Quantum linear system algorithm for solving an ill-posed quasi-linear elliptic problem by preconditioning operator
The HHL quantum algorithm for solving a well-conditioned linear system of equations provides an exponential speedup over the best classical methods. To be exact, in the quantum algorithm to achieve exponential speedup, the condition number of the matrix can scale at most poly logarithmically with th...
Saved in:
Published in | European physical journal plus Vol. 140; no. 5; p. 467 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
31.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The HHL quantum algorithm for solving a well-conditioned linear system of equations provides an exponential speedup over the best classical methods. To be exact, in the quantum algorithm to achieve exponential speedup, the condition number of the matrix can scale at most poly logarithmically with the size of the matrix. This is a very strict condition that greatly limits the class of problems that can achieve exponential speedup. On the other hand, the considered quasi-linear elliptic problem is ill-conditioned. Therefore, discretization methods lead to an unbounded condition number, as discretization is refined and the exponential speedup of the quantum linear system algorithm may be lost. In doing so, in this paper, we propose a preconditioned quantum linear system algorithm to control ill-conditioning and achieve an exponential speedup algorithm for solving the obtained linear system of equations. In this way, three methods, i.e., preconditioned Sobolev space gradient method, WEB-spline finite element method and HHL quantum algorithm, are applied. At the end, the numerical results are given in details to show the efficiency and accuracy of the proposed method. |
---|---|
AbstractList | The HHL quantum algorithm for solving a well-conditioned linear system of equations provides an exponential speedup over the best classical methods. To be exact, in the quantum algorithm to achieve exponential speedup, the condition number of the matrix can scale at most poly logarithmically with the size of the matrix. This is a very strict condition that greatly limits the class of problems that can achieve exponential speedup. On the other hand, the considered quasi-linear elliptic problem is ill-conditioned. Therefore, discretization methods lead to an unbounded condition number, as discretization is refined and the exponential speedup of the quantum linear system algorithm may be lost. In doing so, in this paper, we propose a preconditioned quantum linear system algorithm to control ill-conditioning and achieve an exponential speedup algorithm for solving the obtained linear system of equations. In this way, three methods, i.e., preconditioned Sobolev space gradient method, WEB-spline finite element method and HHL quantum algorithm, are applied. At the end, the numerical results are given in details to show the efficiency and accuracy of the proposed method. |
ArticleNumber | 467 |
Author | Salehi Shayegan, Amir Hossein Dejam, Laya |
Author_xml | – sequence: 1 givenname: Amir Hossein orcidid: 0000-0002-6077-5321 surname: Salehi Shayegan fullname: Salehi Shayegan, Amir Hossein email: ahsalehi.kau@gmail.com, ah.salehi@mail.kntu.ac.ir organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Laya surname: Dejam fullname: Dejam, Laya organization: Physics Department, West Tehran Branch, Islamic Azad University, Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University |
BookMark | eNqFkF1LwzAUhoNMcM79BgNex-WrXXopwy8QRNDrkLTpzEiTLmmF_XtTN9A7z805HM7zJjyXYOaDNwBcE3xLCMcr0-_6VSKMlRhhWiBcMsEQPgNzSiqMCs757M98AZYp7XAuXhFe8TmIb6Pyw9hBZ71REaZDGkwHlduGaIfPDrYhL4P7sn4LlYfWOdSHZBq4H1Wy6IQZ52w_2Br2MWiXA_Qhj6YOvrGDDX6iQ2-iGkK8AuetcsksT30BPh7u3zdP6OX18Xlz94JqKuiAGiEaViqtG1pWLV43hDBVc9pqgsuCFZVq1qSoNRFMlFXuWFOsMFMaK8aFYAtwc8zNf9qPJg1yF8bo85OSUcIpIyXD-Wp9vKpjSCmaVvbRdioeJMFyciwnx_LoWGbH8sexnEhxJFMm_NbE3_z_0G-lgoax |
Cites_doi | 10.1016/S0167-8396(03)00045-1 10.1103/PhysRevLett.110.250504 10.1016/S0898-1221(01)00220-6 10.1137/1.9780898717532 10.1137/S0036142900373208 10.1090/gsm/047 10.1103/PhysRevLett.103.150502 10.1038/s41598-022-25727-9 10.1016/j.apm.2013.06.018 10.1080/00268976.2012.668289 10.1016/j.physleta.2020.126595 10.1103/PhysRevResearch.5.043113 10.3846/mma.2020.4310 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION |
DOI | 10.1140/epjp/s13360-025-06383-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-5444 |
ExternalDocumentID | 10_1140_epjp_s13360_025_06383_0 |
GroupedDBID | 06D 0R~ 203 29~ 2JN 2KG 30V 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFDZB AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PT4 RID RLLFE ROL RSV S1Z S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
ID | FETCH-LOGICAL-c282t-d88d36abbd269f07d113ac42fb1065359ad715cb183869cb10b20a03ab0a34883 |
IEDL.DBID | U2A |
ISSN | 2190-5444 |
IngestDate | Fri Jul 25 09:39:29 EDT 2025 Tue Aug 05 12:04:35 EDT 2025 Sun Jun 01 01:14:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-d88d36abbd269f07d113ac42fb1065359ad715cb183869cb10b20a03ab0a34883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6077-5321 |
PQID | 3214231630 |
PQPubID | 2044220 |
ParticipantIDs | proquest_journals_3214231630 crossref_primary_10_1140_epjp_s13360_025_06383_0 springer_journals_10_1140_epjp_s13360_025_06383_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-31 |
PublicationDateYYYYMMDD | 2025-05-31 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | European physical journal plus |
PublicationTitleAbbrev | Eur. Phys. J. Plus |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | AW Harrow (6383_CR5) 2009; 103 A Zakeri (6383_CR3) 2014; 38 J Golden (6383_CR10) 2022; 12 K Hollig (6383_CR16) 2003 6383_CR9 6383_CR8 AH Salehi Shayegan (6383_CR4) 2020; 25 I Faragó (6383_CR2) 2002 MA Nielsen (6383_CR15) 2011 6383_CR14 I Faragó (6383_CR1) 2001; 42 BD Clader (6383_CR6) 2013; 110 K Hollig (6383_CR18) 2003; 20 B Duan (6383_CR7) 2020; 384 N Baskaran (6383_CR13) 2023; 5 K Hollig (6383_CR17) 2001; 39 Y Cao (6383_CR11) 2012; 110 6383_CR12 |
References_xml | – volume: 20 start-page: 277 issue: 5 year: 2003 ident: 6383_CR18 publication-title: Comput. Aided Geom. Des. doi: 10.1016/S0167-8396(03)00045-1 – volume: 110 issue: 25 year: 2013 ident: 6383_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.250504 – volume: 42 start-page: 1043 issue: 8–9 year: 2001 ident: 6383_CR1 publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00220-6 – volume-title: Finite Element Methods with B-Splines year: 2003 ident: 6383_CR16 doi: 10.1137/1.9780898717532 – volume: 39 start-page: 442 issue: 2 year: 2001 ident: 6383_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900373208 – ident: 6383_CR14 doi: 10.1090/gsm/047 – volume: 103 issue: 15 year: 2009 ident: 6383_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.150502 – ident: 6383_CR9 – ident: 6383_CR8 – volume-title: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators year: 2002 ident: 6383_CR2 – volume: 12 start-page: 22285 issue: 1 year: 2022 ident: 6383_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-022-25727-9 – volume-title: Quantum Qomputation and Quantum Information year: 2011 ident: 6383_CR15 – ident: 6383_CR12 – volume: 38 start-page: 775 issue: 2 year: 2014 ident: 6383_CR3 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.06.018 – volume: 110 start-page: 1675 issue: 15–16 year: 2012 ident: 6383_CR11 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.668289 – volume: 384 issue: 24 year: 2020 ident: 6383_CR7 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126595 – volume: 5 issue: 4 year: 2023 ident: 6383_CR13 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.043113 – volume: 25 start-page: 531 issue: 4 year: 2020 ident: 6383_CR4 publication-title: Math. Modell. Anal. doi: 10.3846/mma.2020.4310 |
SSID | ssj0000491494 |
Score | 2.341075 |
Snippet | The HHL quantum algorithm for solving a well-conditioned linear system of equations provides an exponential speedup over the best classical methods. To be... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 467 |
SubjectTerms | Algorithms Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Data compression Discretization Eigenvalues Expected values Finite element analysis Finite element method Fourier transforms Ill-conditioned problems (mathematics) Linear systems Mathematical and Computational Physics Molecular Operators (mathematics) Optical and Plasma Physics Physics Physics and Astronomy Preconditioning Regular Article Sobolev space Sparsity Theoretical |
Title | Quantum linear system algorithm for solving an ill-posed quasi-linear elliptic problem by preconditioning operator |
URI | https://link.springer.com/article/10.1140/epjp/s13360-025-06383-0 https://www.proquest.com/docview/3214231630 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-yIXgRP3E6Rw5ew9ImzdrjkE1RFAQH8xTyVZ3so67rwf_el7Zz6kHBUwshKfzykvx-ea_vIXTBrEhCExuiLU8JD1VAtIhA8wSJM1w4I0qP6d29uB7xm3E0_lrqy0e7r12S5U5d5bOlXZe9Zt0cJJWgxNdg9WctI6DWm5EX8GDKo7D_eb0CxBe4P68jun7p__082pDMH37R8rgZ7qHdmififjWx-2jLzQ_QdhmvafJDtHwoAJJihj1LVEtcJWTGavq8ALX_MsPARTGYlb8uwGqOJ9MpyRa5s_itUPmE1N18Nk7YMwyu68pg_Q6vXiPbSX1TixeZK13xR2g0HDxeXpO6fAIxoKNWxMaxZUJpbUORpLRng4Apw8NUBz4hbZQo2wsio2FRxyKBJ9UhVZQpTRWDdc2OUWO-mLsThONIhyYy3BllOROB5j6pNQyV-g-krIXoGkSZVVkyZPXHM5Ued1nhLgF3WeIuaQu112DLetnk0ldNAsIpGDQH6wnYNP8x5Ok_-pyhnbC0Bh8P0EaN1bJw50AzVrqDmv2rp9tBpzSsD6Gmz1Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yInoRn7g-c_AaNm3S2B5FXNYnCC54C3lVV3bbut09-O-d9OGqBwVPLYRJ4ctM8k1mOoPQKbMiCU1siLY8JTxUAdEiAp8nSJzhwhlRRUzv7sVgyK-foqevrb58tnsbkqx26rqeLe254rXoleBSCUp8D1Z_1jIC3voyMILYZ3MNw_PP6xUgvsD9eZPR9Yv89_NoQTJ_xEWr46a_gdYbnojP64XdREsu20IrVb6mKbfR9GEOkMwn2LNENcV1QWasxs85ePsvEwxcFINa-esCrDI8Go9JkZfO4re5KkekEfPVOGHPMLjpK4P1O7x6H9mOmptanBeuCsXvoGH_8vFiQJr2CcSAHzUjNo4tE0prG4okpWc2CJgyPEx14AvSRomyZ0FkNBh1LBJ4Uh1SRZnSVDGwa7aLOlmeuT2E40iHJjLcGWU5E4Hmvqg1TJX6D6Ssi2gLoizqKhmy_uOZSo-7rHGXgLuscJe0iw5bsGVjNqX0XZOAcAoGw0G7AIvhP6bc_4fMCVodPN7dytur-5sDtBZWmuFzAw5RZzaduyOgHDN9XCnXBwiT0LM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iKF7EJz5WzcFr2KRJY3sU3cU3Ci54C3lVV9Zu3e4e_PdO-lD0oOCphZIUvkyS78tMZhA64k6mkU0sMU5kRESaESNj0Dws9VZIb2XlMb25lecDcfkYP86hXnsXpop2b12S9Z2GkKUpn3YLlzW5bWnXFy9FtwR5JSkJ9VjDvssJKPcFWJNZMO5BdPJ51AIkGHSAaKK7fmn_fW_6Ipw_fKTV1tNfRSsNZ8Qn9SCvoTmfr6PFKnbTlhtocj8DeGavODBGPcF1cmasR09jUP7Prxh4KQYTC0cHWOd4OBqRYlx6h99muhySplnIzAnrh8VNjRls3uE16GU3bE5t8bjwlVt-Ew36vYfTc9KUUiAWNNWUuCRxXGpjXCTTjB47xri2IsoMC8lp41S7YxZbAxM8kSk8qYmoplwbqjnMcb6F5vNx7rcRTmIT2dgKb7UTXDIjQoJr6CoLP8j4DqItiKqoM2ao-vYzVQF3VeOuAHdV4a7oDuq0YKtmCpUqVFAC8ik5fGbtAHx9_qPL3X-0OURLd2d9dX1xe7WHlqPKMEKYQAfNTyczvw_sY2oOKtv6AAeQ1O8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+linear+system+algorithm+for+solving+an+ill-posed+quasi-linear+elliptic+problem+by+preconditioning+operator&rft.jtitle=European+physical+journal+plus&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Dejam%2C+Laya&rft.date=2025-05-31&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=140&rft.issue=5&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-025-06383-0&rft.externalDocID=10_1140_epjp_s13360_025_06383_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |