Prediction and Optimization of Student Grades Based on Genetic Algorithm and Graph Convolutional Neural Networks
Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. St...
Saved in:
Published in | International journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
17.03.2025
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs. |
---|---|
AbstractList | Abstract Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs. Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this, educational systems are incorporating intelligent prediction tools to help students improve their academic performance by predicting their grades. Students' demographic information, past performance in the subject, and course characteristics are some of the factors used by the grade prediction system to foretell how they will do in future. Complexity and non-linearity in the analysis of inter-variable connections pose problems for traditional prediction models. Our solution to these problems is a GGCNN, or Genetic Algorithm with Graph Convolutional Neural Networks. In order to improve the accuracy of predictions, GGCNN examines educational data and finds intricate linkages. Using a graph structure, the graph convolution model emphasizes the interdependencies among academic metrics, course features, and student performance. Relationships and correlations can be better predicted with the use of this dependency metric. Use of the genetic algorithm improves the grade prediction system by optimizing the network and making better use of features. Administrators and teachers alike can find ways to boost their kids' grades through the optimization process. To test how well the system performs on different measures, we utilize the Student Performance Kaggle dataset. This continues until the convergence requirements are satisfied. With Python as its implementation, the system was able to get an accuracy of 0.98% after 100 epochs and 0.97% after 1000 epochs. |
ArticleNumber | 59 |
Author | Li, Ting |
Author_xml | – sequence: 1 givenname: Ting surname: Li fullname: Li, Ting email: Liting_ltlt@outlook.com organization: School of Computer and Artificial Intelligence, Henan Finance University |
BookMark | eNp9kc9OwzAMxiMEEmPsBTjlBQr51zU9jgnGpIkhAecoTZ2to2umpIPB05O1CHHiZMfx97Ps7wKdNq4BhK4ouaaEZDdBCJqPE8LSJD6zNDmcoAGVMRlLyU__5OdoFMKGEMKoIESIAdo9eSgr01auwbop8XLXVtvqS3cFZ_Fzuy-hafHM6xICvtUBShy_ZtBAWxk8qVfOV-1626lj126Np655d_X-iNA1foS970L74fxbuERnVtcBRj9xiF7v716mD8liOZtPJ4vEMMnaBAwYYk1GC21tLgS32RgIHdM8BV2ApbJkhRFpluaaap6xKLMMciFlHncDPkTznls6vVE7X221_1ROV6orOL9S2scNalBMMJbGEQakEUXOJS8I48JICpzGe0YW61nGuxA82F8eJepogeotUNEC1VmgDlHEe1GIzc0KvNq4vY8XCf-pvgEEeYx4 |
Cites_doi | 10.1186/s41239-020-00186-2 10.1007/s00521-020-05045-9 10.3103/S1060992X21020119 10.1109/ICDSIS61070.2024.10594426 10.1016/j.asoc.2021.107355 10.12785/ijcds/150119 10.3390/su13179775 10.1109/ACCESS.2021.3119596 10.1016/j.heliyon.2024.e32570 10.1016/j.neucom.2020.12.023 10.1109/ACCESS.2021.3049446 10.3390/app11115263 10.1109/ACCESS.2021.3093563 10.32604/iasc.2024.043020 10.1109/ACCESS.2020.2981072 10.1007/s10639-020-10230-3 10.21015/vtse.v11i4.1647 10.1109/ACCESS.2022.3151652 10.1186/s41239-023-00389-3 10.1007/s11042-024-18262-4 10.1109/ICDSIS61070.2024.10594049 10.1186/s40537-024-00918-5 10.3390/electronics12143106 10.1186/s40561-022-00192-z 10.1007/s00500-021-06424-7 10.1109/TBDATA.2021.3125204 10.1007/s10639-019-10004-6 10.1515/nleng-2022-0271 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 |
Copyright_xml | – notice: The Author(s) 2025 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s44196-025-00775-x |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1875-6883 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_24225443ce8c4b9383b0234c81e31775 10_1007_s44196_025_00775_x |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c282t-ecec0fc71baff9443f76e016195eabef18d2bc45759a1a372c28f2e94889140e3 |
IEDL.DBID | C24 |
ISSN | 1875-6883 |
IngestDate | Wed Aug 27 01:02:33 EDT 2025 Sun Jul 06 05:06:03 EDT 2025 Tue Mar 18 01:13:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Graph structure Genetic algorithm Student grade Graph convolution neural networks Dependency measure and academic performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-ecec0fc71baff9443f76e016195eabef18d2bc45759a1a372c28f2e94889140e3 |
OpenAccessLink | https://link.springer.com/10.1007/s44196-025-00775-x |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24225443ce8c4b9383b0234c81e31775 crossref_primary_10_1007_s44196_025_00775_x springer_journals_10_1007_s44196_025_00775_x |
PublicationCentury | 2000 |
PublicationDate | 2025-03-17 |
PublicationDateYYYYMMDD | 2025-03-17 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer |
References | H Ettakifi (775_CR29) 2024; 14 SDA Bujang (775_CR6) 2021; 9 I Salehin (775_CR10) 2023; 12 A Khan (775_CR1) 2021; 26 SC Tsai (775_CR7) 2020; 17 K Abid (775_CR21) 2023; 11 G Feng (775_CR24) 2022; 10 X Lu (775_CR15) 2021; 431 S Surenthiran (775_CR27) 2021; 30 M Yağcı (775_CR2) 2022; 9 MM Saeed (775_CR35) 2024; 39 B Albreiki (775_CR16) 2023; 20 BK Yousafzai (775_CR18) 2021; 13 M Adnan (775_CR5) 2021; 9 M Hooda (775_CR25) 2022; 2022 EP Dogadina (775_CR14) 2021; 11 775_CR34 Y Li (775_CR30) 2024; 9 775_CR33 SS Shreem (775_CR12) 2022; 26 775_CR37 Q Huang (775_CR36) 2024; 11 F Alshaikh (775_CR23) 2024; 15 775_CR9 M Chen (775_CR31) 2024; 10 Y Zhang (775_CR19) 2021; 9 A Nabil (775_CR17) 2021; 9 MS Viswanathan (775_CR3) 2021; 12 F Ofori (775_CR4) 2020; 4 TS Ashwin (775_CR20) 2020; 25 P Hai-tao (775_CR13) 2021; 33 F Giannakas (775_CR11) 2021; 106 SRM Ali (775_CR22) 2022; 13 X Du (775_CR26) 2023; 12 H Cho (775_CR8) 2020; 8 Y Alshamaila (775_CR32) 2024; 83 775_CR28 |
References_xml | – volume: 17 start-page: 1 year: 2020 ident: 775_CR7 publication-title: Int. J. Educ. Technol. High. Educ. doi: 10.1186/s41239-020-00186-2 – volume: 33 start-page: 637 year: 2021 ident: 775_CR13 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05045-9 – volume: 30 start-page: 157 year: 2021 ident: 775_CR27 publication-title: Opt. Mem. Neural Netw. doi: 10.3103/S1060992X21020119 – volume: 9 start-page: 2427 issue: 1 year: 2024 ident: 775_CR30 publication-title: Appl. Math. Nonlinear Sci. – ident: 775_CR34 doi: 10.1109/ICDSIS61070.2024.10594426 – volume: 106 year: 2021 ident: 775_CR11 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107355 – volume: 2022 start-page: 7690103 issue: 1 year: 2022 ident: 775_CR25 publication-title: Math. Probl. Eng. – volume: 15 start-page: 239 issue: 1 year: 2024 ident: 775_CR23 publication-title: Int. J. Comput. Digit. Syst. doi: 10.12785/ijcds/150119 – volume: 13 start-page: 9775 issue: 17 year: 2021 ident: 775_CR18 publication-title: Sustainability doi: 10.3390/su13179775 – ident: 775_CR9 – volume: 9 start-page: 140731 year: 2021 ident: 775_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3119596 – volume: 10 issue: 12 year: 2024 ident: 775_CR31 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e32570 – ident: 775_CR37 – ident: 775_CR28 – volume: 431 start-page: 23 year: 2021 ident: 775_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.023 – volume: 9 start-page: 7519 year: 2021 ident: 775_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049446 – volume: 11 start-page: 5263 issue: 11 year: 2021 ident: 775_CR14 publication-title: Appl. Sci. doi: 10.3390/app11115263 – volume: 9 start-page: 95608 year: 2021 ident: 775_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093563 – volume: 13 start-page: 1329 issue: 1 year: 2022 ident: 775_CR22 publication-title: Int J Nonlinear Anal Appl – volume: 4 start-page: 33 issue: 1 year: 2020 ident: 775_CR4 publication-title: J. Inf. Technol. – volume: 39 start-page: 213 issue: 2 year: 2024 ident: 775_CR35 publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2024.043020 – volume: 8 start-page: 52588 year: 2020 ident: 775_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981072 – volume: 14 start-page: 4325 issue: 4 year: 2024 ident: 775_CR29 publication-title: Int. J. Electr. Comput. Eng. – volume: 26 start-page: 205 issue: 1 year: 2021 ident: 775_CR1 publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-020-10230-3 – volume: 11 start-page: 67 issue: 4 year: 2023 ident: 775_CR21 publication-title: VFAST Trans. Softw. Eng. doi: 10.21015/vtse.v11i4.1647 – volume: 10 start-page: 19558 year: 2022 ident: 775_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151652 – volume: 20 start-page: 23 issue: 1 year: 2023 ident: 775_CR16 publication-title: Int. J. Educ. Technol. High. Educ. doi: 10.1186/s41239-023-00389-3 – volume: 83 start-page: 46369 issue: 15 year: 2024 ident: 775_CR32 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-18262-4 – ident: 775_CR33 doi: 10.1109/ICDSIS61070.2024.10594049 – volume: 11 start-page: 52 issue: 1 year: 2024 ident: 775_CR36 publication-title: J. Big Data doi: 10.1186/s40537-024-00918-5 – volume: 12 start-page: 3106 issue: 14 year: 2023 ident: 775_CR10 publication-title: Electronics doi: 10.3390/electronics12143106 – volume: 9 start-page: 11 issue: 1 year: 2022 ident: 775_CR2 publication-title: Smart Learn. Environ. doi: 10.1186/s40561-022-00192-z – volume: 26 start-page: 1811 issue: 4 year: 2022 ident: 775_CR12 publication-title: Soft. Comput. doi: 10.1007/s00500-021-06424-7 – volume: 12 start-page: 3085 issue: 2 year: 2021 ident: 775_CR3 publication-title: Turk. J. Comput. Math. Educ. – volume: 9 start-page: 118 issue: 1 year: 2021 ident: 775_CR19 publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2021.3125204 – volume: 25 start-page: 1387 issue: 2 year: 2020 ident: 775_CR20 publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-019-10004-6 – volume: 12 start-page: 20220271 issue: 1 year: 2023 ident: 775_CR26 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2022-0271 |
SSID | ssj0002140044 |
Score | 2.3446538 |
Snippet | Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this,... Abstract Due to limited support in registered courses, students frequently struggle to complete their courses in higher education institutions. To combat this,... |
SourceID | doaj crossref springer |
SourceType | Open Website Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Dependency measure and academic performance Engineering Genetic algorithm Graph convolution neural networks Graph structure Mathematical Logic and Foundations Mechatronics Research Article Robotics Student grade |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xfpiD940aNJNsjm2xVYEH6CF3sLuZlYFm5Q0Sn--M5u0VAS9eAok2WT5dma_2dc3jJ1JEJFWNL2kk8ATkVKexkjcs0pSxO_rxNKE_t19dDMSt-NwvJLqi_aE1fLANXCXSCGkotUxII3QCQ6oNNKMMNIHpL7YqZci560MpqgPDnyyTdGcknFn5ZD33X7b0HOyb978GxM5wf4fq6GOZAZbbKOJDnm3rtU2W4N8h20uMi_wxhF32fSxpAUWApWrPOMP6PiT5kQlLyx_qhUr-bBUGcx4D6kq4_iIRKbx07z7_lKUb9XrxJUekmg17xf5Z2OHWAUS7XAXt0t8tsdGg-vn_o3X5E7wDA6iKg8MmCtrYl8raxPEz8YRUHiXhKA0WF9mgTaC0nMqX3XiAIvZABL05wSxg84-a-VFDgeM645QAUCYSRm6VT6dScAuPiKdGBB-m50vcEyntURGuhRDdqiniHrqUE_nbdYjqJdvkry1u4GNnjaNnv7V6G12sWiotPG52S__PPyPfx6x9cBZD0m6HrNWVX7ACQYklT51tvcFLUjaGw priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction and Optimization of Student Grades Based on Genetic Algorithm and Graph Convolutional Neural Networks |
URI | https://link.springer.com/article/10.1007/s44196-025-00775-x https://doaj.org/article/24225443ce8c4b9383b0234c81e31775 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5EL3pwqYp1KXPwpgGTTNLk2AbbIriAFnoLM8mbKtikpFH8-b43nRRFEbwkkMyQ8NZvlvcNY-cRiFBJml5SseeIUEpHIRJ3tIwI8bsq1jShf3sXjsbiZhJMbFHYotnt3ixJmki9KnbDxG02zAaO4W1zEDluBDh2J7tObI0DxV_PJbsUtkLm967fspAh6_-xEmoSzGCXbVtkyHtLVe6xNShabKc5dYFbJ2yxrS8Ugvts_lDRUguJl8si5_cYAma2tpKXmj8uuSv5sJI5LHgfk1bO8RXRTeOHeO91WlYv9fPM9B4SfTVPyuLdWiT-ENF3mJvZL744YOPB9VMycuwpCk6Gw6nagQyyK511XSW1joXwdTcEAnpxAFKBdqPcU5mggzqlK_2uh920BzF6doySBP-QrRdlAUeMK19IDyDIoygw630qjwCDfUiMMSDcNrtopJrOl2QZ6YoW2eggRR2kRgfpR5v1SfCrlkR0bR6U1TS1fpMigiASNT-DKBMqxvG0QpQhssgFRD7doM0uG7Wl1vsWf3zz-H_NT9imZ6yGaFxP2XpdvcEZgpBadYzN0TVMOmYg_wmxRtcN |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_XgW6zPHLzporub3WaPbbGt2qqggreQ7E5U0K20Vfz5zqRp8YXgaSGbkGUeO19mki-M7UsQqdGUXjJZFIhU68AgEg-sloT4Q5NZSuh3L9L2rTi7S-48TQ6dhflWvz8aYLh222STwLG1BYgXZ7BJ0va9RtqY5FOikKxR-HMxvw_9EnscRf-P-qcLK80ltuDxIK-NFLjMpqBcYYvjuxa4d70VNv-JOHCVvVz1qcBCQuW6LPglOv6zP1HJe5ZfjxgreauvCxjwOoaqguMrIpnGiXjt6b7Xfxw-PLvRLSKt5o1e-ebtED-ISDvcw-0SH6yx2-bJTaMd-LsTghwXUcMAcsiPbV4NjbY2EyK21RQI3mUJaAM2lEVkckHXc-pQx9UIh9kIMvTnDCUJ8TqbLnslbDBuYqEjgKSQMnFVPlNIwF98SjwxIMIKOxhLVb2MKDLUhAzZ6UChDpTTgXqvsDoJftKT6K1dA2pdeW9RiBuIOi3OQebCZLiKNogtRC5DQLxTTSrscKw25X1u8Mecm__rvsdm2zfdjuqcXpxvsbnIWRARuW6z6WH_FXYQhgzNrrO_D4tp1Ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrgZSrOax5806Jt06593KZz3gUVfAtJezIF146uij_fc7JuTBTBp0KbkHIuOV9ycr4wdhCBCLWi7SUde44IlXI0InHHqIgQv6tjQxv6N7dh90lcPgfPU1X89rT7OCU5qmkglqasPB6k5nhS-IZB3B6eDRzL4eYgipzDlYpN1LbD9mSXxXPJRkVVLfN7128RyRL3_8iK2mDTWWFLFUrkzZFaV9kMZDW2PL6BgVcOWWOLU3SCa2xwX1DahUTNVZbyO5wO-lWdJc8NfxjxWPLzQqUw5C0MYCnHT0Q9jQPx5lsvL17Ll77tfU5U1rydZx-VdeIPEZWHfdiz48N19tQ5e2x3nepGBSfBpVXpQALJiUkarlbGxEL4phECgb44AKXBuFHq6UTQpZ3KVX7Dw27Ggxi9PEZJgr_BZrM8g03GtS-UBxCkURTY3J9OI8CJPyT2GBBunR2OpSoHI-IMOaFItjqQqANpdSA_66xFgp-0JNJr-yIverLyIYloggjV_ASiROgY19YaEYdIIhcQBTWCOjsaq01Wnjj8Y8yt_zXfZ_P3px15fXF7tc0WPGtAxO66w2bL4h12EZuUes-a3xeWadyT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Optimization+of+Student+Grades+Based+on+Genetic+Algorithm+and+Graph+Convolutional+Neural+Networks&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Ting&rft.date=2025-03-17&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00775-x&rft.externalDocID=10_1007_s44196_025_00775_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |