib18 Yang (10.1016/j.jweia.2010.12.017_bib29) 2009; 97 Xie (10.1016/j.jweia.2010.12.017_bib31) 2004; 111 10.1016/j.jweia.2010.12.017_bib10 Bottema (10.1016/j.jweia.2010.12.017_bib6) 1997; 67–68 Hargreaves (10.1016/j.jweia.2010.12.017_bib15) 2007; 95 Cebeci (10.1016/j.jweia.2010.12.017_bib9) 1977 Richards (10.1016/j.jweia.2010.12.017_bib25) 1993; 46–47 Gorlé (10.1016/j.jweia.2010.12.017_bib14) 2010; 137 Tsuchiya (10.1016/j.jweia.2010.12.017_bib28) 1997; 67–68 10.1016/j.jweia.2010.12.017_bib22 Richards (10.1016/j.jweia.2010.12.017_bib26) 2002; 5 Blocken (10.1016/j.jweia.2010.12.017_bib4) 2007; 95 Riddle (10.1016/j.jweia.2010.12.017_bib27) 2004; 38 10.1016/j.jweia.2010.12.017_bib8 10.1016/j.jweia.2010.12.017_bib21 10.1016/j.jweia.2010.12.017_bib20 Blocken (10.1016/j.jweia.2010.12.017_bib5) 2007; 41 |
References_xml | – volume: 67–68 start-page: 169 year: 1997 end-page: 182 ident: bib28 article-title: Development of a new publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 5 start-page: 177 year: 2002 end-page: 192 ident: bib26 article-title: A 6 publication-title: Wind Structures – reference: Franke, J., Hellsten, A., Schlunzen, H., Carissimo, B. (Eds.), 2007. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Action 732. – reference: Leitl, B., 1998. Cedval at Hamburg University. 〈 – reference: Bechmann, A., 2006. Large-eddy simulation of atmospheric flow over complex terrain, Ph.D. Thesis, Technical University of Denmark. – volume: 43 start-page: 673 year: 2009 end-page: 681 ident: bib13 article-title: CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer publication-title: Atmospheric Environment – volume: 137 start-page: 115 year: 2010 end-page: 133 ident: bib14 article-title: Dispersion in the wake of a rectangular building: validation of two RANS modelling approaches publication-title: Boundary Layer Meteorology – volume: 46–47 start-page: 145 year: 1993 end-page: 153 ident: bib25 article-title: Appropriate boundary conditions for computational wind engineering models using the publication-title: Journal of Wind Engineering and Industrial Aerodynamics – reference: CD-Adapco, User's Guide, 2008. – reference: Beranek, W., 1979. General rules for the determination of wind environment. In: Proceedings of the 5th International Conference on Wind Engineering, 225–234. – volume: 67–68 start-page: 897 year: 1997 end-page: 908 ident: bib6 article-title: Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 41 start-page: 238 year: 2007 end-page: 252 ident: bib5 article-title: CFD simulation of the atmospheric boundary layer: wall function problems publication-title: Atmospheric Environment – reference: Parente, A., Benocci, C., 2010. On the RANS simulation of neutral ABL flows. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27. – reference: Ansys Ltd., 2005. Ansys CFX-Solver, Release 10.0: Theory. Canonsburg. – reference: Fluent, 2006. Fluent 6.3 User's Guide. Lebanon, New Hampshire. – volume: 97 start-page: 88 year: 2009 end-page: 95 ident: bib29 article-title: New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layer in computational wind engineering publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 95 start-page: 355 year: 2007 end-page: 369 ident: bib15 article-title: On the use of the publication-title: Journal of Wind Engineering and Industrial Aerodynamics – reference: Norris, S.E., Richards P.J., 2010. Appropriate boundary conditions for computational wind engineering models revisited. In: Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23–27. – reference: Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361. – volume: 171 start-page: 739 year: 2009 end-page: 747 ident: bib24 article-title: Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes publication-title: Journal of Hazardous Materials – volume: 38 start-page: 1029 year: 2004 end-page: 1038 ident: bib27 article-title: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling publication-title: Atmospheric Environment – volume: 111 start-page: 417 year: 2004 end-page: 440 ident: bib31 article-title: Large-eddy simulation of turbulent flow over a rough surface publication-title: Boundary Layer Meteorology – volume: 95 start-page: 941 year: 2007 end-page: 962 ident: bib4 article-title: CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow publication-title: Journal of Wind Engineering and Industrial Aerodynamics – year: 1977 ident: bib9 article-title: Momentum Transfer in Boundary Layers – reference: 〉, accessed in January 2010. – volume: 35 start-page: 1427 year: 1978 end-page: 1440 ident: bib7 article-title: A model study of the stably stratified planetary boundary layer publication-title: Journal of Atmospheric Sciences – ident: 10.1016/j.jweia.2010.12.017_bib3 – ident: 10.1016/j.jweia.2010.12.017_bib21 – ident: 10.1016/j.jweia.2010.12.017_bib1 – volume: 95 start-page: 355 year: 2007 ident: 10.1016/j.jweia.2010.12.017_bib15 article-title: On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2006.08.002 – volume: 46–47 start-page: 145 year: 1993 ident: 10.1016/j.jweia.2010.12.017_bib25 article-title: Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/0167-6105(93)90124-7 – ident: 10.1016/j.jweia.2010.12.017_bib2 doi: 10.1016/B978-1-4832-8367-8.50027-9 – volume: 95 start-page: 941 year: 2007 ident: 10.1016/j.jweia.2010.12.017_bib4 article-title: CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2007.01.013 – volume: 67–68 start-page: 897 year: 1997 ident: 10.1016/j.jweia.2010.12.017_bib6 article-title: Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/S0167-6105(97)00127-X – volume: 41 start-page: 238 year: 2007 ident: 10.1016/j.jweia.2010.12.017_bib5 article-title: CFD simulation of the atmospheric boundary layer: wall function problems publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2006.08.019 – volume: 137 start-page: 115 year: 2010 ident: 10.1016/j.jweia.2010.12.017_bib14 article-title: Dispersion in the wake of a rectangular building: validation of two RANS modelling approaches publication-title: Boundary Layer Meteorology doi: 10.1007/s10546-010-9521-0 – volume: 97 start-page: 88 year: 2009 ident: 10.1016/j.jweia.2010.12.017_bib29 article-title: New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layer in computational wind engineering publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2008.12.001 – ident: 10.1016/j.jweia.2010.12.017_bib20 – ident: 10.1016/j.jweia.2010.12.017_bib22 – volume: 38 start-page: 1029 year: 2004 ident: 10.1016/j.jweia.2010.12.017_bib27 article-title: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2003.10.052 – volume: 43 start-page: 673 year: 2009 ident: 10.1016/j.jweia.2010.12.017_bib13 article-title: CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2008.09.060 – ident: 10.1016/j.jweia.2010.12.017_bib18 – volume: 111 start-page: 417 year: 2004 ident: 10.1016/j.jweia.2010.12.017_bib31 article-title: Large-eddy simulation of turbulent flow over a rough surface publication-title: Boundary Layer Meteorology doi: 10.1023/B:BOUN.0000016599.75196.17 – ident: 10.1016/j.jweia.2010.12.017_bib12 – volume: 67–68 start-page: 169 year: 1997 ident: 10.1016/j.jweia.2010.12.017_bib28 article-title: Development of a new k–ε model for flow and pressure fields around bluff body publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/S0167-6105(97)00071-8 – ident: 10.1016/j.jweia.2010.12.017_bib10 – volume: 5 start-page: 177 issue: 2–4 year: 2002 ident: 10.1016/j.jweia.2010.12.017_bib26 article-title: A 6m cube in an atmospheric boundary-layer flow. Part 2. Computational studies publication-title: Wind Structures doi: 10.12989/was.2002.5.2_3_4.177 – volume: 35 start-page: 1427 year: 1978 ident: 10.1016/j.jweia.2010.12.017_bib7 article-title: A model study of the stably stratified planetary boundary layer publication-title: Journal of Atmospheric Sciences doi: 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2 – volume: 171 start-page: 739 issue: 1–3 year: 2009 ident: 10.1016/j.jweia.2010.12.017_bib24 article-title: Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2009.06.064 – ident: 10.1016/j.jweia.2010.12.017_bib8 – year: 1977 ident: 10.1016/j.jweia.2010.12.017_bib9 |
SSID | ssj0007473 |
Score | 2.3292556 |
Snippet | The simulation of Atmospheric Boundary Layer (ABL) flows is usually performed using the commercial CFD codes with RANS turbulence modelling and standard... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 267 |
SubjectTerms | ABL Atmospheric boundary layer Computational fluid dynamics Fluid flow Inlets k-Epsilon turbulence model Mathematical analysis Mathematical models RANS Rough wall function Turbulence Turbulent flow Turbulent kinetic energy Walls |
Title | Improved k– ε model and wall function formulation for the RANS simulation of ABL flows |
URI | https://dx.doi.org/10.1016/j.jweia.2010.12.017 https://www.proquest.com/docview/1777124246 https://www.proquest.com/docview/880676860 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BucABsYqyyUgcCU0cZzsWBCpbDyxSOVm2Y0stVYpoUW-If-Bb-A0-gi9hnKUCBBy4RZatRGPnzfP4eQZgl0V-qnxjHIO-22HokhwpksihiWJJbEImc_H4RTts3bDTTtCZgsPqLoyVVZbYX2B6jtZlS6O0ZuO-221cWQE9Ov_Ay0PUtDMNM9RPwqAGM82Ts1Z7AsjImP0qxbcdUCUfymVevbHuikLiZcOCeeGyHx3UN6jO_c_xAsyXxJE0i29bhCmdLcHcp3SCy3BbRAh0Su7en1_I2yvJ69wQkaVkLPp9Yp2YnQhimWpZt8s-E2SB5LLZviLD7qR9YEjz4JyY_mA8XIGb46Prw5ZTlk5wFPKFkeMZldgiRNRVsRB-ZJhEz02RG1HBtAgS6Yap0a6nlIcEjzGVBjJW1CSGpTqm_irUskGm14DEmlIpcSMb-hGTkU6QQaHdFcOdtXBVWgda2YurMq-4LW_R55WArMdzI3NrZO5Rjkauw95k0H2RVuPv7mE1EfzL6uAI_H8P3KmmjeN_Yw9DRKYHj0PuRVHk2bsxYR3IL30Q23CJxaG7_t_3b8BsEYS2Up9NqI0eHvUWspiR3Ibp_Sdvu1yrH2gM8TA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCrKaiSORE0cZzsWBCpQemCRysmyHVsqVCmiRb3yD3wLv8FH8CWMs1SAgAO3yLKVaOzMex4_zwDss8hPlW-MYxC7HYaQ5EiRRA5NFEtiEzKZi8cvOmHrhp11g-4UHFV3YayssvT9hU_PvXXZ0iit2Xjo9RpXVkCP4B94eYiadqdhhgW426vBTPP0vNWZOGRkzH6V4tsOqJIP5TKvu7HuiULiZcOCeeGyHwHqm6vO8edkERZK4kiaxbctwZTOlmH-UzrBFbgtIgQ6Jffvzy_k7ZXkdW6IyFIyFv0-sSBmJ4JYplrW7bLPBFkguWx2rsiwN2kfGNI8bBPTH4yHq3Bzcnx91HLK0gmOQr4wcjyjEluEiLoqFsKPDJOI3BS5ERVMiyCRbpga7XpKeUjwGFNpIGNFTWJYqmPqr0EtG2R6HUisKZUSN7KhHzEZ6QQZFNpdMdxZC1eldaCVvbgq84rb8hZ9XgnI7nhuZG6NzD3K0ch1OJgMeijSavzdPawmgn9ZHRwd_98D96pp4_jf2MMQkenB05B7URR59m5MWAfySx_0bbjE4tDd-O_7d2G2dX3R5u3TzvkmzBUBaSv72YLa6PFJbyOjGcmdcsV-ADDi8x8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+k-+epsilon+model+and+wall+function+formulation+for+the+RANS+simulation+of+ABL+flows&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Parente%2C+A&rft.au=Gorle%2C+C&rft.au=van+Beeck%2C+J&rft.au=Benocci%2C+C&rft.date=2011-04-01&rft.issn=0167-6105&rft.volume=99&rft.issue=4&rft.spage=267&rft.epage=278&rft_id=info:doi/10.1016%2Fj.jweia.2010.12.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon |