Prediction and Optimization of Student Grades Based on Genetic Algorithm and Graph Convolutional Neural Networks

Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. St...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 21
Main Author Li, Ting
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 17.03.2025
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs.
AbstractList Abstract Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs.
Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs.
ArticleNumber 59
Author Li, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  email: Liting_ltlt@outlook.com
  organization: School of Computer and Artificial Intelligence, Henan Finance University
BookMark eNp9kc9OwzAMxiMEEmPsBTjlBQr51zU9jgnGpIkhAecoTZ2to2umpIPB05O1CHHiZMfx97Ps7wKdNq4BhK4ouaaEZDdBCJqPE8LSJD6zNDmcoAGVMRlLyU__5OdoFMKGEMKoIESIAdo9eSgr01auwbop8XLXVtvqS3cFZ_Fzuy-hafHM6xICvtUBShy_ZtBAWxk8qVfOV-1626lj126Np655d_X-iNA1foS970L74fxbuERnVtcBRj9xiF7v716mD8liOZtPJ4vEMMnaBAwYYk1GC21tLgS32RgIHdM8BV2ApbJkhRFpluaaap6xKLMMciFlHncDPkTznls6vVE7X221_1ROV6orOL9S2scNalBMMJbGEQakEUXOJS8I48JICpzGe0YW61nGuxA82F8eJepogeotUNEC1VmgDlHEe1GIzc0KvNq4vY8XCf-pvgEEeYx4
Cites_doi 10.1186/s41239-020-00186-2
10.1007/s00521-020-05045-9
10.3103/S1060992X21020119
10.1109/ICDSIS61070.2024.10594426
10.1016/j.asoc.2021.107355
10.12785/ijcds/150119
10.3390/su13179775
10.1109/ACCESS.2021.3119596
10.1016/j.heliyon.2024.e32570
10.1016/j.neucom.2020.12.023
10.1109/ACCESS.2021.3049446
10.3390/app11115263
10.1109/ACCESS.2021.3093563
10.32604/iasc.2024.043020
10.1109/ACCESS.2020.2981072
10.1007/s10639-020-10230-3
10.21015/vtse.v11i4.1647
10.1109/ACCESS.2022.3151652
10.1186/s41239-023-00389-3
10.1007/s11042-024-18262-4
10.1109/ICDSIS61070.2024.10594049
10.1186/s40537-024-00918-5
10.3390/electronics12143106
10.1186/s40561-022-00192-z
10.1007/s00500-021-06424-7
10.1109/TBDATA.2021.3125204
10.1007/s10639-019-10004-6
10.1515/nleng-2022-0271
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44196-025-00775-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 21
ExternalDocumentID oai_doaj_org_article_24225443ce8c4b9383b0234c81e31775
10_1007_s44196_025_00775_x
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HZ~
J~4
O9-
OK1
SOJ
TFW
TR2
AASML
AAYXX
CITATION
ID FETCH-LOGICAL-c282t-ecec0fc71baff9443f76e016195eabef18d2bc45759a1a372c28f2e94889140e3
IEDL.DBID C24
ISSN 1875-6883
IngestDate Wed Aug 27 01:02:33 EDT 2025
Sun Jul 06 05:06:03 EDT 2025
Tue Mar 18 01:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Graph structure
Genetic algorithm
Student grade
Graph convolution neural networks
Dependency measure and academic performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-ecec0fc71baff9443f76e016195eabef18d2bc45759a1a372c28f2e94889140e3
OpenAccessLink https://link.springer.com/10.1007/s44196-025-00775-x
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_24225443ce8c4b9383b0234c81e31775
crossref_primary_10_1007_s44196_025_00775_x
springer_journals_10_1007_s44196_025_00775_x
PublicationCentury 2000
PublicationDate 2025-03-17
PublicationDateYYYYMMDD 2025-03-17
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-17
  day: 17
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References H Ettakifi (775_CR29) 2024; 14
SDA Bujang (775_CR6) 2021; 9
I Salehin (775_CR10) 2023; 12
A Khan (775_CR1) 2021; 26
SC Tsai (775_CR7) 2020; 17
K Abid (775_CR21) 2023; 11
G Feng (775_CR24) 2022; 10
X Lu (775_CR15) 2021; 431
S Surenthiran (775_CR27) 2021; 30
M Yağcı (775_CR2) 2022; 9
MM Saeed (775_CR35) 2024; 39
B Albreiki (775_CR16) 2023; 20
BK Yousafzai (775_CR18) 2021; 13
M Adnan (775_CR5) 2021; 9
M Hooda (775_CR25) 2022; 2022
EP Dogadina (775_CR14) 2021; 11
775_CR34
Y Li (775_CR30) 2024; 9
775_CR33
SS Shreem (775_CR12) 2022; 26
775_CR37
Q Huang (775_CR36) 2024; 11
F Alshaikh (775_CR23) 2024; 15
775_CR9
M Chen (775_CR31) 2024; 10
Y Zhang (775_CR19) 2021; 9
A Nabil (775_CR17) 2021; 9
MS Viswanathan (775_CR3) 2021; 12
F Ofori (775_CR4) 2020; 4
TS Ashwin (775_CR20) 2020; 25
P Hai-tao (775_CR13) 2021; 33
F Giannakas (775_CR11) 2021; 106
SRM Ali (775_CR22) 2022; 13
X Du (775_CR26) 2023; 12
H Cho (775_CR8) 2020; 8
Y Alshamaila (775_CR32) 2024; 83
775_CR28
References_xml – volume: 17
  start-page: 1
  year: 2020
  ident: 775_CR7
  publication-title: Int. J. Educ. Technol. High. Educ.
  doi: 10.1186/s41239-020-00186-2
– volume: 33
  start-page: 637
  year: 2021
  ident: 775_CR13
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05045-9
– volume: 30
  start-page: 157
  year: 2021
  ident: 775_CR27
  publication-title: Opt. Mem. Neural Netw.
  doi: 10.3103/S1060992X21020119
– volume: 9
  start-page: 2427
  issue: 1
  year: 2024
  ident: 775_CR30
  publication-title: Appl. Math. Nonlinear Sci.
– ident: 775_CR34
  doi: 10.1109/ICDSIS61070.2024.10594426
– volume: 106
  year: 2021
  ident: 775_CR11
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107355
– volume: 2022
  start-page: 7690103
  issue: 1
  year: 2022
  ident: 775_CR25
  publication-title: Math. Probl. Eng.
– volume: 15
  start-page: 239
  issue: 1
  year: 2024
  ident: 775_CR23
  publication-title: Int. J. Comput. Digit. Syst.
  doi: 10.12785/ijcds/150119
– volume: 13
  start-page: 9775
  issue: 17
  year: 2021
  ident: 775_CR18
  publication-title: Sustainability
  doi: 10.3390/su13179775
– ident: 775_CR9
– volume: 9
  start-page: 140731
  year: 2021
  ident: 775_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3119596
– volume: 10
  issue: 12
  year: 2024
  ident: 775_CR31
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e32570
– ident: 775_CR37
– ident: 775_CR28
– volume: 431
  start-page: 23
  year: 2021
  ident: 775_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.023
– volume: 9
  start-page: 7519
  year: 2021
  ident: 775_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049446
– volume: 11
  start-page: 5263
  issue: 11
  year: 2021
  ident: 775_CR14
  publication-title: Appl. Sci.
  doi: 10.3390/app11115263
– volume: 9
  start-page: 95608
  year: 2021
  ident: 775_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093563
– volume: 13
  start-page: 1329
  issue: 1
  year: 2022
  ident: 775_CR22
  publication-title: Int J Nonlinear Anal Appl
– volume: 4
  start-page: 33
  issue: 1
  year: 2020
  ident: 775_CR4
  publication-title: J. Inf. Technol.
– volume: 39
  start-page: 213
  issue: 2
  year: 2024
  ident: 775_CR35
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.32604/iasc.2024.043020
– volume: 8
  start-page: 52588
  year: 2020
  ident: 775_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981072
– volume: 14
  start-page: 4325
  issue: 4
  year: 2024
  ident: 775_CR29
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 26
  start-page: 205
  issue: 1
  year: 2021
  ident: 775_CR1
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-020-10230-3
– volume: 11
  start-page: 67
  issue: 4
  year: 2023
  ident: 775_CR21
  publication-title: VFAST Trans. Softw. Eng.
  doi: 10.21015/vtse.v11i4.1647
– volume: 10
  start-page: 19558
  year: 2022
  ident: 775_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151652
– volume: 20
  start-page: 23
  issue: 1
  year: 2023
  ident: 775_CR16
  publication-title: Int. J. Educ. Technol. High. Educ.
  doi: 10.1186/s41239-023-00389-3
– volume: 83
  start-page: 46369
  issue: 15
  year: 2024
  ident: 775_CR32
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-024-18262-4
– ident: 775_CR33
  doi: 10.1109/ICDSIS61070.2024.10594049
– volume: 11
  start-page: 52
  issue: 1
  year: 2024
  ident: 775_CR36
  publication-title: J. Big Data
  doi: 10.1186/s40537-024-00918-5
– volume: 12
  start-page: 3106
  issue: 14
  year: 2023
  ident: 775_CR10
  publication-title: Electronics
  doi: 10.3390/electronics12143106
– volume: 9
  start-page: 11
  issue: 1
  year: 2022
  ident: 775_CR2
  publication-title: Smart Learn. Environ.
  doi: 10.1186/s40561-022-00192-z
– volume: 26
  start-page: 1811
  issue: 4
  year: 2022
  ident: 775_CR12
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-06424-7
– volume: 12
  start-page: 3085
  issue: 2
  year: 2021
  ident: 775_CR3
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 9
  start-page: 118
  issue: 1
  year: 2021
  ident: 775_CR19
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2021.3125204
– volume: 25
  start-page: 1387
  issue: 2
  year: 2020
  ident: 775_CR20
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-019-10004-6
– volume: 12
  start-page: 20220271
  issue: 1
  year: 2023
  ident: 775_CR26
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2022-0271
SSID ssj0002140044
Score 2.3446538
Snippet Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this,...
Abstract Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this,...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Dependency measure and academic performance
Engineering
Genetic algorithm
Graph convolution neural networks
Graph structure
Mathematical Logic and Foundations
Mechatronics
Research Article
Robotics
Student grade
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xfpiD940aNJNsjm2xVYEH6CF3sLuZlYFm5Q0Sn--M5u0VAS9eAok2WT5dma_2dc3jJ1JEJFWNL2kk8ATkVKexkjcs0pSxO_rxNKE_t19dDMSt-NwvJLqi_aE1fLANXCXSCGkotUxII3QCQ6oNNKMMNIHpL7YqZci560MpqgPDnyyTdGcknFn5ZD33X7b0HOyb978GxM5wf4fq6GOZAZbbKOJDnm3rtU2W4N8h20uMi_wxhF32fSxpAUWApWrPOMP6PiT5kQlLyx_qhUr-bBUGcx4D6kq4_iIRKbx07z7_lKUb9XrxJUekmg17xf5Z2OHWAUS7XAXt0t8tsdGg-vn_o3X5E7wDA6iKg8MmCtrYl8raxPEz8YRUHiXhKA0WF9mgTaC0nMqX3XiAIvZABL05wSxg84-a-VFDgeM645QAUCYSRm6VT6dScAuPiKdGBB-m50vcEyntURGuhRDdqiniHrqUE_nbdYjqJdvkry1u4GNnjaNnv7V6G12sWiotPG52S__PPyPfx6x9cBZD0m6HrNWVX7ACQYklT51tvcFLUjaGw
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction and Optimization of Student Grades Based on Genetic Algorithm and Graph Convolutional Neural Networks
URI https://link.springer.com/article/10.1007/s44196-025-00775-x
https://doaj.org/article/24225443ce8c4b9383b0234c81e31775
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5EL3pwqYp1KXPwpgGTTNLk2AbbIriAFnoLM8mbKtikpFH8-b43nRRFEbwkkMyQ8NZvlvcNY-cRiFBJml5SseeIUEpHIRJ3tIwI8bsq1jShf3sXjsbiZhJMbFHYotnt3ixJmki9KnbDxG02zAaO4W1zEDluBDh2J7tObI0DxV_PJbsUtkLm967fspAh6_-xEmoSzGCXbVtkyHtLVe6xNShabKc5dYFbJ2yxrS8Ugvts_lDRUguJl8si5_cYAma2tpKXmj8uuSv5sJI5LHgfk1bO8RXRTeOHeO91WlYv9fPM9B4SfTVPyuLdWiT-ENF3mJvZL744YOPB9VMycuwpCk6Gw6nagQyyK511XSW1joXwdTcEAnpxAFKBdqPcU5mggzqlK_2uh920BzF6doySBP-QrRdlAUeMK19IDyDIoygw630qjwCDfUiMMSDcNrtopJrOl2QZ6YoW2eggRR2kRgfpR5v1SfCrlkR0bR6U1TS1fpMigiASNT-DKBMqxvG0QpQhssgFRD7doM0uG7Wl1vsWf3zz-H_NT9imZ6yGaFxP2XpdvcEZgpBadYzN0TVMOmYg_wmxRtcN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_XgW6zPHLzporub3WaPbbGt2qqggreQ7E5U0K20Vfz5zqRp8YXgaSGbkGUeO19mki-M7UsQqdGUXjJZFIhU68AgEg-sloT4Q5NZSuh3L9L2rTi7S-48TQ6dhflWvz8aYLh222STwLG1BYgXZ7BJ0va9RtqY5FOikKxR-HMxvw_9EnscRf-P-qcLK80ltuDxIK-NFLjMpqBcYYvjuxa4d70VNv-JOHCVvVz1qcBCQuW6LPglOv6zP1HJe5ZfjxgreauvCxjwOoaqguMrIpnGiXjt6b7Xfxw-PLvRLSKt5o1e-ebtED-ISDvcw-0SH6yx2-bJTaMd-LsTghwXUcMAcsiPbV4NjbY2EyK21RQI3mUJaAM2lEVkckHXc-pQx9UIh9kIMvTnDCUJ8TqbLnslbDBuYqEjgKSQMnFVPlNIwF98SjwxIMIKOxhLVb2MKDLUhAzZ6UChDpTTgXqvsDoJftKT6K1dA2pdeW9RiBuIOi3OQebCZLiKNogtRC5DQLxTTSrscKw25X1u8Mecm__rvsdm2zfdjuqcXpxvsbnIWRARuW6z6WH_FXYQhgzNrrO_D4tp1Ew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrgZSrOax5806Jt06593KZz3gUVfAtJezIF146uij_fc7JuTBTBp0KbkHIuOV9ycr4wdhCBCLWi7SUde44IlXI0InHHqIgQv6tjQxv6N7dh90lcPgfPU1X89rT7OCU5qmkglqasPB6k5nhS-IZB3B6eDRzL4eYgipzDlYpN1LbD9mSXxXPJRkVVLfN7128RyRL3_8iK2mDTWWFLFUrkzZFaV9kMZDW2PL6BgVcOWWOLU3SCa2xwX1DahUTNVZbyO5wO-lWdJc8NfxjxWPLzQqUw5C0MYCnHT0Q9jQPx5lsvL17Ll77tfU5U1rydZx-VdeIPEZWHfdiz48N19tQ5e2x3nepGBSfBpVXpQALJiUkarlbGxEL4phECgb44AKXBuFHq6UTQpZ3KVX7Dw27Ggxi9PEZJgr_BZrM8g03GtS-UBxCkURTY3J9OI8CJPyT2GBBunR2OpSoHI-IMOaFItjqQqANpdSA_66xFgp-0JNJr-yIverLyIYloggjV_ASiROgY19YaEYdIIhcQBTWCOjsaq01Wnjj8Y8yt_zXfZ_P3px15fXF7tc0WPGtAxO66w2bL4h12EZuUes-a3xeWadyT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Optimization+of+Student+Grades+Based+on+Genetic+Algorithm+and+Graph+Convolutional+Neural+Networks&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Ting&rft.date=2025-03-17&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00775-x&rft.externalDocID=10_1007_s44196_025_00775_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon