Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate

Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 11; pp. 424 - 428
Main Author 张璐;洪海洋;王一森;李成;林光杨;陈松岩;黄巍;汪建元
Format Journal Article
LanguageEnglish
Published 01.11.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/11/116802

Cover

Loading…
More Information
Summary:Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.
Bibliography:polycrystalline GeSn high-Sn content pulsed laser annealing disorder
Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.
Lu Zhang, Hai-Yang Hong, Yi-Sen Wang, Cheng Li, Guang-Yang Lin, Song-Yan Chen, Wei Huang, Jian-Yuan Wang( Department of Physics, OSED, Semiconductor Photonics Research Center. Xiamen University, Xiamen 361005, China)
11-5639/O4
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/11/116802